

Abstract— This paper introduces a genetic algorithm (GA)
planner that is able to rapidly determine optimal or near-
optimal solutions for mobile robot path planning problems in
environments containing moving obstacles. The method
restricts the search space to the vertices of the obstacles,
obviating the need to search the entire environment as in
earlier GA-based approaches. The new approach is able to
produce an off-line plan through an environment containing
dynamic obstacles, and can also re-calculate the plan on-line to
deal with any motion changes encountered. A particularly
novel aspect of the work is the incorporation of the selection of
robot speed into the GA genes. The results from a number of
realistic environments demonstrate that planning changes in
robot speed significantly improves the efficiency of movement
through the static and moving obstacles.

I. INTRODUCTION
HE mobile robot path planning task is to find a
collision-free route, through an environment containing

obstacles, from a specified start location to a desired goal
destination while satisfying certain optimization criteria [1].
While off-line planning methods are designed to deal with
the motion of a robot in environments containing both static
and dynamic obstacles, a complementary on-line method is
required to deal with changes in expected motions
encountered during navigation through the environment.

This paper introduces vertex++, a genetic-based algorithm
for path planning in dynamic environments (those in which
one or more moving obstacles are present), that has the
ability to deal with both static and dynamic constrains
simultaneously. Although designed initially as an off-line
algorithm, vertex++ is also appropriate for use in on-line
planning, where its operation can be triggered in response to
changes in the expected movements of the dynamic
obstacles. The vertex++ navigation approach is an
enhancement of the vertex planning method for static
environments described by the authors in [2]. By restricting
the planning to obstacle vertices rather than considering than
the entire environment, the vertex++ planner is able to
significantly reduce the calculation time compared with
other GA approaches that have been applied in dynamic

Manuscript received September 15, 2006.
Y. Wang is currently with the Department of Electronic and Electrical

Engineering, Loughborough University, Loughborough, LE11 3TU, UK (e-
mail: y.wang4@lboro.ac.uk).

I. P. W. Sillitoe is with the Scottish Association for Marine Science,
Dunstaffnage Marine Laboratory, Dunbeg, Oban, PA37 1QA, UK (e-mail:
ian.sillitoe@sams.ac.uk).

D. J. Mulvaney, is with the Department of Electronic and Electrical
Engineering, Loughborough University, Loughborough, LE11 3TU, UK
(phone: +44 (0) 1509 227042; e-mail: d.j.mulvaney@lboro.ac.uk).

environments, in which all points in the environment are
considered as potential nodes in a path (regardless of
whether they are in free space or within an obstacle). A
further novel achievement of the new planning approach is
the inclusion of robot speed into the planning process, which
takes into account the time at which obstacles are
encountered, thereby allowing the consideration of a much
greater range of possible avoidance paths.

Traditional mapping techniques, such as grid [3][4],
meadow [5], Voronoi diagrams [6] and visibility graphs [7],
are not well suited to application in dynamic environments
due to the need to reconstruct or repair maps in response to
environment changes. To deal with the inherent complexity
of path planning tasks, a number of researchers have
investigated the application of evolutionary techniques in
static environments. Davidor [8] developed a tailored genetic
algorithm (GA) with a modified crossover operator to
optimize robot trajectories. The Evolutionary
Planner/Navigator (EP/N) [9]-[13] has been through a series
of revisions to enhance its performance, particularly by
introducing additional problem-specific domain knowledge
in the form of tailored GA operators that can be brought to
bear on the path planning task. Nearchou [14] used the
number of vertices produced in visibility graphs to build
fixed length chromosomes in which the presence of a vertex
within the path is indicated by setting of a bit at the
appropriate locus. A reordering operator was applied to
enhance performance and the algorithm was capable of
determining a near-optimal solution. Cai and Peng [15]
developed a fixed-length decimal encoding mechanism to
obviate the need for reordering operators and used
individuals whose length was fixed to be that of the total
number of all obstacle vertices in the environment.

For dynamic environments, the literature records few
contributions that discuss robot navigation using GAs or that
incorporate the speed of the robot as part of the planning
problem. A modified version of EP/N, termed ϑEP/N++, was
proposed in [16][17][18] as a decision support system for a
ship to voyage without collision on the basis of
environmental information obtained from automatic radar
plotting aids. The major features of ϑEP/N++ include a time
parameter, the variable speed of the ship, and time-varying
constrains representing movable ships. The ϑEP/N++ system
retains the structure of EP/N and has same set of genetic
operators, with the exception of a new addition operator
developed to act on the ship’s speed. The candidate solutions
are obtained from variable-length individuals that represent a

Mobile Robot Path Planning in Dynamic Environments
Yang Wang, Ian P. W. Sillitoe and David J. Mulvaney, Member, IEEE

T

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA3.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 71

path through a set of absolute co-ordinates drawn from the
environment as a whole. The on-line planning can be
activated in response to the motion changes of other ships.

This paper describes the operation of the new vertex++
planner, and its performance when applied to a set of
simulations of realistic environments is considered in detail.

II. PLANNING ALGORITHM
This section explains the internal description of the

environment used in the new planner, details the internal
structure of the GA and describes the operation of the
vertex++ during both off-line and on-line planning.

A. Operating environment and modeling of obstacles
The working environment for the mobile robot consists of

a set of stationary obstacles whose shapes either are defined
to be, or to be are approximated by, bounding polygons. In
addition, the robot movement may be affected by the
presence of one or more dynamic obstacles that are also
represented by polygons. If the motion parameters (the
heading and speed) of those dynamic obstacles remain
constant, a safe trajectory for the robot can be generated by
the vertex++ planner in an off-line manner. In addition, the
path generated off-line can be adaptively revised in response
to any changes in the motion characteristics of the dynamic
obstacles.

In the off-line planner, it is assumed that complete motion
knowledge of the moving obstacles in the observed region is
available. In the on-line planner, it is assumed that changes
to the motion parameters of the moving obstacles are made
available whenever one comes within sensor range.
Although no particular sensor type or configuration is
specified, it is assumed that in order to allow the robot to be
guided so as to avoid any potential collisions with obstacles,
there is an adequately large time interval between the
detection of obstacle movements and the implementation of
newly generated actions. Note that this assumption may be
relaxed if guidance is achieved by reactive navigation, such
as in [19].

For purposes of planning, the static obstacles are enlarged
by a value determined from the minimum distance (herein
referred to as the safe distance) that the robot can approach
obstacles without collision, to account for the robot
dimensions (see Fig. 1 for an example). Such a
representation allows the physical dimensions of the mobile
robot to be neglected and regarded as a single point.

To model the motion of the dynamic obstacles in the
vertex++ planner, the same strategy as in ϑEP/N++ is
adopted. In brief, for each obstacle, its motion is described
by its trajectory, consisting of a series of one or more
segments, each having start and finish co-ordinates between
which the heading (defined by the co-ordinates) and the
speed of the obstacle are fixed.

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

500

X direction

Y
 d

ire
ct

io
n

Fig. 1. An example of the environment representation in vertex++ planner.
The gray polygons represent exclusion areas surrounding the moving
obstacles; the black obstacles are static.

In order to assess the possibility of the robot colliding
with dynamic obstacles, the following method has been
developed and implemented in vertex++. The first crossing
point between the robot path proposed by the planner and the
trajectory of a moving obstacle is calculated before
examining the possibility of collision. Based on the time t
required for the robot to cover the distance from the current
position to the first crossing point, the instantaneous location
of the moving obstacle can be calculated and, consequently,
the exclusion area for this obstacle. If the crossing point falls
within this area, a collision would occur between the robot
and the moving obstacle. An example of such an occurrence
is shown in Fig. 2. Note that the safety margins for the
longitudinal and transverse dimensions of the moving
obstacle are unlikely to be the same when constructing this
area, as the speeds of the robot and the moving obstacle need
to be taken into account in addition to the dimensions of the
robot. For the problem in Fig. 2, the time t is firstly
calculated for the robot to travel from its current location to
the crossing point determined from the generated path. The
instantaneous location of the moving obstacle after time t
can then be calculated according to the motion information
relating to the dynamic obstacle, allowing a region to be
identified for assessment of feasibility using the algorithm
for checking polygon clipping given in [20].

B. Genetic representation
Candidate paths are represented by a chromosome (Fig. 3)

consisting of a total number of genes l, where l has a
minimum value of two (a path containing only the start and
goal points) and maximum value of N+2, where N is the
total number of the vertices of all obstacles (both static and
dynamic) in the environment. The absolute coordinates of
the vertices (xi, yi) , i=0,..,l-1, are used directly in the gene
representation rather than a reference to one of the N vertices
[2]. The robot’s speed, si in the segment originating from
each gene is selected from a set of available discrete speeds.
A single bit is also provided in each gene to indicate the
feasibility of the path that originates from the gene; if the

WeA3.2

72

path segment connecting two consecutive vertices intersects
one or more obstacles, then the infeasibility bit of the gene
representing the originating node is assigned 1 to mark this
segment as infeasible (it is 0 otherwise).

goal

current location

crossing point at time t

moving obstacle location
at time t

 robot

moving obstacle

static obstacle

static obstacle

Fig. 2. Evaluation of the possibility of collision with a moving obstacle.
Note that the intermediate nodes of the generated path illustrated are
vertices of the enlarged static obstacles.

start gene gene 1 gene l-2 goal gene

x0
 x1 xl-2

 xg

y0
 y1 yl-2 yg

s0 s1 … sl-2 0

0/1 0/1 0/1 0
Fig. 3. The structure of a chromosome representing a path from the start to
the goal point. The l-2 intermediate genes are vertices of obstacles in the
environment. Each gene contains information relating to the vertex’s co-
ordinates, as well as the robot speed and infeasibility of the segment
originating from that gene.

The initial population is generated by randomly choosing
for each individual both its length (in the range 2 to N+2)
and the coordinates of the vertices contained therein, with
the constraints that no vertex is repeated in a individual and
that the first and last genes are always the start and goal
points respectively. The speed for each gene is selected
randomly from a set of discrete speeds.

C. Evaluation functions
Separate evaluation functions are applied to assess the

quality of the feasible and infeasible paths. Two parameters,
path length and travel time, are considered in the evaluation
function Ef for feasible paths, which is given by

,),(),(2

0 1
2

0 1 ∑∑ −

= +
−

= + += l

i iit
l

i iidf VVtwVVdwE (1)

where wd and wt are the weights for path length and travel
time respectively, d(Vi,Vi+1) denotes the distance between the
pair of vertices and t(Vi,Vi+1) represents the time needed to
cover each segment from vertex Vi to Vi+1 which can be
calculated by

, /),(),(11 iiiii sVVdVVt ++ = (2)

where si denotes the speed of the robot when travelling from
Vi to Vi+1. The infeasible paths are evaluated by the function
Ei by considering the deepness of an infeasible path’s
intersections with obstacles and is given by

,ηµ +=iE (3)

where µ denotes the number of obstacle intersections in the
path and η is the mean number of intersections in the
infeasible segments. Given the two evaluation functions, the
aim of the optimization process in the vertex++ planning
approach is to minimize the values of Ef and Ei for their
respective populations.

When the population contains both feasible and infeasible
paths, all infeasible paths are assumed to be no better than
the worst feasible path. A sufficiently large constant C is
added to the costs for the infeasible paths to ensure the
evaluation values of any given infeasible path is worse than
the values for all feasible paths. C is defined to be

 ,DNC)2(+= (4)
where N+2 indicates the maximum possible number of genes
in an individual and D denotes the maximum length of a
path segment (for example, this would be the diagonal in a
rectangular environment).

D. Genetic operators and their selection
Three of the total of four genetic operators are the same as

those used in the vertex planner in [2], namely, crossover,
mutation and repair. The fourth operator, termed
‘speedmutation’, has been introduced in this work in order to
mutate the robot speed indicated in a gene and it is selected
with a small probability. In order to keep the number of
system parameters to a minimum, the selection of an
operator from the four available is made randomly at each
generation rather than being based on predefined
probabilities. The crossover operation is performed by a
conventional one-point operator, following which
individuals are examined for repeated vertices, and those
replicated vertices of lower locus are removed in order to
eliminate circular paths. When the mutation operator is
selected, only one bit is modified in the chosen individual.
Mutation is inhibited if the replacement genes are already be
present in the individual. Note that the mutation rate will
depend on the length of the individuals; for example if the
average length of the individuals is 10 bits for a certain
planning task, then, on average, only 1 bit will be mutated in
every fourth generation (there being four operators), giving a
mutation rate of 0.025. The repair operator adjusts a
randomly selected infeasible segment of an infeasible path,
so that it circumnavigates all obstacles previously
intersected, as illustrated in Fig. 4.

E. Evolutionary process
As a steady-state GA has been adopted, only one or

(following crossover) a single pair of individuals is different
in consecutive generations. The generational operation

WeA3.2

73

begins with the random selection of a genetic operator and a
quadratic ranking scheme is used to retain the constant
selection differential after evaluation. The parent (or parents
for the crossover operation) that are involved in the genetic
operation are determined by a roulette wheel whose slots are
sized in proportion to the fitness as scaled by a ranking
technique. To form a new generation, the newly generated
offspring replace the worst individual (or pair of individuals
if crossover is applied) in terms of fitness in the existing
population. The evolutionary process continues until a
termination condition is satisfied, which can be defined to be
a number of generations specified by the user or determined
by monitoring against a specified performance criterion.
When the evolution terminates, the best individual is
selected as the path planning solution.

S

S

G

G

Fig. 4. An illustration of the repair operator that uses the vertices of the
enlarged obstacle (shown dashed) to determine a feasible path around the
obstacles.

F. On-line planning
On-line planning is triggered automatically to adapt to

changes in the movement characteristics of the dynamic
obstacles that have occurred since the off-line plan was
computed. On-line planning is instigated only when such
changes are detected within range of the robot’s sensors,
otherwise the robot continues to follow the previously-
planned trajectory. Information gathered from the robot’s
sensors with regard to the motion changes of obstacles is
supplied to the vertex++ planner which then uses the current
state of the robot as the start configuration for its on-line
evolutionary planning, and evolves a new path for the robot.
The on-line planning algorithm is the same as that used in
off-line planning, but with the additional assumption that the
planning time is relatively short compared with that needed
for the robot to implement motion changes to avoid collision
with dynamic obstacles.

III. EXPERIMENTS AND RESULTS
A series of experiments involving the vertex++ planner

was conducted in Matlab 7.2 [21] running under Windows
2000 on a 2.8GHz Pentium P4 system. Four simulated
environments were conducted in which the on-line planner
was required to determine a path through both static and
dynamic obstacles, the latter making a number of motion
parameter changes. The paths were separately optimized for
both travel time and path length. The number of obstacles

present in each of the test environments is summarized in
Table I.

TABLE I
THE NUMBERS OF OBSTACLES IN THE FOUR TEST ENVIRONMENTS.

environment number of
static obstacles

number of
dynamic
obstacles

1 4 2

2 5 3

3 9 4

4 14 5
To provide realistic challenges to the planner, the four

environments were designed to reflect a representative range
of applications in which mobile robots may be expected to
operate. Simple trajectories for the dynamic obstacles were
designed for the first two environments, with the obstacles
simply traveling to and fro between two specified locations.
More complex paths for the dynamic obstacles were defined
for the remaining two environments, involving speed
changes and movement between a series of nodes. For off-
line planning, the information regarding the motions of the
dynamic obstacles is assumed to be completely known for
the four environments before planning. Apart from the robot
speed and the optimizing criteria, all parameters remained
unchanged throughout the set of experiments and they are
listed in Table II.

TABLE II
SYSTEM PARAMETERS FOR VERTEX++ PLANNER. NOTE THAT MUTATION

ACTS ON ONLY ONE GENE TO ALTER EITHER THE VERTEX OR THE SPEED OF
THE SELECTED SEGMENT AND THAT THE VALUE OF THE SAFE DISTANCE IS

DETERMINED FROM THE MINIMUM DISTANCE THAT THE ROBOT CAN
APPROACH OBSTACLES WITHOUT COLLISION, TAKING INTO ACCOUNT ITS

PHYSICAL DIMENSIONS.
population

size
mutation rate

(for node)
mutation rate
(for speed) repair rate safe distance (m)

30 one gene one gene one infeasible
segment 1

The experiments in this paper concentrate on the results

obtained from the on-line planning, although clearly, in all
cases, the off-line planning was always performed prior to
the robot leaving its start position. For clarity, the results
presented show only a limited number of paths; these being
illustrative of a much larger set of experiments with these
environments. The motions of the dynamic obstacles in the
four environments were changed (in both trajectory and
speed) after the robot had followed the paths generated off-
line for a specified time duration. Table III shows an
example set of such obstacle speeds used in the generation of
the paths shown in Fig. 5 and Fig. 6. In the experiments,
when a change in an obstacle’s trajectory or speed was
detected by the robot’s sensors, a new plan was generated
using the updated configuration. Only those portions of the
robot paths that were followed after the execution of the on-
line planner are plotted in the figures. Fig. 5 reports the
trajectories planned with travel time as the evaluation
criterion for the feasible paths, whereas Fig. 6 shows the

WeA3.2

74

paths evolved on the basis of minimizing path length.

0 100 200 300 400 500 0

100

200

300

400

500 Environment 1

X direction (m)

Y
di

re
ct

io
n

(m
)

C

G

0 100 200 300 400

0

100

200

300

400
Environment 2

X direction (m)
Y

di
re

ct
io

n
(m

)

C

G

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300
Environment 3

X direction (m)

Y
di

re
ct

io
n

(m
)

C

G

0 100 200 300 400
0

100

200

300

400
Environment 4

X direction (m)

Y
di

re
ct

io
n

(m
)

G

C

Fig. 5. The paths planned with the goal of minimizing travel time. Motion
parameter changes of the obstacles (detected by the robot when positioned
at the points marked ‘C’) occurred after 400, 380, 300, and 320 seconds for
the four environments.

0 100 200 300 400 500 0

100

200

300

400

500 Environment 1

X direction (m)

Y
 d

ire
ct

io
n

(m
)

C

G

0 100 200 300 400

0

100

200

300

400
Environment 2

X direction (m)

Y
di

re
ct

io
n

(m
)

C

G

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300
Environment 3

X direction (m)

Y
 d

ire
ct

io
n

(m
)

G

C

0 100 200 300 400
0

100

200

300

400
Environment 4

X direction (m)

Y
 d

ire
ct

io
n

(m
)

G

C

Fig. 6. The paths planned with the goal of minimizing path length. Motion
parameter changes of the obstacles occurred as in the results shown for
minimizing travel time.

In Fig. 5, the path generated for environment 1 when
optimizing for travel time is modified in order to avoid the
moving obstacle, but not when optimizing for path length
(Fig. 6). For environment 2, the re-planned path when
minimizing path length is in fact the same as that planned
before the obstacle changed trajectory, whereas, on careful
examination, it can be seen that the trajectory when
minimizing for travel time has required minor modifications
to the choice of intermediate nodes. The paths presented in
both Fig. 5 and Fig. 6 for environment 3 include, as
intermediate nodes, the same vertices in same order.
However, neither path for environment 4 is the same as that
generated off-line, with the planned robot movements being

updated by the on-line planner to adapt to the modified
motions of the dynamic obstacles. In general, it can be seen
that, as a result of different optimization criteria, the
trajectories produced when optimizing path length are
generally shorter than those obtained when minimizing for
travel time.

TABLE III
EXAMPLE MODIFIED SPEED PARAMETERS GENERATED FOR EACH MOVING

OBSTACLE PATH SEGMENT.

environment obstacle 1 obstacle 2 obstacle 3 obstacle 4 obstacle 5
1 0.1 0.55 - - -
2 0.4, 0.1 0.2 0.5 - -
3 0.3, 0.5 1.1, 0.4 0.7, 0.4, 0.6 1.2, 0.5, 0.4, 0.8 -
4 0.9 1.4, 0.7 1.1, 0.2, 0.5 0.3, 1.1 1.6, 0.5, 0.6

The quantitative results shown in Table IV for the

experiments in all four environments, demonstrate that the
maximum speed (0.7 ms-1) is the one most frequently chosen
from the set available when the optimization goal is travel
time, whereas lower speeds were selected more frequently
when the path length is the optimization criteria.
Additionally, the number of generations and execution time
to find the first feasible path, as well as the execution time
for 1000 generations in the on-line process are generally less
than those found for off-line planning [2]. This can be
explained by the fact that the length of the individuals is
generally shorter when performing on-line planning, simply
because the robot has advanced closer to the goal and there
will likely be fewer intermediate vertices. Table IV also
shows that when optimizing for travel time, although the
maximum speed was frequently chosen, occasionally a faster
path could be obtained by reducing speed to more efficiently
avoid a dynamic obstacle. In contrast, optimizing for the
minimum path length necessitated more frequently reversion
to lower speeds and consequently these paths were likely to
consume significantly less power to drive the robot to its
destination.

The rapid convergence in the first phase when conversion
from infeasible paths to feasible paths takes place, can be
attributed to the repair operator that was developed
following experimental observation. The mutation operator
is less effective in the initial evolution stages as relatively
few bits are mutated. As only one gene in the population is
modified when the mutation operator is applied, its effect is
diluted in the earlier generations’ populations due to the
greater prevalence of longer individuals. The effective
increase in the mutation rate in the later evolutionary
generations effectively promotes population diversity (and
so exploration into virgin areas of search space) and inhibits
premature convergence. The quality of final solution
produced in the second phase appears to be highly dependent
on the quality of the initial individuals that are supplied
following the operations of the first phase. If the initial
supply for the second evolution phase is sparse (in that all
the necessary building-blocks for the global optimal solution

WeA3.2

75

are not present), the process may be led into a local
minimum. The higher mutation rate apparent in later
evolutionary steps promotes diversity by modifying the
inherited building blocks, however the mutation is not
sufficiently dominant in the process to necessarily avoid the
GA becoming trapped in a local minimum. The vertex++
planning algorithm has been demonstrated as being capable
of generating an optimal or near-optimal path for the robot in
a relatively short time compared with ϑEP/N++ which is also
able to operate in environments containing dynamic
obstacles. The current implementation has been carried out
in Matlab and a significant improvement (reducing the
calculation time by a factor of five to ten times) is to be
expected when executed in a compiled language such as C.

TABLE IV
EXPERIMENTAL RESULTS FOR THE ON-LINE PLANNING.

cost in terms of

environment path
length
(m)

travel
time
(s)

generations
to find first

feasible
path

execution
time to find

first
feasible
path (s)

execution
time for 1000
generations

(s)

planned
robot speed

(ms-1)

1 419 606 64 5.63 29.9
0.7, 0.6, 0.7,

0.7, 0.7

2 317 546 54 5.41 33.6 0.4, 0.7, 0.7

3 300 428 48 10.4 47.9
0.7, 0.7, 0.7,

0.7

optimize
for

travel
time

4 385 551 84 28.7 106 0.7, 0.7, 0.7

1 408 1198 12 2.72 25.9 0.7, 0.3, 0.3,
0.3

2 311 990 60 5.11 33.6 0.4, 0.3, 0.3

3 300 512 45 7.56 51.3
0.7, 0.3, 0.7,

0.7

optimize
for path
length

4 346 1061 75 29.4 108
0.6, 0.3, 0.3,
0.5, 0.3, 0.3

IV. CONCLUSIONS
This paper has described the restriction of the search

space of the GA planner to include only the vertices of
obstacles and has resulted in a significant reduction in
planning time, permitting not only rapid off-line planning,
but also on-line planning on a timescale suitable for real-
time implementation in most practical circumstances.

The work has also introduced a novel GA-based
navigation system that is able to vary the speed of the robot
through evolutionary progress, allowing a greater number of
alternative paths to be considered. Where travel time is
crucial it was found that, in the environments considered,
full speed can be applied in most segments of the trajectory.
However, environments could easily be conceived in which
operating at full speed throughout the trajectory would result
in a much extended path due to the robot’s circumnavigation
of dynamic obstacles. If minimizing the path length is more
important, for example to conserve energy, lower speeds can
be planned and this is likely to result in a shorter overall
path.

REFERENCES
[1] C.-K. Yap, “Algorithmic motion planning,” in Advances in Robotics

vol. 1: Algorithmic and Geometric Aspects of Robotics, J. T. Schwartz
and C.-K. Yap, Eds. Hillsdale, New Jersey: Lawrence Erlbaum, 1987.

[2] Y. Wang, D. J. Mulvaney and I. P. W. Sillitoe, “Genetic-based mobile
robot path planning using vertex heuristics,” 2006 IEEE Conf.
Cybernetics and Intelligent Systems, pp.463-468.

[3] D. W. Payton, J. K. Rosenblatt and D. M. Keirsey, “Grid-based
mapping for autonomous mobile robot,” Robotics and Autonomous
Systems, vol. 11, no. 1, pp. 13–21, 1993.

[4] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm,” 2005
International Conference on Automated Planning and Scheduling, pp.
262-271.

[5] R. C. Arkin, “Navigational path planning for a vision-based mobile
robot,” Robotica, vol. 7, pp. 49-63, 1989.

[6] C. O’Dunlaing, and C.-K. Yap, “A retraction method for planning the
motion of a disc,” Journal of Algorithms, vol. 6, pp. 104–111, 1982.

[7] H. Mitchell, “An algorithmic approach to some problems in terrain
navigation,” Artificial Intelligence. vol. 37, pp. 171–201, 1988.

[8] Y. Davidor, Genetic algorithms and robotics: a heuristic strategy for
optimization. Singapore: World Scientific Publishing, 1991.

[9] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive
evolutionary planner/navigator for mobile robots,” IEEE Transactions
on Evolutionary Computation, vol. 1, pp. 18–28, 1997.

[10] H. Lin, J. Xiao and Z. Michalewicz, “Evolutionary navigator for a
mobile robot,” 1994 IEEE Conf. Robotics and Automation, pp. 2199–
2204.

[11] J. Xiao, Z. Michalewicz and L. Zhang, “Evolutionary
planner/navigator: operator performance and self-tuning,” 1996 IEEE
Conf. Evolutionary Computation, pp. 366–371.

[12] K. Trojanowski, Z. Michalewicz and J. Xiao, “Adding memory to the
evolutionary planner/navigator,” 1997 IEEE Conf. Evolutionary
Computation, pp. 483–487.

[13] J. Xiao, “Evolutionary planner/navigator in a mobile robot
environment,” in Handbook of Evolutionary Computation, T. Bäck, D.
Fogel, and Z. Michalewicz, Eds, New York: Oxford University Press
and Institute of Physics Publishing, 1997.

[14] A. C. Nearchou, “Path planning of a mobile robot using genetic
heuristics,” Robotica, vol. 16, pp. 575–588, 1998.

[15] Z. Cai and Z. Peng, “The application of a novel encoding mechanism
in path planning for a mobile robot,” Robot, vol. 23, pp. 230–233,
1997.

[16] R. Smierzchalski, and Z. Michalewicz, “Modeling of ship trajectory in
collision situations by an evolutionary algorithm,” IEEE Trans
Evolutionary Computation, vol. 4, pp. 227–241, 2000.

[17] R. Smierzchalski and Z. Michalewicz, “Adaptive modeling of a ship
trajectory in collision situations at sea,” 1998 IEEE Conf.
Evolutionary Computation, pp. 342-347, 1998.

[18] R. Smierzchalski and Z. Michalewicz, “Path planning in dynamic
environments”, in Innovations in Machine Intelligence and Robot
Perception, S. Patnaik, L. C. Jain, G. Tzafestas and V. Bannore, Eds,
Berlin: Springer-Verlag, 2005.

[19] D. J. Mulvaney, Y. Wang, I. P. W. Sillitoe, “Waypoint-based mobile
robot navigation,” 2006 IEEE World Congress on Intelligent Control
and Automation, pp. 9063-9067.

[20] T. Pavlidid, Polygon clipping, Algorithms for Graphics and Image
Processing. Rockville, MD: Computer Science Press, 1982, ch. 15.

[21] Matlab product family, Available: http://www.mathworks.com/.

WeA3.2

76

