
 
 

  

Abstract— This paper introduces a genetic algorithm (GA) 
planner that is able to rapidly determine optimal or near-
optimal solutions for mobile robot path planning problems in 
environments containing moving obstacles. The method 
restricts the search space to the vertices of the obstacles, 
obviating the need to search the entire environment as in 
earlier GA-based approaches. The new approach is able to 
produce an off-line plan through an environment containing 
dynamic obstacles, and can also re-calculate the plan on-line to 
deal with any motion changes encountered. A particularly 
novel aspect of the work is the incorporation of the selection of 
robot speed into the GA genes. The results from a number of 
realistic environments demonstrate that planning changes in 
robot speed significantly improves the efficiency of movement 
through the static and moving obstacles.  

I. INTRODUCTION 
HE mobile robot path planning task is to find a 
collision-free route, through an environment containing 

obstacles, from a specified start location to a desired goal 
destination while satisfying certain optimization criteria [1]. 
While off-line planning methods are designed to deal with 
the motion of a robot in environments containing both static 
and dynamic obstacles, a complementary on-line method is 
required to deal with changes in expected motions 
encountered during navigation through the environment. 

This paper introduces vertex++, a genetic-based algorithm 
for path planning in dynamic environments (those in which 
one or more moving obstacles are present), that has the 
ability to deal with both static and dynamic constrains 
simultaneously. Although designed initially as an off-line 
algorithm, vertex++ is also appropriate for use in on-line 
planning, where its operation can be triggered in response to 
changes in the expected movements of the dynamic 
obstacles. The vertex++ navigation approach is an 
enhancement of the vertex planning method for static 
environments described by the authors in [2]. By restricting 
the planning to obstacle vertices rather than considering than 
the entire environment, the vertex++ planner is able to 
significantly reduce the calculation time compared with 
other GA approaches that have been applied in dynamic 
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environments, in which all points in the environment are 
considered as potential nodes in a path (regardless of 
whether they are in free space or within an obstacle). A 
further novel achievement of the new planning approach is 
the inclusion of robot speed into the planning process, which 
takes into account the time at which obstacles are 
encountered, thereby allowing the consideration of a much 
greater range of possible avoidance paths.  

Traditional mapping techniques, such as grid [3][4], 
meadow [5], Voronoi diagrams [6] and visibility graphs [7], 
are not well suited to application in dynamic environments 
due to the need to reconstruct or repair maps in response to 
environment changes. To deal with the inherent complexity 
of path planning tasks, a number of researchers have 
investigated the application of evolutionary techniques in 
static environments. Davidor [8] developed a tailored genetic 
algorithm (GA) with a modified crossover operator to 
optimize robot trajectories. The Evolutionary 
Planner/Navigator (EP/N) [9]-[13] has been through a series 
of revisions to enhance its performance, particularly by 
introducing additional problem-specific domain knowledge 
in the form of tailored GA operators that can be brought to 
bear on the path planning task. Nearchou [14] used the 
number of vertices produced in visibility graphs to build 
fixed length chromosomes in which the presence of a vertex 
within the path is indicated by setting of a bit at the 
appropriate locus. A reordering operator was applied to 
enhance performance and the algorithm was capable of 
determining a near-optimal solution. Cai and Peng [15] 
developed a fixed-length decimal encoding mechanism to 
obviate the need for reordering operators and used 
individuals whose length was fixed to be that of the total 
number of all obstacle vertices in the environment.  

For dynamic environments, the literature records few 
contributions that discuss robot navigation using GAs or that 
incorporate the speed of the robot as part of the planning 
problem. A modified version of EP/N, termed ϑEP/N++, was 
proposed in [16][17][18] as a decision support system for a 
ship to voyage without collision on the basis of 
environmental information obtained from automatic radar 
plotting aids. The major features of ϑEP/N++ include a time 
parameter, the variable speed of the ship, and time-varying 
constrains representing movable ships. The ϑEP/N++ system 
retains the structure of EP/N and has same set of genetic 
operators, with the exception of a new addition operator 
developed to act on the ship’s speed. The candidate solutions 
are obtained from variable-length individuals that represent a 
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path through a set of absolute co-ordinates drawn from the 
environment as a whole. The on-line planning can be 
activated in response to the motion changes of other ships. 

This paper describes the operation of the new vertex++ 
planner, and its performance when applied to a set of 
simulations of realistic environments is considered in detail.  

II. PLANNING ALGORITHM 
This section explains the internal description of the 

environment used in the new planner, details the internal 
structure of the GA and describes the operation of the 
vertex++ during both off-line and on-line planning. 

A. Operating environment and modeling of obstacles 
The working environment for the mobile robot consists of 

a set of stationary obstacles whose shapes either are defined 
to be, or to be are approximated by, bounding polygons. In 
addition, the robot movement may be affected by the 
presence of one or more dynamic obstacles that are also 
represented by polygons. If the motion parameters (the 
heading and speed) of those dynamic obstacles remain 
constant, a safe trajectory for the robot can be generated by 
the vertex++ planner in an off-line manner. In addition, the 
path generated off-line can be adaptively revised in response 
to any changes in the motion characteristics of the dynamic 
obstacles.  

In the off-line planner, it is assumed that complete motion 
knowledge of the moving obstacles in the observed region is 
available. In the on-line planner, it is assumed that changes 
to the motion parameters of the moving obstacles are made 
available whenever one comes within sensor range. 
Although no particular sensor type or configuration is 
specified, it is assumed that in order to allow the robot to be 
guided so as to avoid any potential collisions with obstacles, 
there is an adequately large time interval between the 
detection of obstacle movements and the implementation of 
newly generated actions. Note that this assumption may be 
relaxed if guidance is achieved by reactive navigation, such 
as in [19]. 

For purposes of planning, the static obstacles are enlarged 
by a value determined from the minimum distance (herein 
referred to as the safe distance) that the robot can approach 
obstacles without collision, to account for the robot 
dimensions (see Fig. 1 for an example). Such a 
representation allows the physical dimensions of the mobile 
robot to be neglected and regarded as a single point. 

To model the motion of the dynamic obstacles in the 
vertex++ planner, the same strategy as in ϑEP/N++ is 
adopted. In brief, for each obstacle, its motion is described 
by its trajectory, consisting of a series of one or more 
segments, each having start and finish co-ordinates between 
which the heading (defined by the co-ordinates) and the 
speed of the obstacle are fixed.  
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Fig. 1.  An example of the environment representation in vertex++ planner. 
The gray polygons represent exclusion areas surrounding the moving 
obstacles; the black obstacles are static. 

In order to assess the possibility of the robot colliding 
with dynamic obstacles, the following method has been 
developed and implemented in vertex++. The first crossing 
point between the robot path proposed by the planner and the 
trajectory of a moving obstacle is calculated before 
examining the possibility of collision. Based on the time t 
required for the robot to cover the distance from the current 
position to the first crossing point, the instantaneous location 
of the moving obstacle can be calculated and, consequently, 
the exclusion area for this obstacle. If the crossing point falls 
within this area, a collision would occur between the robot 
and the moving obstacle. An example of such an occurrence 
is shown in Fig. 2. Note that the safety margins for the 
longitudinal and transverse dimensions of the moving 
obstacle are unlikely to be the same when constructing this 
area, as the speeds of the robot and the moving obstacle need 
to be taken into account in addition to the dimensions of the 
robot. For the problem in Fig. 2, the time t is firstly 
calculated for the robot to travel from its current location to 
the crossing point determined from the generated path. The 
instantaneous location of the moving obstacle after time t 
can then be calculated according to the motion information 
relating to the dynamic obstacle, allowing a region to be 
identified for assessment of feasibility using the algorithm 
for checking polygon clipping given in [20]. 

B. Genetic representation 
Candidate paths are represented by a chromosome (Fig. 3) 

consisting of a total number of genes l, where l has a 
minimum value of two (a path containing only the start and 
goal points) and maximum value of N+2, where N is the 
total number of the vertices of all obstacles (both static and 
dynamic) in the environment. The absolute coordinates of 
the vertices (xi, yi) , i=0,..,l-1, are used directly in the gene 
representation rather than a reference to one of the N vertices 
[2]. The robot’s speed, si in the segment originating from 
each gene is selected from a set of available discrete speeds. 
A single bit is also provided in each gene to indicate the 
feasibility of the path that originates from the gene; if the 
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path segment connecting two consecutive vertices intersects 
one or more obstacles, then the infeasibility bit of the gene 
representing the originating node is assigned 1 to mark this 
segment as infeasible (it is 0 otherwise).  
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Fig. 2.  Evaluation of the possibility of collision with a moving obstacle. 
Note that the intermediate nodes of the generated path illustrated are 
vertices of the enlarged static obstacles. 
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Fig. 3.  The structure of a chromosome representing a path from the start to 
the goal point. The l-2 intermediate genes are vertices of obstacles in the 
environment. Each gene contains information relating to the vertex’s co-
ordinates, as well as the robot speed and infeasibility of the segment 
originating from that gene. 

The initial population is generated by randomly choosing 
for each individual both its length (in the range 2 to N+2) 
and the coordinates of the vertices contained therein, with 
the constraints that no vertex is repeated in a individual and 
that the first and last genes are always the start and goal 
points respectively. The speed for each gene is selected 
randomly from a set of discrete speeds.  

C. Evaluation functions 
Separate evaluation functions are applied to assess the 

quality of the feasible and infeasible paths. Two parameters, 
path length and travel time, are considered in the evaluation 
function Ef for feasible paths, which is given by 

, ),(),( 2
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= +
−
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l
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where wd and wt are the weights for path length and travel 
time respectively, d(Vi,Vi+1) denotes the distance between the 
pair of vertices and t(Vi,Vi+1)  represents the time needed to 
cover each segment from vertex Vi to Vi+1 which can be 
calculated by 

, /),(),( 11 iiiii sVVdVVt ++ =  (2) 

where si denotes the speed of the robot when travelling from 
Vi to Vi+1. The infeasible paths are evaluated by the function 
Ei by considering the deepness of an infeasible path’s 
intersections with obstacles and is given by 

,ηµ +=iE  (3) 

where µ denotes the number of obstacle intersections in the 
path and η is the mean number of intersections in the 
infeasible segments. Given the two evaluation functions, the 
aim of the optimization process in the vertex++ planning 
approach is to minimize the values of Ef and Ei for their 
respective populations.  

When the population contains both feasible and infeasible 
paths, all infeasible paths are assumed to be no better than 
the worst feasible path. A sufficiently large constant C is 
added to the costs for the infeasible paths to ensure the 
evaluation values of any given infeasible path is worse than 
the values for all feasible paths. C is defined to be 

 ,DNC )2( +=  (4) 
where N+2 indicates the maximum possible number of genes 
in an individual and D denotes the maximum length of a 
path segment (for example, this would be the diagonal in a 
rectangular environment).  

D. Genetic operators and their selection 
Three of the total of four genetic operators are the same as 

those used in the vertex planner in [2], namely, crossover, 
mutation and repair. The fourth operator, termed 
‘speedmutation’, has been introduced in this work in order to 
mutate the robot speed indicated in a gene and it is selected 
with a small probability. In order to keep the number of 
system parameters to a minimum, the selection of an 
operator from the four available is made randomly at each 
generation rather than being based on predefined 
probabilities. The crossover operation is performed by a 
conventional one-point operator, following which 
individuals are examined for repeated vertices, and those 
replicated vertices of lower locus are removed in order to 
eliminate circular paths. When the mutation operator is 
selected, only one bit is modified in the chosen individual. 
Mutation is inhibited if the replacement genes are already be 
present in the individual. Note that the mutation rate will 
depend on the length of the individuals; for example if the 
average length of the individuals is 10 bits for a certain 
planning task, then, on average, only 1 bit will be mutated in 
every fourth generation (there being four operators), giving a 
mutation rate of 0.025. The repair operator adjusts a 
randomly selected infeasible segment of an infeasible path, 
so that it circumnavigates all obstacles previously 
intersected, as illustrated in Fig. 4.  

E. Evolutionary process 
As a steady-state GA has been adopted, only one or 

(following crossover) a single pair of individuals is different 
in consecutive generations. The generational operation 
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begins with the random selection of a genetic operator and a 
quadratic ranking scheme is used to retain the constant 
selection differential after evaluation. The parent (or parents 
for the crossover operation) that are involved in the genetic 
operation are determined by a roulette wheel whose slots are 
sized in proportion to the fitness as scaled by a ranking 
technique. To form a new generation, the newly generated 
offspring replace the worst individual (or pair of individuals 
if crossover is applied) in terms of fitness in the existing 
population. The evolutionary process continues until a 
termination condition is satisfied, which can be defined to be 
a number of generations specified by the user or determined 
by monitoring against a specified performance criterion. 
When the evolution terminates, the best individual is 
selected as the path planning solution.  
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Fig. 4.  An illustration of the repair operator that uses the vertices of the 
enlarged obstacle (shown dashed) to determine a feasible path around the 
obstacles. 

F. On-line planning 
On-line planning is triggered automatically to adapt to 

changes in the movement characteristics of the dynamic 
obstacles that have occurred since the off-line plan was 
computed. On-line planning is instigated only when such 
changes are detected within range of the robot’s sensors, 
otherwise the robot continues to follow the previously-
planned trajectory. Information gathered from the robot’s 
sensors with regard to the motion changes of obstacles is 
supplied to the vertex++ planner which then uses the current 
state of the robot as the start configuration for its on-line 
evolutionary planning, and evolves a new path for the robot. 
The on-line planning algorithm is the same as that used in 
off-line planning, but with the additional assumption that the 
planning time is relatively short compared with that needed 
for the robot to implement motion changes to avoid collision 
with dynamic obstacles.   

III. EXPERIMENTS AND RESULTS 
A series of experiments involving the vertex++ planner 

was conducted in Matlab 7.2 [21] running under Windows 
2000 on a 2.8GHz Pentium P4 system. Four simulated 
environments were conducted in which the on-line planner 
was required to determine a path through both static and 
dynamic obstacles, the latter making a number of motion 
parameter changes. The paths were separately optimized for 
both travel time and path length. The number of obstacles 

present in each of the test environments is summarized in 
Table I. 

TABLE I 
THE NUMBERS OF OBSTACLES IN THE FOUR TEST ENVIRONMENTS. 

environment number of 
static obstacles 

number of  
dynamic 
obstacles 

1 4 2 

2 5 3 

3 9 4 

4 14 5  
To provide realistic challenges to the planner, the four 

environments were designed to reflect a representative range 
of applications in which mobile robots may be expected to 
operate. Simple trajectories for the dynamic obstacles were 
designed for the first two environments, with the obstacles 
simply traveling to and fro between two specified locations. 
More complex paths for the dynamic obstacles were defined 
for the remaining two environments, involving speed 
changes and movement between a series of nodes. For off-
line planning, the information regarding the motions of the 
dynamic obstacles is assumed to be completely known for 
the four environments before planning. Apart from the robot 
speed and the optimizing criteria, all parameters remained 
unchanged throughout the set of experiments and they are 
listed in Table II. 

TABLE II 
SYSTEM PARAMETERS FOR VERTEX++ PLANNER. NOTE THAT MUTATION 

ACTS ON ONLY ONE GENE TO ALTER EITHER THE VERTEX OR THE SPEED OF 
THE SELECTED SEGMENT AND THAT THE VALUE OF THE SAFE DISTANCE IS 

DETERMINED FROM THE MINIMUM DISTANCE THAT THE ROBOT CAN 
APPROACH OBSTACLES WITHOUT COLLISION, TAKING INTO ACCOUNT ITS 

PHYSICAL DIMENSIONS. 
population 

size 
mutation rate

(for node) 
mutation rate 
(for speed) repair rate safe distance (m) 

30 one gene one gene one infeasible 
segment 1 

 
The experiments in this paper concentrate on the results 

obtained from the on-line planning, although clearly, in all 
cases, the off-line planning was always performed prior to 
the robot leaving its start position. For clarity, the results 
presented show only a limited number of paths; these being 
illustrative of a much larger set of experiments with these 
environments. The motions of the dynamic obstacles in the 
four environments were changed (in both trajectory and 
speed) after the robot had followed the paths generated off-
line for a specified time duration. Table III shows an 
example set of such obstacle speeds used in the generation of 
the paths shown in Fig. 5 and Fig. 6. In the experiments, 
when a change in an obstacle’s trajectory or speed was 
detected by the robot’s sensors, a new plan was generated 
using the updated configuration. Only those portions of the 
robot paths that were followed after the execution of the on-
line planner are plotted in the figures. Fig. 5 reports the 
trajectories planned with travel time as the evaluation 
criterion for the feasible paths, whereas Fig. 6 shows the 
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paths evolved on the basis of minimizing path length.  
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Fig. 5.  The paths planned with the goal of minimizing travel time. Motion 
parameter changes of the obstacles (detected by the robot when positioned 
at the points marked ‘C’) occurred after 400, 380, 300, and 320 seconds for 
the four environments.  

 

0 100 200 300 400 500 0 

100 

200 

300 

400 

500 Environment 1 

X direction (m) 

Y
 d

ire
ct

io
n 

(m
) 

C 

G 

 
0 100 200 300 400

0

100

200

300

400
Environment 2

X direction (m)

Y 
di

re
ct

io
n 

(m
)

C

G

 

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300
Environment 3

X direction (m)

Y
 d

ire
ct

io
n 

(m
)

G

C

 

 

0 100 200 300 400
0

100

200

300

400
Environment 4

X direction (m)

Y
 d

ire
ct

io
n 

(m
)

G

C

Fig. 6.  The paths planned with the goal of minimizing path length. Motion 
parameter changes of the obstacles occurred as in the results shown for 
minimizing travel time. 

In Fig. 5, the path generated for environment 1 when 
optimizing for travel time is modified in order to avoid the 
moving obstacle, but not when optimizing for path length 
(Fig. 6). For environment 2, the re-planned path when 
minimizing path length is in fact the same as that planned 
before the obstacle changed trajectory, whereas, on careful 
examination, it can be seen that the trajectory when 
minimizing for travel time has required minor modifications 
to the choice of intermediate nodes. The paths presented in 
both Fig. 5 and Fig. 6 for environment 3 include, as 
intermediate nodes, the same vertices in same order. 
However, neither path for environment 4 is the same as that 
generated off-line, with the planned robot movements being 

updated by the on-line planner to adapt to the modified 
motions of the dynamic obstacles. In general, it can be seen 
that, as a result of different optimization criteria, the 
trajectories produced when optimizing path length are 
generally shorter than those obtained when minimizing for 
travel time. 

TABLE III 
EXAMPLE MODIFIED SPEED PARAMETERS GENERATED FOR EACH MOVING 

OBSTACLE PATH SEGMENT. 

environment obstacle 1 obstacle 2 obstacle 3 obstacle 4 obstacle 5 
1 0.1 0.55 - - - 
2 0.4, 0.1 0.2 0.5 - - 
3 0.3, 0.5 1.1, 0.4 0.7, 0.4, 0.6 1.2, 0.5, 0.4, 0.8 - 
4 0.9 1.4, 0.7 1.1, 0.2, 0.5 0.3, 1.1 1.6, 0.5, 0.6

 
The quantitative results shown in Table IV for the 

experiments in all four environments, demonstrate that the 
maximum speed (0.7 ms-1) is the one most frequently chosen 
from the set available when the optimization goal is travel 
time, whereas lower speeds were selected more frequently 
when the path length is the optimization criteria. 
Additionally, the number of generations and execution time 
to find the first feasible path, as well as the execution time 
for 1000 generations in the on-line process are generally less 
than those found for off-line planning [2]. This can be 
explained by the fact that the length of the individuals is 
generally shorter when performing on-line planning, simply 
because the robot has advanced closer to the goal and there 
will likely be fewer intermediate vertices. Table IV also 
shows that when optimizing for travel time, although the 
maximum speed was frequently chosen, occasionally a faster 
path could be obtained by reducing speed to more efficiently 
avoid a dynamic obstacle. In contrast, optimizing for the 
minimum path length necessitated more frequently reversion 
to lower speeds and consequently these paths were likely to 
consume significantly less power to drive the robot to its 
destination.  

The rapid convergence in the first phase when conversion 
from infeasible paths to feasible paths takes place, can be 
attributed to the repair operator that was developed 
following experimental observation. The mutation operator 
is less effective in the initial evolution stages as relatively 
few bits are mutated. As only one gene in the population is 
modified when the mutation operator is applied, its effect is 
diluted in the earlier generations’ populations due to the 
greater prevalence of longer individuals. The effective 
increase in the mutation rate in the later evolutionary 
generations effectively promotes population diversity (and 
so exploration into virgin areas of search space) and inhibits 
premature convergence. The quality of final solution 
produced in the second phase appears to be highly dependent 
on the quality of the initial individuals that are supplied 
following the operations of the first phase. If the initial 
supply for the second evolution phase is sparse (in that all 
the necessary building-blocks for the global optimal solution 
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are not present), the process may be led into a local 
minimum. The higher mutation rate apparent in later 
evolutionary steps promotes diversity by modifying the 
inherited building blocks, however the mutation is not 
sufficiently dominant in the process to necessarily avoid the 
GA becoming trapped in a local minimum. The vertex++ 
planning algorithm has been demonstrated as being capable 
of generating an optimal or near-optimal path for the robot in 
a relatively short time compared with ϑEP/N++ which is also 
able to operate in environments containing dynamic 
obstacles. The current implementation has been carried out 
in Matlab and a significant improvement (reducing the 
calculation time by a factor of five to ten times) is to be 
expected when executed in a compiled language such as C. 

TABLE IV 
EXPERIMENTAL RESULTS FOR THE ON-LINE PLANNING. 

cost in terms of 

environment path 
length 
(m) 

travel 
time 
(s) 

generations 
to find first 

feasible 
path 

execution 
time to find 

first 
feasible 
path (s) 

execution 
time for 1000 
generations 

(s) 

planned 
robot speed 

(ms-1) 

1 419 606 64 5.63 29.9 
0.7, 0.6, 0.7, 

0.7, 0.7 

2 317 546 54 5.41 33.6 0.4, 0.7, 0.7 

3 300 428 48 10.4 47.9 
0.7, 0.7, 0.7, 

0.7 

optimize 
for 

travel 
time 

4 385 551 84 28.7 106 0.7, 0.7, 0.7 

1 408 1198 12 2.72 25.9 0.7, 0.3, 0.3, 
0.3 

2 311 990 60 5.11 33.6 0.4, 0.3, 0.3 

3 300 512 45 7.56 51.3 
0.7, 0.3, 0.7, 

0.7 

optimize 
for path 
length 

4 346 1061 75 29.4 108 
0.6, 0.3, 0.3, 
0.5, 0.3, 0.3  

IV. CONCLUSIONS 
This paper has described the restriction of the search 

space of the GA planner to include only the vertices of 
obstacles and has resulted in a significant reduction in 
planning time, permitting not only rapid off-line planning, 
but also on-line planning on a timescale suitable for real-
time implementation in most practical circumstances.  

The work has also introduced a novel GA-based 
navigation system that is able to vary the speed of the robot 
through evolutionary progress, allowing a greater number of 
alternative paths to be considered. Where travel time is 
crucial it was found that, in the environments considered, 
full speed can be applied in most segments of the trajectory. 
However, environments could easily be conceived in which 
operating at full speed throughout the trajectory would result 
in a much extended path due to the robot’s circumnavigation 
of dynamic obstacles. If minimizing the path length is more 
important, for example to conserve energy, lower speeds can 
be planned and this is likely to result in a shorter overall 
path.  
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