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Abstract— This paper is an invitation to use mono-vision
techniques on stereo-vision equipped robots. By using monocu-
lar algorithms on both cameras, the advantages of mono-vision
(bearing-only, with infinity range but no 3D instant informa-
tion) and stereo-vision (3D information only up to a limited
range) naturally add up to provide interesting possibilities,
that are here developed and demonstrated using an EKF-based
monocular SLAM algorithm. Mainly we obtain: a) fast 3D
mapping with long term, absolute angular references; b) great
landmark updating flexibility; and c) the possibility of stereo
rig extrinsic self-calibration, providing a much more robust
and accurate sensor. Experimental results show the pertinence
of the proposed ideas, which should be easily exportable (and
we encourage to do so) to other, more performing, vision-based
SLAM algorithms.

I. INTRODUCTION

On account of all that has been –and is continuing
to be– published, Simultaneous Localization and Mapping
(SLAM) is almost a full-right discipline inside robotics. With
the objective of interactively perceiving and modeling the
robot’s environment and keeping localized while moving,
SLAM must put into play robust and scalable real-time
algorithms that fall into three main categories: estimation (in
the prediction-correction sense), perception (with its signal
processing), and decision (what we could call strategy).
The problem is now well understood: the whole decade
of the nineties was devoted to solve it in 2D with range
and bearing sensors, and big progress was achieved in the
estimation side –to the point that some claim that the subject
is approaching saturation, which is a kind of optimality
obtained by evolutionary mechanisms– and recent research
has focused on the perception side. The best example of
this trend is vision-based SLAM, and specially mono-vision
SLAM, where bearings-only measurements reduce observ-
ability, thus delaying good 3D estimates. Davison [1] showed
real-time feasibility of mono-vision SLAM with affordable
hardware, using the original Extended Kalman Filter (EKF)
SLAM algorithm. We showed in [2] that undelayed landmark
initialization (i.e. mapping the landmarks from their first,
partial observation) was needed when considering remote
landmarks and/or singular trajectories of the camera. In this
direction, an interesting work [3] has recently appeared that
uses the constant-time FastSLAM2.0 algorithm [4].

Stereo-vision SLAM has also received considerable atten-
tion. The ability to directly obtain 3D measurements allows
us to use the best available SLAM algorithms and obtain
very good results with little effort in the conceptual parts.
Good works on stereo SLAM usually put the accent on ad-

vanced image processing, that may require highly specialized
programming (we think about the real-time construction and
querying of big data bases and the hardware implementation
of robust feature trackers of [5] for instance). The drawback
of stereo-based systems is a limited range of 3D observability
(the dense-fog effect: remote objects cannot be considered),
and that they strongly depend on precise calibrations to be
able to extend it.

This work is a conceptual work. Although specific so-
lutions are developed from previous work of the authors
[2] and experiments are shown, its main contribution is
to bring the powers of mono- and stereo-vision SLAM
together with the following benefits: 1) important objects for
reactive navigation, which are close to the robot, are rapidly
mapped with stereo-like triangulation; 2) good orientation
localization is achieved with bearings-only measurements of
remote landmarks (thus eliminating the dense-fog effect);
and 3) updates can be performed on any landmark that
is only visible from one camera. Additionally, 4) precise
previous calibration of the stereo rig extrinsic parameters
of the cameras is no longer necessary; because 5) dynamic
self-calibration of these stereo rig extrinsic parameters can
be incorporated, thus making such an intrinsically delicate
sensor more robust and accurate. These two latter assertions
are demonstrated with a simplified self-calibration procedure
based on the same EKF used for SLAM. The key for all these
benefits is using mono-vision algorithms in both cameras
instead of a stereo one: we get enhanced observability with
a much greater flexibility.

This paper is organized as follows: Section II revises and
actualizes the necessary material for mono-vision SLAM and
presents the main ideas that will be exploited later. Section
III explains how to set up Bi-Camera SLAM and a simple,
EKF-based self-calibration solution. Section IV shows the
experimental results and finally section V gives conclusions
and future directions.

II. VISION-BASED SLAM

We consider as vision-based SLAM those SLAM ap-
proaches where the external world is measured only by
means of vision sensors: the cameras. This is true regardless
of whether we use other kind of sensors for the robot motion:
in mono-vision SLAM, these other sensors will provide the
scale factor which is missing in bearings-only measures.

In a large sense, SLAM may be viewed as a generic set of
procedures to recover, online and incrementally, the geomet-
rical properties of the surrounding world. Thus only geomet-
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Fig. 1. The conic ray back-projects the elliptic representation of the
gaussian 2D measure. It extends to infinity.
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Fig. 2. Different regions of intersection for 4σ (orange), 3σ (green) and
2σ (blue) ray widths when the outer 4σ bounds are parallel. The angle
between rays axes A and B is α = 4 (σA + σB).

rical information from the images is explicitly exploited. This
resumes to the position of certain features in 2D images (here
2D points), which we will uniquely associate to particular
landmarks in the 3D space. Photometrical information is only
used to perform this association via feature matching.

A. 3D observability from vision

When a new feature is detected in the image, the back-
projection of its noisy-measured position defines a conic-
shaped pdf for the landmark position, called ray, that extends
to infinity (Fig. 1).

Just a couple of ideas (not to be strictly interpreted) to
help to understand the observability concept that we use.
Let us consider two features extracted from two images and
matched because they correspond to the same landmark: their
back-projections are two conic rays A and B that extend to
infinity. Their angular widths can be defined as a multiple
of the standard deviations σA and σB of the angular errors
(Fig. 2), which depend on the accuracy of the cameras’ poses
(extrinsic parameters), on the cameras’ angular resolution
(intrinsic parameters) and on the accuracy of the methods
used to extract and match points. We say that the landmark’s
depth is observed if the region of intersection of these rays
is a) closed and b) sufficiently small. If we consider, for
example, the two external 4σ bounds of the rays to be
parallel, then we can insure that the 3σ intersection region
(which covers 98% probability) is closed and that the 2σ one
(covering 74%) is small. The depth’s sigma-to-mean ratio is
in such case better than 0.25. The angle α between the two
rays axes is then α = 4(σA + σB) = constant .

We can plot (Fig. 3) the locus of those points where the
two angular observations differ exactly in this angle α. Inside
the obtained circular region, depth is observable; outside
it is not. Given overall angular uncertainties σA and σB ,
this region’s radius is directly proportional to the distance
between the two cameras. In 3D, revolution of this region
around the axis joining both cameras produces something

α
α

α

Fig. 3. Simplified depth observability regions in a stereo rig (left) and
a camera traveling forward (right). The angle α is the one that assures
observability via difference of points of view.

like a torus-shaped region. In a stereo configuration or for
a lateral motion of a moving camera like in aerial images
(Fig. 3 left), this region is in front of the sensor. Beyond
the region’s border (remark that, unlike range scanners, a
camera is capable of sensing objects at infinity) stereo is at
no profit: if we want to consider distant landmarks we have
to use mono-vision techniques.

In mono-vision, this paper wants to specifically consider
singular motions, ie. a single camera moving forward (Fig. 3
right). In the motion axis, depth recovery is simply im-
possible. Close to and around this axis, which in robotics
is typically the zone we are interested in, observability is
only possible if the region’s radius becomes very large. This
implies the necessity of very large displacements of the
camera during the initialization process, something that can
only by accomplished with undelayed initializations.

Combining both mono- and stereo-vision we get an instant
observability of close frontal objects while still utilizing the
information of distant ones: the first beneficiary is the robot
localization as we will dispose of long term absolute angular
references. It is known that it is precisely the accumulation
of angular errors in odometry which makes simple SLAM
algorithms (such as EKF-SLAM) become inconsistent [6]
and fail. Thus, this long term observability will improve
EKF-SLAM performance.

B. Undelayed mono-vision SLAM

The core algorithm of this work is FIS-SLAM, a bearings-
only EKF-based SLAM algorithm presented in [2], which
is briefly described as follows. FIS-SLAM focuses on an
undelayed way to initialize landmarks, which at the first
observation are only partially observed. For this, the conic
ray is first truncated at minimum and maximum considered
depths, and then approximated by a geometric series of
Gaussian members. All these members are initialized in
the EKF-SLAM map as if they were different landmarks,
and are assigned a uniform initial probability or weight
Λi. As new observations are incorporated, these weights
will evolve with time following the likelihood update form
Λ+

i = Λi λi, where λi is the likelihood of member i given
the current measurement, Λi is the member’s weight, and
(·)+ denotes “the updated value of (·)”. The ray’s members
are progressively deleted as new observations make their
weights drop below a certain threshold, and the remaining
ones are used to correct the SLAM map by means of a special
EKF-based update scheme named Federated Information
Sharing (FIS). Inspired by the Principle of Measurement
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Reproduction [7], FIS performs a federated sharing of the
information provided by the observation among all ray’s
members before applying an EKF update on each one of
them. As all members are initialized from the beginning,
partially observed remote landmarks may be used as long
term angular references. The landmark is considered fully
3D observed when only one member is left. Many other
facts on FIS-SLAM are not relevant for the understanding
of the present work.

More recent works [3], [8] use a newer and more math-
ematically defendable solution for undelayed initialization
based on an inverse parametrization of the landmark’s depth.

C. Feature detection and matching
For feature detection, a heuristic strategy is used to select

a region of interest in the image.1 The strongest Harris point
[9] in the region is selected for landmark initialization. Its
associated ray is calculated and initialized in the map. A
small rectangular region or patch around the point is stored
as the landmark’s appearance descriptor, and the current pose
of the robot is memorized.

For matching, we follow the active search approach (also
referred to as top-down) [1], [3]: At subsequent observations,
the joint estimates of landmark and robot positions are pro-
jected into the image (giving what is called the expectation)
and are used to draw the 3σ ellipses in the image (or sets
of ellipses in the case of rays) inside which the feature will
be searched. A predefined number of landmarks with the
biggest ellipse surfaces are selected as those being the most
interesting to be measured. These surfaces are compared by
means of the expectation covariance’s determinant (in the
case of rays we just take the biggest determinant of its mem-
bers). Then the stored patch is warped (zoomed and rotated)
the amounts defined by the change in the robot position. A
search for the best correlation of this modified patch inside
the elliptic region and a final parabolic interpolation with
its cardinal neighbors provide a sub-pixellic measurement.
This approach combines the simplicity of patch descriptors
and correlation-based scans with the robustness of invariant
matching: instead of invariant descriptors like [10], [11],
we appropriately vary them before each scan using the
information available in the map. False matches are also
drastically minimized as they will normally fall outside the
predicted ellipses.

III. BI-CAMERA SLAM
Bi-camera vision is not stereo vision. It is just two times

mono-vision that takes advantage of the enhanced observ-
ability that instant ray triangulation provides, like stereo-
vision does. We avoid image rectification, and allow us to
use raw distorted images taken from distinct cameras, in any
number or configuration, with the only condition of having
overlapping fields of view. In this paper, however, we use
a classical stereo rig of two nominally equal cameras, with
individually calibrated intrinsic parameters (including radial
distortion), and nominal, uncalibrated extrinsic parameters.

1A simple one: divide the image with a grid. Select a grid element with
no landmarks inside and use it as the initialization region.
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Fig. 4. BiCam initialization. Use stereo capabilities when possible. Use
mono otherwise. When combined with self-calibration, get rays ranging
hundreds of meters with very few members.
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Fig. 5. The 2-member ray in BiCam initialization. The left- and right- 3σ
projections, and the scan region in the right image.

A. Landmarks initialization

As a general idea, one can simply initialize landmarks
following mono-vision techniques from the first camera, and
then observe them from the second one: we will determine
their 3D positions with more or less accuracy depending on
if they are located inside or outside the stereo observability
region. Understanding the angular properties that generated
these observability regions (section II-A), we can a-priori
evaluate, from both images, whether each landmark is fully
3D-observable or not (see next paragraph). 1) If it is fully
observable, it is clear that initializing the whole ray and then
deleting all but the right members is not so clever. Better,
we compute its distance by triangulation, and initialize a
“ray” of one single member at this distance using one of the
views. Then we update it with the second view to refine its
position. 2) If it is not fully observable, a ray is initialized
with its closest member already outside the region. As the
farther member’s distances follow a geometric series, we
easily reach ranges of several hundred meters with very few
members (Fig. 4). The ray is immediately updated with the
observation from the other camera.

A detailed description of the observability evaluation
method is illustrated in Fig. 5. Assume a new feature is
detected in the left image. We define (without initializing it)
a 2-members ray in the left camera’s frame: one member
{p̄1;P1} is at the minimum considered distance and the
other {p̄∞;P∞} at the maximum, virtually at infinity. This
ray is projected onto the right image: the nearby member
becomes an elongated ellipse; the remote one, that projects
exactly at the vanishing point of the ray, is a rounded, smaller
ellipse. Let Hp and Hc be the Jacobian matrices of the
right camera observation function h(p, c) with respect to the
point position p and the right camera pose c. Let R be the
covariances matrix of the measurements and C that of the
camera pose uncertainty. Define H1

.= [Hp|p̄1,c̄ Hc|p̄1,c̄],
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Fig. 6. Deciding on 3D observability. A 4σ criterion is a-priori reasoned in
the 2D image plane. The measure marked “cross” corresponds to a landmark
outside the stereo observability region. Landmarks measured “square” and
“triangle” are inside.

H∞
.= [Hp|p̄∞,c̄ Hc|p̄∞,c̄], Q1

.= diag(P1, C) and Q∞
.=

diag(P∞, C). The projected nσ ellipses are centered at
ē1 = h(p̄1, c̄) and ē∞ = h(p̄∞, c̄) and are described by
the expectations’ covariances matrices

E1 = H1 Q1 H>
1 + R (1)

E∞ = H∞Q∞H>
∞ + R. (2)

The region including both 3σ ellipses is scanned for a
feature match. The found pixel y is sent to the following 4σ
test (Fig.6), equivalent to that in section II-A: the measured
landmark is fully 3D observable if and only if the measured
feature falls strictly at the left-hand side of the E∞ ellipse’s
leftmost 4σ border. If we write the measured pixel as y =
[yh, yv]>, and the remote expectation as

ē∞ =
[
ē∞,h

ē∞,v

]
E∞ =

[
σ2
∞,h σ2

∞,hv

σ2
∞,hv σ2

∞,v

]
,

where (·)h denotes horizontal coordinates, then this criterion
resumes simply to

yh < (ē∞,h − 4 σ∞,h) ⇐⇒ 3D OBSERVABLE. (3)

The landmark is then initialized either as a single point or
as a ray as indicated above. Notice that this method inher-
ently accounts for arbitrary extrinsic parameters accuracies:
the size of E∞ will vary accordingly, and hence the 3D-
observable region bounds too. This naturally allows us to
self-calibrate these extrinsic parameters.

B. Stereo rig self-calibration

Stereo rigs are mechanically delicate, specially for big
base lines. We believe that stereo assemblies are only practi-
cal if they are very small or if their main extrinsic parameters
are continuously self-calibrated. Outdoors operation will
often impose this second case.

Not all six extrinsic parameters (three for translation, three
for orientation) need to be calibrated. In fact, the notion
of self-calibration inherently requires the system to possess
its own gauge. In our case, the metric dimensions or scale
factor of the whole world-robot system can only be obtained
either from the stereo rig base line (and notice that then it
is absurd to self-calibrate the gauge!) or from the odometry
sensors, which often are much less accurate than any rude
measurement we could make of this base line. Additionally,
vision measurements are much more sensible to the cameras’

orientations than to any of the other two translation parame-
ters (cameras are actually angular sensors). This means that
vision measurements will contain little information about
these translation parameters. In consequence, self-calibration
should only concern orientation, and more precisely, the
orientation of the right camera with respect to the left one.
The relative error of the overall scale factor will mainly be
the relative error we did when measuring the rig’s base line.

We have used a very simple self-calibration solution which
has given promising results: we just add three angles (or any
other orientation representation we are familiar with) to the
EKF-SLAM state vector (not forgetting the Jacobians of all
involved functions with respect to them) and let EKF make
the rest. The evolution function of the extrinsic parameters is
simply c+ = c+γ, where γ is a white, Gaussian, low energy
process noise that accounts for eventual de-calibrations (due
to vibrations or the like). For short-duration experiments
we set γ = 0. This solution lacks some robustness but is
included here as an illustration of the BiCam capability of
working with on-line extrinsic calibration. This fact (this lack
of robustness) is further discussed in sections IV and V.

C. Updates

Thanks to the mono-vision formulation, updates can be
performed at any mono-observation of landmarks. This in-
cludes any nearby or remote landmark that is only visible
from one camera.

As indicated in II-C, the determinant of the expectation’s
covariances matrix is a measure of the information we
will gain when measuring a particular landmark. This is
so because the uncertainty in the measurement space can
be associated to the surface of the corresponding ellipse,
which is proportional to the square root of this determinant.
Therefore, we suggest as a first step to organize all candidates
to be updated in descending order of expectation determi-
nants, without caring if they are points or rays, or in the
left- or right- image, and update at each frame a predefined
number of them (usually around 10). A second group of
updates should be performed on remote landmarks (points
or rays) to minimize the angular drift. Updates are processed
sequentially, with all Jacobians being re-calculated at each
individual update to decrease linearization errors.

IV. EXPERIMENTS

Some indoor experiments are presented here to illustrate
the proposed ideas. A robot with a stereo head looking for-
ward is run for some 15m in straight line inside the robotics
lab at LAAS (Fig. 7). Over 500 image-pairs are taken
at approximatively 5Hz frequency. The robot approaches
the objects to be mapped, a situation that is common in
mobile robotics but that presents observability difficulties
for mono-vision SLAM because the trajectory is singular.
The stereo rig consists of two intrinsically calibrated cam-
eras with 55◦ FOV at 512 × 384 pixels resolution. They
are arranged nominally in parallel, separated 330mm and
slightly heading 5◦ down. The left camera is taken as
reference, and the orientation of the right one is initialized
with an uncertainty of 1◦ standard deviation. A simple
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Fig. 7. The LAAS robotics lab. The robot will approach the scene in a
straight forward trajectory.

Fig. 8. Initialization sequence in the presence of extrinsic self-calibration.
The initialization sequence for the three first frames, one per column, is
shown. Start at column 1: a 2-member ray (green) is defined from the left
view (top row). It is projected onto the right image (second row). The two
3σ ellipses (green) define a region which is scanned for a feature match.
If this match is not on the left of the right-hand 4σ ellipse (33% bigger
than drawn), the landmark is not 3D observable and is initialized as a ray
(red, third row). The resulting map is shown (bottom row, the grid at 2m
spacing). Subsequent observations (columns 2 and 3) decrease calibration
uncertainty and hence the ellipses sizes too. After 3 frames a newly detected
landmark at a similar range is already 3D observable, thanks to the enhanced
extrinsic precision, and can be initialized as a single Gaussian (blue).

2D odometry model is used for motion predictions where
the added uncertainty position and orientation variances are
proportional to the measured displacement. These exper-
iments want to particularly show the self-calibration and
the initialization mechanisms where the landmarks can be
mapped with either a single Gaussian or a ray depending on
the 3D observability. Results on the accuracy of the resulting
map are also reported. Illustrating videos can be found on
the author’s web page at http://www.laas.fr/∼jsola/
objects/videos/icra07/video-N.mov where N is a
video number.

We show the dynamic observability decision criterion
with extrinsic self-calibration. The first three frames of the
sequence are detailed in the three columns of Fig. 8. Observe
how, on the first frame, extrinsic self-calibration is poor and
results in big decision ellipses, giving place to initializations
of nearby landmarks in the form of rays. Observations from
the right camera refine the extrinsic precision and subsequent

Fig. 9. Metric mapping. The magnitudes of some segments in the real lab
are compared to those in the map (red lines). Thirteen points at the further
end wall are tested for co-planarity.

TABLE I
MAP TO GROUND TRUTH COMPARISON.

segment location real (cm) mapped std. dev.
A board 119 119.6 0.81
B board 86 84.3 0.87
C board 115 114.8 1.11
D board 88 89.0 0.72
E wall 134 132.5 0.91
F fence 125 124.5 1.21

decision ellipses become smaller. On the third frame, the
stereo rig is already quite accurate and is able to fully
observe the 3D position of new landmarks. Previous rays are
continuously observed from both cameras and will rapidly
converge to single Gaussians as self-calibration enhances
accuracy.

To contrast the resulting map against reality, two tests are
performed: metric consistency and planarity (Fig. 9). 1) The
four corners of the white board are taken with other nine
points on the end wall to test co-planarity: the mapped points
are found to be coplanar within 4.9cm of standard deviation.
2) The lengths of the real and mapped segments marked
in red in Fig. 9 are summarized in table I. We observe
consistent estimates with errors in the order of one centimeter
for landmarks that are still about 4m away from the robot.

A typical evolution of the three self-calibrated Euler angles
is illustrated in Fig. 10. We observe the following behavior:
1) Pitch angle (cameras tilt, 5◦ nominal value) is observable
from the first matched landmark. It rapidly converges to an
angle of 4.87◦ and remains very stable during the whole
experiment. 2) Roll angle is observable after at least two
landmarks are mapped. It may take some frames for this
condition to arrive but then it also converges relatively fast
and quite stably. 3) Yaw angle is very weakly observable
because it is coupled with the distance to the landmarks: both
yaw angle and landmark depth variations produce a similar
effect in the right image, i.e. the feature moves following the
landmark’s epipolar line. However, yaw does start converging
from the initial observations, but after some frames it does
it insecurely and slowly: see how from frame 15 onwards
yaw uncertainty is already bigger than roll one, which started
converging later. As it can be appreciated in Fig. 10 right yaw
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Fig. 10. Evolution of the self-calibrated orientation angles. Left: Euler
angles during the first 30 frames. Center: their standard deviations. Right:
6 superimposed calibrations showing calibration repeatability and stability
along 400 frames, with reasonable convergence at about frame 150 (300%
zoomed in, green curve out of scale).

TABLE II
SELF-CALIBRATION ERRORS WITH RESPECT TO OFF-LINE CALIBRATION.

Angle off-line self-cal. error σ (stat.) σ (estim.)

roll φ 0.61◦ 0.60◦ −0.01◦ 0.038◦ 0.021◦

pitch θ 4.74◦ 4.87◦ 0.13◦ 0.006◦ 0.006◦

yaw ψ 0.51◦ 0.33◦ −0.18◦ 0.108◦ 0.018◦

only shows reasonable convergence after 150 frames. Before,
yaw is not very stable neither very repeatable among different
experiments and its estimates are clearly inconsistent: its true
standard deviation, which can be appreciated in Fig. 10 right
to be about 1◦, is much larger than its estimated value, which
from Fig. 10 center is about 0.1◦ at frame 30.

In order to analyze calibration after convergence we made
10 runs of 200 frames and collected the estimated calibration
angles and standard deviations at the end of each sequence.
We computed the statistical standard deviations (with respect
to the 10 runs) of these estimated angles. We compared these
values against the angles provided by the Matlab camera
calibration toolbox. Apart from the mentioned initial stability
issues, the results in Table II show a surprisingly good
calibration, with similar statistical and estimated standard
deviations, except for yaw which shows a clear inconsistency,
i.e. an overestimate of its standard deviation. This inconsis-
tency is further discussed in the conclusions.

V. CONCLUSION AND FUTURE WORK

We showed in this paper that using mono-vision SLAM
techniques in stereo-vision or multi-camera equipped robots
provides several advantages. These advantages have been
highlighted and explored with a particular bearings-only
SLAM algorithm, although they should come up naturally
in any other implementation.

The self-calibration solution proposed here suffers from
poor observability and inconsistency problems. Theoretically
speaking, lack of observability should not be a problem as an
image pair of five 3D-points in general configuration renders
the whole system observable, but things are in practice
much more delicate. Regarding inconsistency, the fact of the
different ray members being projected from one camera to
the other seems to be the responsible of the observed fall
in uncertainty of the yaw angle, because upon observation
of a multi-hypothesized ray from the right camera, the FIS

update [2] may produce overestimate values in the direction
where the ray’s members expectations are more disperse,
which is precisely the direction that couples the cameras
convergence angle (the yaw angle) with the distance to
the landmarks. To insure a consistent, real-time, contin-
uous calibration operation, we believe the inverse depth
parametrization in [8], [3] should give much more satisfying
results. Nevertheless, our procedure helped to prove with
real experiments that, given a dynamic extrinsic calibration
with its time-varying uncertainty, the 3D observability can
be easily determined at every moment from very simple
reasoning on the image plane. Of course one can use the
whole BiCam proposals with an offline-calibrated stereo rig.

The ultimate objective of this approach is to be able
to perform visual-based SLAM in dynamic environments,
detecting and tracking the moving objects in the surroundings
of the robot (this has already been solved with a range-
and-bearing scanner in 2D [12]). The trajectories of these
moving objects are not observable by means of bearings-
only measurements unless the robot’s trajectory is forced
appropriately (in an information maximization sense) [13],
something that we consider unpractical in multiple real-life
situations in constrained environments.
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