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Abstract— This paper presents a body model of intermediate
level of detail to allow prediction of the knee torque produced
by thigh muscles based on EMG signals. This torque prediction
is used as input for a torque controller that adapts the level of
support offered to an operator by a powered leg orthosis. The
level of detail of the body model is chosen in such a way, that
all parameters of the model can be calibrated for a specific
operator with only a few sensors that are mounted on the
exoskeleton.

I. INTRODUCTION

Exoskeleton systems for human operators offer a variety

of different applications ranging from support during a re-

habilitation process, human power augmentation for factory

workers or emergency personnel to force feedback for haptic

interfaces in telemanipulation, games and entertainment.

Depending on the size, weight, and handling of the devices,

they could even be beneficial in everyday life for elderly oder

disabled people.

Fig. 1. Exoskeleton for the right leg.

Especially in recent years many research groups have

shown interest in this topic: The Berkeley Lower Extremity

Exoskeleton, for example, is a military exoskeleton to aid

soldiers carrying heavy loads [1]. The Hybrid Assistive Leg

is an actuated body suit for both legs [2], in the latest

version extended for both arms. It is designed to support

elderly people and as rehabilitation device. The powered

lower limb orthosis described in [3] is developed to assist

during motor rehabilitation after neurological injuries by re-

learning typical gait patterns.

Whatever the use of such an exoskeleton is, there is need

of an interface between the device and the operator as soon

as interaction is desired. One approach for an intuitive in-

terface is to utilize electromyographic signals (EMG signals)

emitted by muscles during their activation. Those signals can
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be continually interpreted and used as input for a control

structure that computes the appropriate support. The operator

simply needs to try to perform the movement and will almost

instantly get support from the exoskeleton.

When EMG signals are to be evaluated, the question

of model complexity arises: In Lloyd [4] a promising but

very complex musculoskeletal model is presented that takes

into account 13 muscles crossing the knee to estimate the

resulting knee torque offline. In [5] EMG signals of the

biceps brachii and triceps brachii where used to estimate

the elbow joint moment. A moment controller was fed to

control a two-link exoskeletal arm to lift an external load

with the hand. In [6] an EMG-based control scheme for HAL

is described with a very simple body model.

The problem of complexity is, that the more muscles are

incorporated into the model, the more parameters have to be

determined. All EMG-related parameters are unfortunately

subject dependent and even change from day to day due to

varying conditions of the skin, blood circulation etc. [7]. In

our case, to allow easy application of the exoskeleton, the

calibration should be performed with sensors mounted on

the orthosis alone with a limited and short set of calibration

movements. This results in a limited set of reference values

to optimize the parameters with, making it impossible to

identify many parameters. On the other hand, if not all

relevant muscles are taken into account, the exoskeleton

support that is computed based on the EMG signals might

not be sufficient in all phases of interesting movements.

The exoskeleton for which the control structure is imple-

mented covers the right leg and actuates the knee joint with

an electrical linear actuator as shown in fig. 1 [8]. This work

substantially improves previous work by us [9], [10].

II. CONTROL STRUCTURE

The algorithm estimates the current muscle forces from the

EMG signals and computes the resulting knee torque through

a simplified body model as described later. The desired

support torque is a function of the operator’s own torque

contribution and a given support ratio. This support ratio can

be adjusted to the needs of the operator but is not changed

during a particular experiment. The current knee torque is

calculated by the measurement from the force sensor at the

tip of the actuator, taking into account the geometry of the

actuator and the current knee angle. The difference of the

desired supporting torque (target knee torque) and the current

knee torque forms the torque error that is passed to the

torque controller. The controller sets the control signals for

the actuation accordingly (refer to fig. 2).
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Since the exoskeleton can only offer support for the knee

joint, it is feasible to read the EMG signals from muscles

spanning the knee. Depending on the kind of movement that

is performed, different muscles are activated and in varying

order. Unfortunately it is not possible to measure all muscles

with surface electrodes: Some muscles are located too deep

close to the thigh bone.
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Fig. 2. Control structure of the system.

It is also reasonable to select muscles according to their

proximity to the skin and their physiological cross-sectional

area (PCA, approximately linear related to maximum for-

ce [11]) to get a good estimation of the overall force

production.

The muscles selected for this work with their relative PCA

are: (1) the rectus femoris (8%), (2) vastus medialis (15%),

(3) vastus lateralis (20%), (4) the semimembranosus (10%),

(5) semitendinosus (3%), and (6) biceps femoris (10%),

covering a total of 66% of the cross-sectional area of all

thigh muscles [12]. Electrodes have been placed according

to recommendations in [13].

The raw EMG signal is postprocessed with offset eli-

mination, rectification and application of a second order

Butterworth lowpass filter with a cutoff frequency of 1.6Hz,

forming the muscle activation u(t). To compute the resulting

joint torque based on the EMG signals, several steps have to

be performed which are summarized here. They are similar

to models presented in [14], [15].

The postprocessed EMG signal, u(t), is converted into a

muscle activation (based on [16][4]) by

a(u) =
eAuR−1

− 1

eA − 1
(1)

where R is the estimated maximum EMG value, and A a

non-linear shape factor. The muscle force is produced by

an active and passive component, taking into account the

activation, a(u),

Fm = (fA(l̃m)a(u) + fP (l̃m))Fm
o (2)

with the active force-length curve, fA(l̃m), and the passive

force-length curve, fP (l̃m) as functions of the normalized

length of the muscle fibers, l̃m. Those curves take into

account that force output of muscle fibers depends on their

length and can be found in literature [15]. One way to

obtain the muscle fiber length is to compute the length of

the muscle and tendon together (musculotendon unit) with a

human skeleton model, as presented, for example, in [15].

This delivers the length of the musculotendon unit, lmt. We

assume that the tendon is stiff and length change is performed

by the muscle fibers, so that the normalized length of the

muscle fibers, l̃m, can be computed by

l̃m =
lmt − sl̂ts

sl̂ts
(3)

where l̃ts is the tendon slack length according to literature,

and s a parameter to fit the value from literature to the

operator. The pennation angle of muscles is neglected here.

Performing the above mentioned computation for every

muscle i, with 0 ≤ i < N , and taking into account their

respective moment arms, ri, from the skeleton model yields

for the resulting torque:

T =

N−1
∑

i=0

riF
m
i (4)

Due to all simplifications of this model, T is only a rough

estimation of the torque produced by the muscles of the

operator.

The EMG-related parameters of this model are the maxi-

mum expected EMG signal, R, the non-linear shape factor

of the activation function, A, and the maximum muscle

force, Fm
o . The geometry-related parameter is the scale of

the tendon slack length, s. Those four parameters have to

be calibrated for every muscle. The geometry parameters

are only required to be calibrated once for every operator,

whereas the EMG-related parameters have to re-calibrated

for every experimental session.

The supporting torque of the exoskeleton is computed with

a linear relationship by

Ts = G · T (5)

where G is the gain of the amplification, and T the torque

from eq. 4. Ts is the target value for the torque controller

that generates appropriate signals so that the actuation of the

exoskeleton contributes the desired amount of torque to the

movement (refer to fig. 2). The current knee torque from

the actuator, TA, is obtained through the force sensor that is

attached in-series with the linear actuator, as shown in fig. 1.

III. PARAMETER CALIBRATION

There are four parameters (Ai, Ri, Fm
o,i, si) for every one

of the six muscles that have to be calibrated.

During the description of the calibration algorithm some

assumptions are made to simplify the process. Furthermore it

has to be kept in mind, that the calibration is used to control

an exoskeleton system. The accuracy of the calibration is

not the most important aspect. It is rather desirable that

the exoskeleton behaves in a predictable manner so that the
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operator feels comfortable and can take advantage of the

offered support.

Unfortunately, direct measurement of reference values for

the calibration is limited to the force sensor attached in-series

with the actuator. If the actuator is locked (allowing no length

change) this sensor measures the resultant of all forces acting

on the thigh and shank (contact and gravitational forces), and

the forces of muscles spanning the knee.

The calibration setup has to be chosen in such a way that

effects of external forces can be taken into account without

measuring them directly. The selected movements have to

activate all muscles that need to be calibrated in a wide

range to allow a feasible calibration. Unfortunately this is

not possible by only using the force sensor of the exoske-

leton. But muscle forces can also be estimated indirectly by

measuring the resulting movement. With a simplified model

of the human body the muscle forces that must have existed

to perform the recorded movement can be estimated.

A. Calibration Procedure

The calibration procedure is composed of two steps:

During the first step the operator is sitting on a chair

with the exoskeleton shank not having any contact with

the environment, the thigh supported by the chair, and the

knee comfortably flexed. The actuator is locked, allowing

only isometric contractions. When the thigh muscles are

relaxed, the force measured by the force sensor is a result of

gravitation acting on the exoskeleton and the embraced leg

leading to a torque offset, TG. After that, the operator tries

to extend and flex the knee with maximum muscle activation

in both directions a few times. The measured force is now an

overlay of all active muscles and the influence of gravitation.

This is performed under several different joint angles to get

reference values with different muscle fiber lengths for the

geometry calibration.

During the first step the vastus medialis and the vastus

lateralis are not or only a little active. They get mainly

activated when a large knee torque is required as during

standing up from a chair and climbing stairs or when the

leg is almost extended. Since those movements should be

supported by the exoskeleton, those muscle activations also

have to be evaluated, requiring the second step of the

calibration procedure.

During the second step, the operator is initially sitting

on a chair with both legs parallel and both feet on the

ground. The actuator is detached, allowing free motion in

the knee joint. The operator is slowly getting up from the

chair, not supporting himself or herself with his or her

arms and in complete balance without moving the feet. The

movement of the operator is evaluated by a dynamic body

model. By computing the inverse dynamics it is possible

to estimate the torque in the knee that the muscle must

have produced to create the recorded movement. The strict

limitations to the movement are very important to allow

necessary simplifications of the model and eliminate the need

for many additional sensors.

B. Calibration Algorithm

The calibration process is subdivided into several steps:

The first step collects data while the muscles are activated.

When sufficient data have been stored, the parameter cali-

bration is executed in step two.

1) Data Collection: During calibration the postprocessed

signal ui(t) of EMG sensor i, the knee angle q2(t), the ankle

angle q1(t), and the force sensor value FA(t) are recorded.

The delay of the EMG postprocessing is compensated by a

delay buffer for all other signals. Thus, ui, q1, q2, and FA

denote digitized sensor readings from the same point in time.

The data collection routine ensures that samples with

different levels of muscle activationa are recorded, with the

amount of data kept in reasonable limits.

In our algorithm, the data is stored in tables, one table

for every muscle and every trial. The table index, hi,k for

muscle i and trial k is computed by the EMG value, ui of

muscle i, and the entry-width, Si, by

hi,k = ⌊uiSi⌋. (6)

The values stored in every entry are: ui, q1, q2, the

reference torque in the knee joint, TR, and the number of

updates of the same entry, nu. The new values are averaged

on a per-element basis with previous values of the same entry

weighted with nu. Depending on the calibration step, the

reference torque, TR, is derived from measurements of the

force sensor, or computed by inverse dynamics:

TR =

{

−(TA − TG) during step 1

TD during step 2
(7)

The computation of TD (knee torque calculated by inverse

dynamics) is described later in this section. For step two the

data collection is started after the knee angle has changed

by 10◦ indicating that the standup movement has begun and

the chair is not longer touched.

All this ensures that the stored data contains samples from

different levels of activation of the muscles without collecting

too much data. Optimization has started after all required

movements have been performed.

2) Force Determination of Individual Muscles: The cali-

bration process described below is not a global optimization

for all parameters at once over all data. Some muscles

are cooperating during the described exercises, making it

impossible for the optimization algorithm to distinguish

between the individual muscle contributions. The reason for

not merging all muscles into a single muscle is, that during

different non-isometric tasks, the muscles have different

cooperation patterns.

To compute the individual muscle forces, Fm
i , the re-

ference torque, TR, has to be split up among all active

muscles. The individual torque contribution of a muscle, Ti,
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is computed from the reference torque through:

Ti = TR

Ai
∑

Ai

(8)

with

Ai =

{

PCAi · ai(ui) if already calibrated

PCAi ·
ui

Ri

otherwise
(9)

where Ri is the maximum recorded EMG signal of muscle

i and ui the postprocessed EMG signal. The required acti-

vation, ai(ui) is only available if this calibration has been

performed before, and parameters from the previous run are

available. Otherwise the activation function is approximated

by a linear relationship. Dividing Ti by the moment arm,

ri, yields the individual muscle force, Fm
i . We now have

a relationship between different muscle activations (through

equations 6) and associated muscle forces for every entry of

every table of a particular muscle.

3) Parameter Optimization: First the geometry parame-

ters of all muscles are calibrated. The parameters si have to

be determined in such a way that the EMG-to-force relation-

ship is consistent for all joint angles. For a particular muscle

this can be achieved by minimizing the standard deviation

of the individual muscle forces, through optimization of the

tendon slack length scale, si. Since si can be bound to an

interval of [0.85, 1.25] (experimentally determined) this can

be performed with a linear minimum search and a fixed step-

size. The effect of optimizing the geometry is shown in fig. 3.

The EMG-parameter optimization is a curve fitting pro-

blem of the EMG-to-force function with data points taken

from all tables of the muscle that is to be optimized.

The range of the postprocessed EMG signal, Ri, can be

immediately taken from the highest entry of all tables of the

muscle. In theory, Fm
o could be set to the individual muscle

force of the same entry. But due to measurement inaccuracies

it is recommended to calibrate it.

The shape Ai of the function can be bound to an interval

of [−5, 0[. This is reasonable when looking at the resulting

functions: The function is approximating a linear relationship

for Ai → 0. For Ai → −5 the curvature increases. If too

large, changes of the EMG signals in the upper part of the

range do not result in significant changes of muscle force.

This indicates that some error during data collection occured.

The calibration can be performed with any optimization

algorithm. The total error of a calibration step is given as a

function of the shape and force parameters,

E(A,Fm
o ) =

∑

k

∑

h

(

a(uk,h)Fm
o − Fm

k,h

)2
(10)

where Fm
k,h is the individual muscle force computed for entry

h of table k of the muscle to be optimized, and uk,h is the

EMG value of the same entry.

4) Torque Estimation with a Dynamic Human Body Mo-

del: To estimate the knee torque the muscles are producing

during getting up from a chair without hindering the mo-

vement, it is necessary to track the movement and compute

the torque by inverse dynamics. The advantage of using a

rather simple movement, as described in sec. III-A, is the

possibility to apply major simplifications. Those are:

• The model is 2-dimensional.

• Both legs are merged into one.

• The operator is not allowed to support himself with e.g.

his arms to omit unmeasured external force input.

• Only trunk, thigh, and shank are modelled. Arms and

head are integrated in the trunk properties.

• The ankle is rigidly attached to the floor.

• Joint friction and passive joint stiffness is neglected

(typically 2–5Nm/rad in the mid-range of motion[17]).

• Joint accelerations are small and can be neglected.

• Joint velocities (typically below 100◦/s) during the

considered movements contribute about 4% of the knee

joint torque and are neglected.

Following the model description above, the parameters of

the model are:

• The total body mass of the human: mtotal.

• Masses for trunk, thigh and shank (taking into account

the merging of limbs) as a fraction of mtotal are mu =
0.628, mt = 0.2, ms = 0.93 [12].

• Length and width of the trunk, thigh and shank:

(Lu,Wu), (Lt,Wt), (Ls, Ws).
• The location of the center of mass as a fraction of the

length of the body segment from the proximal end for

each body segment. For the thigh, and shank they are

rt = 0.433 and rs = 0.433 [12]. The mass center of

the trunk ru is determined separately later on.

The model includes three joints: ankle, knee, hip. The third

angle can be computed as a result of the other two angles,

by introducing an additional constraint: The center of mass

(CoM) of the body projected onto the ground must be on a

specific point within the region of the foot: the balance point
~B = (bx, 0)

T
with bx =0.04m. Since the movement is slow

a criterion for static balance can be used.

The angle of the hip can be calculated by:

q3 =











−q1 − q2 if C > +1

π − q1 − q2 if C < −1

arccos (C) − q1 − q2 otherwise

(11)

with

C =
A

B
A = bxmtotal − Ls(mtotal(1 + rs)) cos(q1)

−Lt(mu + mt(1 + rt)) cos(q1 + q2)

B = Lurumu

mtotal = ms + mt + mu

where q1, q2, q3 are the ankle, knee, and hip angles respec-

tively. If the argument C > +1 or C < −1 the balancing

condition is violated: CoMx 6= bx and arccos(C) cannot

be computed. To allow calculation of an approximated hip

angle, C is replaced by the boundary it has exceeded.

Keeping the balance point ~B fixed over the whole mo-

vement is a rough approximation: In normal movement this
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Fig. 3. Effect of the calibration for one specific muscle: Left: The individual muscle force plotted against the EMG values of all tables. Center: Estimated
muscle forces with geometry model. Right: Interpolated EMG-to-force function.

point moves and is counterbalanced by motions in the joints

to maintain a stable pose.

For this simplified body model we only need one additio-

nal sensor for measuring the ankle angle q1. The formula for

the knee torque Tk with the simplifications justified above

(joint accelerations and velocities are 0: u̇1 = u̇2 = u̇3 =
u1 = u2 = u3 = 0) is:

Tk = −g(Ltmt(1 + rt) cos(q1 + q2)

+mu(Lt cos(q1 + q2)

+Luru cos(q1 + q2 + q3))) (12)

The dynamical equations have been computed with the

tool AutoLev [18]. The script for the model definition can

be received from the authors on request.

Assuming that −1 ≤ C ≤ + 1 and substituting q3 in

eq. 12 with the expression from eq. 11 yields:

Tk = −g(Ltmt(1 + rt) cos(q1 + q2)

+muLt cos(q1 + q2) + bxmtotal

−Ls(mtotal(1 + rs)) cos(q1)

−Lt(mu + mt(1 + rt)) cos(q1 + q2)) (13)

The knee torque is not depending on ru or q3. The mass

center of the trunk ru should be chosen in such a way that

the balance condition is fulfilled throughout the standup-

movement. Evaluating eq. 11 for ru at one important extreme

of the movement (initial phase when losing contact with the

chair) yields

ru = −[Ls(mt + mu + ms(1 + rs)) cos(q1)

+Lt(mu + mt(1 + rt)) cos(q1 + q2)

−bx(ms + mt + mu)]

[Lumu cos(q1 + q2 + q3)]
−1 + r∆ (14)

The contribution r∆ ≈ 0.2 moves the mass center a little

towards the distal end (to the head) to be on the safe side for

repeated measurements: C only exceeds the upper boundary

+1 when the CoM cannot be brought over the balance point

due to the knee and ankle configuration.

Unfortunately, the x-coordinate of the balance point ~B

appears linearly in eq. 13 multiplied by the total body mass

mtotal. As a consequence, variation of the balance point has

significant influence on the computed knee torque.

5) Repeated Optimizations: The distribution of the refe-

rence torque to the individual muscle in eq. 8 can take into

account results from previous optimizations. And computing

the passive force to calculate the geometry error requires

a tendon slack length scale from a previous run or has

to be omitted. Experiments have shown that those aspects

influence the results only slightly, and an optimization should

only be repeated once or twice (both, geometry and EMG

calibration). More iterations do not significantly improve the

results, and slow drifting of the results can occur due to

coactivation of the muscles. In that case the optimization

behaves like a global optimization that tries to optimize

all parameters at once and cannot distinguish between the

individual contributions properly.

IV. EXPERIMENTS AND RESULTS

A re-run of data with the calibrated parameters of the

isometric flexion and extension task is shown in fig. 4. It

can be seen that the calibration is consistent in itself, so

that the sum of muscle torque contributions is almost equal

to the reference torque, especially for the isometric flexion.

Figure 5 shows a replay of the standup experiment. At

t ≈ 1.6s the contact with the chair was lost and the data

collection was started. At t ≈ 4.5s the subject was standing

upright. It can be seen that for t > 4.2s the predicted torque

is smaller than the torque based on the inverse dynamics. Due

to the balancing condition the thigh and trunk is not upright,

but the knee and hip are slightly flexed. This results in a

residual torque which is not present in the human. This could

be omitted, if the balance point would be allowed to move on

a trajectory, and if this trajectory was known. Unfortunately

it is not, which decreases the predictability of the model:
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Since all standup movments are performed slightly different,

the true balance point is deviating from the point of the model

leading to an error in the estimation. This can be observed, if

the calibrated parameters are applied to data from a different

trial. While the isometric predictions show similar good

results, the torques computed from the inverse dynamics and

derived from the EMG signal show a considerable error of

20% or more. By adjusting the balance point the reference

data can be manipulated to fit the predicted data.

Smoother curves of the EMG signal can hardly be reached

by a more accurate calibration. It might be minimized by

a more detailed activation model or by filtering the signal

with a lower cutoff frequency. But when using the powered

exoskeleton this would result in a slow response of the

system due to the delay in the lowpass filter.

V. CONCLUSION

In this paper an algorithm has been proposed that can

calibrate a simplified EMG-to-force relationship for six

muscles with a minimum of sensors that can all be mounted

on an exoskeleton. The relationship is optimized based on

isometric force sensor measurements and evaluation of a

dynamic body model during the standup task. Coactivation

and cocontraction of muscles is considered by the algorithm.

Properties of the muscles that are mainly important during

faster movements (running, cycling etc.), like the force-

velocity relationship, are not considered currently.

Unfortunately the algorithm is very sensitive to the po-

sition of the balance point. Further experiments have to

be performed to investigate if a strategy for the proper

estimation of the position of the balance point based on

human behavior can be found. An alternative could be to

model the trajectory of the balance point as a function with

parameters which are also optimized, but without overfitting

the model to a specific data set.
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