
Predicting Object Dynamics from Visual Images through Active Sensing
Experiences

Shun Nishide, Tetsuya Ogata, Jun Tani, Kazunori Komatani, and Hiroshi G. Okuno

Abstract— Prediction of dynamic features is an important
task for determining the manipulation strategies of an object.
This paper presents a technique for predicting dynamics of
objects relative to the robot’s motion from visual images. During
the learning phase, the authors use Recurrent Neural Network
with Parametric Bias (RNNPB) to self-organize the dynamics
of objects manipulated by the robot into the PB space. The
acquired PB values, static images of objects, and robot motor
values are input into a hierarchical neural network to link
the static images to dynamic features (PB values). The neural
network extracts prominent features that induce each object
dynamics. For prediction of the motion sequence of an unknown
object, the static image of the object and robot motor value
are input into the neural network to calculate the PB values.
By inputting the PB values into the closed loop RNNPB, the
predicted movements of the object relative to the robot motion
are calculated sequentially. Experiments were conducted with
the humanoid robot Robovie-IIs pushing objects at different
heights. Reducted grayscale images and shoulder pitch angles
were input into the neural network to predict the dynamics of
target objects. The results of the experiment proved that the
technique is efficient for predicting the dynamics of the objects.

I. INTRODUCTION

Affordance is a feature of an object or environment that
implies how to interact with the object or feature. For
example, a button affords the motion of pushing it, while
a chair affords the possibility of sitting down on it. The
ultimate goal of our work is to functionalize affordance
perception to the robot’s ability. As the first step towards this
goal, we have developed a method to predict the dynamics of
an object from static images relative to the robot’s motions.
The proposed method would reciprocally link the robot
motion with static and dynamic object features. Further on,
the predicted object dynamics could be evaluated to generate
the robot motions.

Learning the dynamics of objects requires object recog-
nition with the sense of “active sensing”[1]. Noda et al.
integrated multiple static features (size, weight, and color
images) for object recognition while grasping the object
with its hands[2]. The work used a three-layered SOM
(Self-Organizing Map[3]) taking into account only the static
features, which entails quite an arduous task for applying the
results to motion planning where dynamics of objects need
to be regarded. Ogata et al. worked on recognizing unknown
objects based on the dynamics they bear[4]. Their method
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classifies unknown objects based on the generalization capa-
bility of the Recurrent Neural Network (RNN) trained by the
robot’s action with a variety of objects. Works conducted by
Takamuku et al. integrate static and dynamic properties of
the object for classifying the object into predefined labels[5].

In this paper, the authors propose a technique to predict the
dynamics of unknown objects from static images. Previous
works considering recognition of unknown objects, require
tactile contact with the objects for extracting dynamics.
However, as round objects tend to roll when pushed, there
is a tight connection between static and dynamic features.
The proposed technique self-extracts and links static object
features and robot motion to dynamic object features during
the learning phase. This process leads to prediction of
dynamics from static features without the necessity to have
contact with the object.

The proposed method consists of two neural networks,
each trained independently. The method first trains an RNN
using visual sensory data generated while the robot hits
a variety of objects at different heights. The dynamics of
each object, relative to the robot motion, is self-organized
according to their similarity. Next, the relationship of the
static image, robot motion, and object dynamics are acquired
by training a hierarchical neural network. Using the general-
ization capability of the proposed method, the dynamics of
an unknown object is estimated according to the static image
and robot motion.

The rest of the paper is composed as follows. Section
II describes the proposed method with an introduction of
the recurrent neural network model. Section III describes
the robotic configuration and experimental setup. Section
IV describes the actual prediction experiment using the
humanoid robot Robovie-IIs. Section V describes the overall
discussion considering the experimental results. Conclusions
and future works are written in Section VI.

II. LEARNING ALGORITHM

This section describes the method to link static images
to dynamic features through active sensing. The method
consists of two learning phases. The first phase uses the
experiences of active sensing to self-organize the similarity
of the object dynamics. The FF-model (forwarding forward
model), also known as RNN with Parametric Bias (RNNPB)
model, proposed by Tani[6] is used. During this phase, the
similarities of the dynamics are mapped into the PB space.
The second phase uses a hierarchical neural network to
link the static images with object dynamics. The network
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Fig. 1. Configuration of RNNPB and the Proposed System

configuration of the proposed method with RNNPB is shown
in Fig. 1.

A. RNNPB Model

The RNNPB model is an extension to the conventional
Jordan-type RNN model[7] with PB nodes in the input layer.
It is capable of encoding multiple sequences into the RNN,
altering its behavior according to the PB nodes.

The RNNPB is a supervised learning system requiring
teaching signals as is the Jordan-type RNN model. The
learning phase consists of weight optimization and self-
organization of the PB values which encode each se-
quence using the back propagation through time (BPTT)
algorithm[8]. The PB values are rearranged according to
the similarity of the sequences creating clusters of similar
sequences.

The RNNPB model possesses the capability to act as a
predictor such that the next state could be calculated from the
current state. Inputting the current state S(t) and calculating
the next state S(t + 1) as the output, a closed loop RNNPB
is formed to calculate sequences recursively. The behavior
of the predicted sequence varies with the PB values and the
initial context state.

B. Learning Process

The PB values are learned in the same process as the
BPTT algorithm. The back-propagated errors of the weights
are accumulated along the sequences and used to update
the PB values. Denoting the step length of a sequence as
l, the update equations for the parametric bias at step t in

the sequence are as follows.

δρt = kbp ·
t+l/2∑
t−l/2

δbp
t + knb(ρt+1 − 2ρt + ρt−1) (1)

∆ρt = ε · δρt (2)

pt = sigmoid(ρt/ζ) (3)

First, the δ force is calculated for updating the internal values
of the PB pt as (1). The calculation adds the accumulated
delta error δbp

t with the low-pass filter which restrains rapid
fluctuations of the PB values. The delta error is calculated
by back propagating the errors from the output nodes to the
PB nodes. Equations (2) and (3) represent the calculation
method of the new PB by applying the sigmoid function to
the internal value ρt updated using the delta force.

C. Two Phase Training

The proposed method contains an additional phase to the
conventional RNNPB to link the static images to dynamics.
Using the advantage that the RNNPB self-organizes the
similarities of each sequence with numerical values, we
attach a hierarchical neural network to the PB nodes.

The training phase of each neural network is conducted
independently. First the PB values are self-organized using
the method described in the previous subsection. Using the
PB values as teaching signals, the hierarchical neural network
is trained with static images and motor values as its input
signals. The system, as a result, extracts the static features
and movements of the robot that attracts most the dynamics
of the object, and links them with the PB values of the
RNNPB, which resemble the dynamics of the object.

III. ACTIVE SENSING EXPERIMENT

The authors have used the humanoid robot Robovie-
IIs[9], which is a refined model of Robovie-II developed at
ATR[10], for evaluation of the method. Robovie-IIs has 3
DOF (degrees of freedom) on the neck and 4 DOF on each
arm. It also has two CCD cameras on the head for processing
visual information.

A. Robot Motion and Target Objects

The shape of an object and robot motion are two large
factors that affect the object dynamics. For instance, an
upright box would tend to fall if pushed on the top, where it
would just slide when pushed on the bottom. A cylindrical
object would roll when pushed by its side.

The authors have focused on an active sensing motion that
the robot pushes an object on the table with its arm. The
pushing motion is conducted at different heights where the
object and arm could take contact. Consequently, the objects
are compelled to roll, fall over, or slide, depending on their
shape and motion of the robot. Fig. 2 shows the scene of
an actual experiment where Robovie-IIs pushes and moves
the object by rotating the shoulder motor (roll axis). The
procedure of the experiment is as follows.
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Fig. 2. Robovie-IIs and Scene of Experiment

1) Acquire motion sequences from visual images while
the robot pushes training objects.

2) Train RNNPB using the motion sequences.
3) Train the hierarchical neural network using the self-

organized PB values, static images of training objects,
and shoulder pitch angles.

4) Input static images of target objects and shoulder pitch
angle into the hierarchical neural network to calculate
PB values relative to the object and motion.

5) Input the PB values into the RNNPB for prediction.
6) Evaluate the predicted motion sequences.

7 types of objects were used for training the neural
networks as shown in Fig. 3: 3 triangle poles, 3 cylinders,
and 1 cuboid. A total of 17 motion sequences were acquired
placing the objects in several orientations for manipulation.
These motion sequences were used for training the RNNPB.

Prediction of motion sequences were conducted using 4
target objects shown in Fig. 4: a box, a shampoo container,
a cylinder, and a packing tape. The cylinder, also used for
training, was put upright for prediction, where it was laid
down during training. The results of preliminary experiments
with target objects considering the relationship between robot
motion and consequence of the objects are shown in Table I.
The alphabets correspond to the items of PB data illustrated

Fig. 3. Objects used for Training

Fig. 4. Targets used for Dynamics Prediction

TABLE I
ROBOT MOTION AND CONSEQUENCE OF OBJECT

Height of Robot Motion High Low
Box Fall Over(a) Fall Over(b)
Shampoo Container Fall Over(c) Slide(d)
Cylinder Slide(e) Slide(f)
Packing Tape – Roll(g)

afterwards in Fig. 5.

B. Configuration of the Neural Networks

The RNNPB used in this experiment is set as a predictor
by calculating the next sensory state S(t + 1) as the output,
from the current sensory state S(t), the input. It consists
of 28 neurons: 3 neurons each in the input/output layers,
10 neurons in the middle layer, 10 neurons in the context
layer, and 2 neurons as parametric bias. As inputs of the
RNNPB, the center position (x, y) and the inclination of
the principal axis of inertia (θ) have been extracted from
sequentially acquired images at 2.5 frames per second during
the robot motion. These data are normalized ([0,1]) before
being input into the RNNPB.

The hierarchical neural network consists of 40 × 30 + 1
neurons in the input layer, 4 neurons in the middle layer,
and 2 neurons in the output layer. The input is composed of
a reducted grayscale image of the front view of the object
(Resolution 40 × 30) and the target shoulder pitch angle(ϕ)
which determines the height of the arm to push the object.
These data are also normalized before being input into the
neural network. The output layer is composed of the 2 PB
values which encode the dynamics of the objects.

IV. EXPERIMENTAL RESULTS

A. Self-Organized PB Space and Calculated PB Values of
Target Objects

The authors carried out the experiment using a total of 17
motion sequences as described in the previous section. The
RNNPB was trained by iterating the calculation 1,000,000
times which required approximately 20 minutes using Xeon,

ThC3.5

2503



0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Teaching Data

Roll

Fall Over

Slide

PB1

PB2

g
d

c

f
e

b

a

Items

Areas

Roll

Fall Over

Slide

Untrained

Fig. 5. Calculated PB Space

2.66 GHz. Each motion sequence consists of 7 steps, starting
right before the robot arm has had contact with the object.

The RNNPB was trained using the 17 motion sequences of
training objects. The PB values were self-organized accord-
ing to the similarity of the dynamics. In other words, the PB
values of the same object motions are allocated nearby. The
PB space created by training RNNPB is shown in Fig. 5. The
17 teaching data are indicated as diamond-shaped marks. The
remaining marks with numbers are the calculated PB values
of target objects.

For analysis, the authors divided the PB space into 25×25
segments, and examined the object dynamics prediction of
each area. Prediction is done by forming a closed loop
RNNPB, feedbacking the output to the input. The motion
sequence is calculated recursively from the initial position
of the object. By evaluating the sequence, we labeled each
segment into 4 motion categories (Untrained, Fall Over,
Slide, and Roll). Untrained motions consist of a combination
of 2 trained motions or a trained motion in a different
direction. The four shaded areas represent clusters of each
category.

After the PB values have been self-organized, the hier-
archical neural network was trained using the (40 × 30)
static images, shown in Fig. 6, and shoulder pitch angle. The
calculation was iterated 30,000 times, which was decided
heuristically to prevent over-training. The static images of
target objects, shown in Fig. 7, and shoulder pitch angle
for predicting the object motion were input into the neural
network to calculate the PB values of the target object.

The calculated PB values of target objects are indicated
as red marks in Fig. 5. The alphabets next to the marks
correspond to the labels of target objects in Table I. The
triangles, circles, and square each represent the distinction
of dynamics, where they fell over, slided, and rolled. As can
be seen, the PB values of the target objects reside in the area
corresponding to their actual motions.

B. Motion Prediction from the PB Values

Using the closed loop RNNPB, the motion sequences of
target objects are recursively predicted by inputting the PB
values and initial context values, acquired during the training

Fig. 6. Static Images of Training Objects
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Fig. 7. Static Images of Target Objects

phase. The estimated sequences are shown in Fig. 8. Fig.
8(a), 8(b), 8(c) are motion sequences of objects that fell over.
Fig. 8(d), 8(e), 8(f) are motion sequences of objects that
slided. Fig. 8(g) is the motion sequence of the object that
rolled. The seven predicted motion sequences represent well
the actual motions indicated in Table I.

V. DISCUSSIONS

The proposed system combining two neural networks
proved to be effective in predicting the dynamics of objects.
As shown in Fig. 5, the PB values of target objects are
distributed properly according to their actual motions. The
predicted sequences in Fig. 8 express well the actual dy-
namics of the objects. In this section, we analyze the neural
network to confirm the validity of the proposed system with
some discussions about the results.

A. Analyzing the Hierarchical Neural Network

The hierarchical neural network functions as a filter to
extract static features from images that affect the dynamics
of objects. In this subsection, we investigate what types
of features were extracted during the training process by
analyzing the weights from the input layer to the middle
layer of the hierarchical neural network.

The weights of the hierarchical neural network are pre-
sented in Fig. 9. We analyze the weights from the image
input and robot motion input, each stated “Static Feature”
and “Motion”, separately to evaluate the effects of each
input. “Static Feature” is an image created by normalizing
the weights to image format([0, 255]) for each of the image
pixels.

“Static Feature” represents filters for extracting the static
features from object images. It is notable that these filters
are created by combining portions of the input images of
training objects in Fig. 6. Features that affect positively
are displayed white, while those that affect negatively are
displayed black. The images in “Static Feature” are applied
to calculate the roundness and stability (fineness ratio, ratio
of upper and lower surface of object) of the object, which
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(a) Motion Sequence of Object a(Box, High) (b) Motion Sequence of Object b(Box, Low)

(c) Motion Sequence of Object c(Shampoo, High) (d) Motion Sequence of Object d(Shampoo, Low)

(e) Motion Sequence of Object e(Upright Cylinder, High) (f) Motion Sequence of Object f(Upright Cylinder, Low)

(g) Motion Sequence of Object g(Tape)

Fig. 8. Predicted Sequences of Target Objects

affects the dynamics (fall over, slide, roll) considered in the
experiment. Features that induce the fall over motion of the
objects are relatively colored black possessing a negative
effect on the “Static Feature”. The edge of the objects are
specifically intensified which denotes that the neural network
has learned that the edge is a prominent static feature for
predicting object dynamics.

“Motion” value appends a negative effect on “Static Fea-
ture”. The larger the magnitude, the larger the effect. This
result implies that the neural network has learned that objects

would tend to fall over as the robot pushes the object at a
higher spot.

We have analyzed the relation between the input and mid-
dle layers using the training and target images to investigate
the qualitative roles of each middle node. Node 1 is a filter
for calculating the stability of the object, which possesses
high values for objects that slide and roll. Node 2, on the
other hand, calculates the roundness of the object, having a
high value for objects that roll. Node 3 functions as a filter
to evaluate objects which have varying dynamics depending
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on the robot motion. This node generates high values for
objects which would slide when pushed at the bottom, and
fall over when pushed at the top. Taking into account that the
magnitude of the “Motion” value is smaller for Node 3 than
the other nodes, the decrease of this node value is smaller
compared to the others when the robot motion increases.
Therefore, the third node affects larger than the others when
the robot pushes an object at a higher point. Node 4 adjusts
the PB values and takes a high value for every object.

B. Dynamics Prediction using RNNPB

The experimental results proved that the proposed method
is efficient in estimating the dynamics of objects with dif-
ferent shapes and sizes. The analysis has proved that the
appropriate features were extracted for predicting the object
dynamics. However, it is obvious that the neural network
will predict cubes with approximately the same size as the
cylinders as rolling objects, since the training process was
done only with objects of different sizes. We would also
like to investigate, what types of features would be extracted
when the neural network is trained with similar sized objects.

A difficult issue in training the RNNPB is to decide the
number of iterations for training. Large numbers of iteration
would result in over-training which diminish the capability of
generalization, while small numbers result in under-training.
The training we have conducted created restricted space for
the rolling motion. Although the neural network was capable
of calculating an appropriate PB value for the packing tape,
a wider area of the rolling motion in the PB space would
result in better prediction for the motion sequence.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed a dynamics prediction method
through active sensing experiences combining the RNNPB
and a hierarchical neural network. The method is composed
of two phases, one for self-organizing the object dynamics
by RNNPB and the other for linking static images and robot
action to the self-organized dynamics using the hierarchical
neural network. Training of the RNNPB was conducted
with a total of 17 motion sequences, acquired from the
pushing motion of the robot using seven objects placed in
different orientations. Using the self-organized PB values,
the hierarchical neural network was trained by inputting the
reducted static images and shoulder pitch value. The hierar-
chical neural network, which links static images and motor
values to PB values, proved efficient for extracting prominent
static features that affect the dynamics of the object. By
inputting the PB values to the closed loop RNNPB, the

motion sequences of unknown objects were be predicted.
The results showed that the dynamics of unknown objects
could be predicted accurately. The analysis proved that the
appropriate static features were extracted during the training
process.

Our next goal is to apply the prediction results to manipu-
lation strategies by increasing the number of robot motions.
Thus, we could obtain higher generalization capability of
the RNNPB and hierarchical neural network. This would
lead to higher precision in the prediction process which is
indispensible for manipulation strategies.

Prediction of a variety of motions resembles the possibility
of actions the robot can take. By evaluating these possi-
bilities, the robot could select the most appropriate action,
in other words, the affordance. Reorganizing these actions
relative to the static features, would lead to generalization of
the affordance. We believe that these works would develop
our system to a more sophisticated technique with large
capabilities of application to studies in motion planning.
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