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Abstract— The exploration problem is a central issue in
mobile robotics. A complete coverage is not practical if the
environment is large with a few small hotspots, and the
sampling cost is high. So, it is desirable to build robot teams
that can coordinate to maximize sampling at these hotspots
while minimizing resource costs, and consequently learn more
accurately about properties of such environmental phenomena.
An important issue in designing such teams is the exploration
strategy. The contribution of this paper is in the evaluation
of an adaptive exploration strategy called Adaptive Cluster
Sampling (ACS), which is demonstrated to reduce the resource
costs (i.e., mission time and energy consumption) of a robot
team, and yield more information about the environment
by directing robot exploration towards hotspots. Due to the
adaptive nature of the strategy, it is not obvious how the
sampled data can be used to provide unbiased, low-variance
estimates of the properties. This paper therefore discusses how
estimators that are Rao-Blackwellized can be used to achieve
low error. This paper also presents the first analysis of the
characteristics of the environmental phenomena that favor
the ACS strategy and estimators. Quantitative experimental
results in a mineral prospecting task simulation show that
our approach is more efficient in exploration by yielding more
minerals and information with fewer resources and providing
more precise mineral density estimates than previous methods.

I. INTRODUCTION

The problem of exploring an unknown environment is

a central issue in mobile robotics. Typically, it requires

sampling the entire terrain [1]. However, a complete coverage

is not practical in terms of resource costs if the environment

is large with only a few small-scale features of interest

or “hotspots”, and the sampling cost is high. This arises

in applications like planetary exploration (e.g., antarctic

meteorite search, and prospecting for mineral deposits or

localized methane sources on Mars), and environment and

ecological monitoring (e.g., monitoring of ocean phenomena

(plankton bloom), rare species, pollution, or contamination).

In this paper, we consider the above exploration problem

with a team of robots, which can potentially complete the

task faster than a single robot. A robot team is also more

robust to failures by providing redundancy, but its perfor-

mance may be adversely affected by physical interference

between robots. Our goal is to design and build robot teams

that can coordinate to (1) explore intelligently by maximizing

sampling at these hotspots while minimizing resource costs,

and consequently (2) learn more accurately about properties

of such environmental phenomena. In particular, we focus

on building a robot team for surface prospecting of in situ

mineral resources on Mars, which is crucial to planning
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and establishing large, self-sufficient planetary settlements

(e.g., site selection, processing equipment, and manufactured

products). Without loss of generality, the work in this paper

will be discussed in the context of this prospecting task.

The first aspect of our goal pertains to the exploration

strategy: how do the robots decide where to explore next?

Traditionally, conventional sampling methods [2] such as

Raster Scanning (RS), Simple Random Sampling (SRS), and

stratified random sampling have been used in single-robot

exploration. The first approach acquires measurements at

uniform intervals, thus incurring high sampling and travel

costs to achieve adequate sampling density. The second

approach selects a random sample of locations and makes

measurements at each of the selected locations. However, it

ignores the fact that hotspots such as mineral deposits are

clustered and sometimes rare. This results in an imprecise

(i.e., large variance) mineral density estimate of the explored

region. Stratified random sampling requires prior knowledge

of the mineral distribution for allocating the appropriate

sampling effort among strata. Without such information, its

efficiency degrades to that of SRS. There is one other con-

ventional sampling scheme called Systematic Sampling (SS)

[3], which spaces out the selected locations in a systematic

manner. Though it has not been utilized in robot exploration,

it will be used as a method of comparison in our paper.

This paper presents a multi-robot wide-area exploration

strategy that is based on adaptive sampling. Assume that the

explored region is discretized into a grid of N sampling units.

In contrast to conventional sampling, adaptive sampling

refers to sampling strategies in which the procedure for

selecting units to be included in the sample depends on the

sampling data observed during exploration. To satisfy the

second aspect of our goal, adaptive sampling can exploit

the characteristics of the environmental phenomena (i.e.,

spatial clustering of mineral deposits) to obtain more precise

estimates of the properties (e.g., mineral density of explored

region) than conventional strategies for a given sample size.

In this paper, we describe and evaluate a specific explo-

ration strategy known as Adaptive Cluster Sampling (ACS)

(Section III), which has desirable benefits: it (1) yields

more minerals and information about the explored region by

directing robot exploration towards hotspots (i.e., areas of

high mineral density), thus providing detailed maps of the

boundaries of such areas, and (2) reduces the resource costs

of the robot team (Section VI).

The adaptive nature of this scheme incurs a considerable

bias in conventional estimators due to a large proportion of

sampling data observed in the hotspots. Consequently, two

unbiased estimators are proposed in [3] for the ACS strategy
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(Section IV). This paper examines how the error of these

estimators can be reduced through Rao-Blackwellization

(Section V), in which the outputs of the estimators are

averaged over several different ordered samples that are

constructed by permuting the original sampled data. We have

also presented the first analysis of the characteristics and

distribution of the environmental phenomena that favor the

ACS strategy (Section III-A) and estimators (Section IV-

C). Before discussing the ACS strategy and estimators, an

overview of the multi-robot architecture will be presented.

II. MULTI-ROBOT ARCHITECTURE

The multi-robot architecture comprises the teleoperation

base and robot prospectors. To facilitate the teleoperator’s

analysis and monitoring, the base maintains a plan of the

robot tours to visit the selected units to be sampled, and a

list of sampled units and their corresponding mineral content.

Each robot maintains an individual tour of its assigned units

to be sampled, and shares spectrometric data of its sampled

units with the base and robot team. The base continuously

receives sampling data from the robots, selects new sampling

units based on the ACS strategy described in Section III,

and replans the robot tours to visit the new and current

sampling units. After all selected units have been sampled,

it determines the mineral density estimates of the explored

region. These estimates can also be computed in a distributed

manner among the robots as discussed below.

Our planning problem is an instance of the k-traveling

salesman problem where k is the number of robots. The

selected sampling units can be considered as cities to be

visited. We consider two different optimality criteria: mini-

mizing (1) total energy consumption of all robots, and (2)

maximum mission time of any robot. In general, this problem

is NP -hard. So, our centralized planner at the base uses a

modified Minimum Spanning Tree (MST) heuristic proposed

in [4] to obtain 2- and 2k-competitive tour allocation for

the first and second criterion respectively. Alternatively, the

centralized planner can be easily replaced by a distributed

auction-based planner [4] in every robot to eliminate central

point of failure. In this case, each robot uses the ACS

strategy directly for exploration; whenever it encounters new

sampling units, it initiates an auction with the other robots

to allocate the new and current sampling units. The bids

are constructed according to the chosen criterion discussed

above. This process is elaborated in [4].

In terms of computational complexity, the centralized

and distributed planners require O((k + n)n log2 n) and

O(n2 log2 n) time respectively where n is the number of

selected units to be sampled. Note that n is usually much

greater than k and this results in the same polynomial time

complexity for both planners. In terms of communication

complexity, the centralized and distributed planners require,

respectively, O(k) and O(kn) messages to replan whenever

new sampling units are selected.

III. ADAPTIVE CLUSTER SAMPLING

In a large environment with only a few small hotspots, it

is often useful after locating a sampling unit in a hotspot to

continue exploring its neighborhood. One way of doing so is

by the ACS strategy [3], which proceeds as follows: an initial

sample of size n1 is taken using SRS without replacement by

the base or robot auctioneer. If the observed mineral content

of an initially sampled unit satisfies a certain condition C
(e.g., mineral content ≥ predefined threshold), the unit’s

neighborhood is added to the sample. For every unit, its

neighborhood consists of the unit and a set of “neighboring”

units (e.g., top, bottom, left, and right units). If any other

units in that neighborhood satisfy C, their neighborhoods are

also included in the sample. This process is repeated until

no more units that satisfy C are encountered.

At this stage, clusters of units are obtained. Each cluster

contains units that satisfy C and a boundary of edge units.

An edge unit is a unit that does not satisfy C but is in the

neighborhood of a unit that does. The final sample of size

ν consists of up to n1 clusters. There can be fewer than n1

distinct clusters, since two units in the initial sample that

satisfy C could have been selected from the same cluster. If

a unit in the initial sample does not satisfy C, it is considered

to be a cluster of size one.

Let the network Ai that is generated by unit i be defined as

a cluster generated by that unit with its edge units removed.

A selection of any unit in Ai leads to the selection of all

units in Ai. Any unit that does not satisfy C is a network

of size one since its selection does not lead to the inclusion

of any other units. This implies that any edge unit is also

a network of size one. Hence, any cluster of size larger

than 1 can be decomposed into a network with units that

satisfy C, and also networks (edge units) of size one that

do not satisfy C. Clusters may overlap on their edge units.

In contrast, networks are disjoint and form a partition of the

entire population of units.

Fig. 1b illustrates the adaptive cluster sample technique.

The values in this table are obtained in a simulation test run

on the prospecting region in Fig. 1a, which is discretized

into a 28×20 grid of square sampling units (thus, the total

number of units N = 560). The condition for sampling a

unit’s neighborhood is defined as C = (y ≥ 1.0 wt%) where

y is the observed mineral content of a sampling unit. The

boxed values correspond to units from the initial sample. The

lightly and darkly shaded units correspond, respectively, to

the network and edge units of a cluster. Note that the network

within the cluster is intersected twice by the initial sample.

A. Cost Analysis of ACS
This section analyzes the cost of ACS over SRS for a given

final sample size ν. If the cost of a multi-robot exploration

strategy is attributed primarily to sampling and motion (e.g.,

see Section VI), only the motion costs of ACS and SRS can

differ due to the same ν. In particular, we compare the worst-

case motion costs of ACS and SRS; let the ratio of these

costs be ρ. Then, using the MST heuristic (Section II), ρ is

the ratio of the MST size on the n1 randomly selected initial

sample units together with the cost of (ν − n1) adaptively

added units to the MST size on the ν randomly selected units.

So, if ρ < 1, the worst-case tour allocation cost of ACS is

less than that of SRS for either of the optimality criteria.

The results below were processed from the MST sizes for
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Fig. 1. (a) Synthetic zirconium distribution (wt%) in a lunar prospecting
region with population mean µ = 0.648 [5]. (b) Partial ACS example
corresponding to boxed area (dashed) in (a).
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Fig. 2. Graphs of proportion of adaptively added units in the final sample
vs. (a) initial sample size, and (b) cost ratio with varying grid resolutions.

n1 = 1, . . . , N , each of which was obtained by averaging

over 1000 test runs.

Fig. 2a shows the largest proportion of units that can be

adaptively added (i.e., largest value of (ν−n1)/ν) when ACS

does not cost more than SRS (i.e., ρ≤1). This is illustrated

with varying grid resolutions (i.e., 7×5, 14×10, 28×20 grids

of square sampling units); the cost of each adaptively added

unit is thus a unit’s width. Note that when no units can be

adaptively added, the final sample size ν is equal to the initial

sample size n1. As a result, ACS degrades to SRS and they

have the same costs (i.e., ρ = 1). The results show that the

maximum proportion of units that can be adaptively added

decreases with increasing initial sample size. This implies

that for sampling large hotspots, a smaller initial sample

(n1/N ≤ 0.05) has to be used in order for ACS to cost

less than SRS: this allows more units to be adaptively added

from the large hotspots located by the initial sample. Note

that a smaller initial sample is also sufficient for locating

large hotspots. On the other hand, a larger initial sample

(0.1 ≤ n1/N ≤ 0.13) can be used for small hotspots, as

they require fewer adaptively added units and are harder to

find. Also, though a higher grid resolution decreases the

proportion of adaptively added units, it provides a more

detailed mapping of the hotspot boundaries.

Fig. 2b shows the proportion of units that can be adaptively

added (i.e., (ν −n1)/ν) where the cost ratio ρ is minimized

for varying n1. The results show that the proportion of units

that can be adaptively added decreases with increasing cost

ratio; since an adaptively added unit does not cost more than

an initial sample unit, decreasing the proportion of adaptively

added units increases the cost of ACS.

IV. UNBIASED ACS ESTIMATORS

Since the ACS scheme results in a large proportion of

high mineral content data sampled from the hotspots, it

will incur a considerable bias with the conventional sample

mean estimator µ̄ = ν−1
∑ν

i=1
yi (Section VI). Kriging

(or Gaussian process regression) [3] is a more sophisticated

alternative but will be similarly biased. Hence, unbiased

estimators are needed for the ACS scheme. Two of these

are presented in this section.

A. Modified Horvitz-Thompson Estimator
The first ACS estimator is modified from the Horvitz-

Thompson (HT) estimator [3]. Let Bi be the set of units

in the ith network and mi be the number of units in Bi.

Note that Bi is defined in the same way as network Ai

in Section III except that its index i refers to the network

label rather than the unit label. The probability that the initial

sample intersects network Bi is

πi
def
= 1 −

(
N − mi

n1

)/(
N

n1

)
. (1)

The total mineral content of the explored region can be

written as the sum of the mineral contents of the individual

networks. So, the average mineral content is

µ =
1

N

K∑

i=1

y∗

i

where y∗

i is the total mineral content of the ith network and

K is the total number of distinct networks in the population.

µ cannot be computed directly due to the unknown y∗

i ’s for

unsampled networks. So, to form an unbiased estimator of µ,

each term in the sum can be multiplied by Ii/πi, where Ii is

an indicator variable of value 1 if the initial sample intersects

Bi, and 0 otherwise. The expected value of Ii/πi is 1, so our

estimator is unbiased; since Ii is 0 for unsampled networks,

information about these networks are not needed to calculate

our estimator. Applying this trick yields the modified HT

estimator of µ:

µ̂HT =

K∑

i=1

y∗

i Ii

Nπi

=

κ∑

i=1

y∗

i

Nπi

(2)

where κ is the number of distinct networks intersected by

the initial sample.

For practical use of the HT estimator, it is important to

be able to estimate its variance from the sample. There is

a simple closed-form formula which can be used for this

purpose. πi has been defined to be the probability that the

initial sample intersects the ith network. Define πjk to be

the probability that the initial sample intersects both the jth

and kth networks. If j = k, then πjk = πj . Otherwise,

to compute πjk , notice that the probability that the initial

sample intersects neither network j nor network k is

P(Ij 6= 1 ∩ Ik 6= 1) =

(
N − mj − mk

n1

)/(
N

n1

)
.

So, the probability that the initial sample intersects either jth

or kth network is 1− P(Ij 6= 1 ∩ Ik 6= 1), and

πjk = πj + πk − (1 − P(Ij 6= 1 ∩ Ik 6= 1)) .

Since µ̂HT is a sum of several terms, its variance can

be derived by taking the sum of covariances between these

terms:
var[µ̂HT ] =

K∑

j=1

K∑

k=1

cov[
y∗

j Ij

Nπj

,
y∗

kIk

Nπk

]

=

K∑

j=1

K∑

k=1

y∗

j

Nπj

y∗

k

Nπk

cov[Ij , Ik] .

(3)
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(3) cannot be computed from the sample data since not all

the networks in the population are necessarily sampled. So,

to obtain an unbiased estimator of the variance, we can use a

similar trick as before: each term is multiplied by IjIk/πjk

(which has an expected value of 1) to get

v̂ar[µ̂HT ] =

K∑

j=1

K∑

k=1

y∗

j Ij

Nπj

y∗

kIk

Nπk

cov[Ij , Ik]

πjk

=
1

N2




κ∑

j=1

κ∑

k=1

y∗

j y∗

k

πjk

(
πjk

πjπk

− 1

)

 .

(4)

The second equality follows because cov[Ij,Ik] is πjk−πjπk.

The network formulation of these estimators allows their

computations to be readily distributed among the robots if

desired; the networks are allocated to the robots such that

each robot is responsible for the computations within its

assigned networks. The resulting network data can then be

aggregated by a robot or a cyclic message-passing algorithm

to obtain the estimates. This can be similarly achieved for

the second estimator described next.

B. Modified Hansen-Hurwitz Estimator

The second ACS estimator is modified from the Hansen-

Hurwitz (HH) estimator [3]. In Section IV-A, we mention

that the total mineral content of the explored region is the

sum of the mineral contents of the individual networks. The

mineral content of each network can be written as the average

mineral content of all units in this network summed over its

number of network units. So, the average mineral content of

the explored region can also be expressed as

µ =
1

N

N∑

i=1

wi

where wi is the average mineral content of the network Ai

containing unit i.
µ cannot be computed directly due to the unknown wi’s for

unsampled networks. Using the same trick as in Section IV-

A, an unbiased estimator of µ can be formed by multiplying

each term in the sum with NJi/n1, where Ji is an indicator

variable of value 1 if unit i is included in the initial sample,

and 0 otherwise. The expected value of NJi/n1 is 1, so

our estimator is unbiased; since Ji is 0 for units not in the

initial sample, information about these units is not needed

to calculate our estimator. Applying this trick yields the

modified HH estimator of µ:

µ̂HH =
1

n1

N∑

i=1

wiJi =
1

n1

n1∑

i=1

wi (5)

Note that µ̂HH can be interpreted as the conventional sample

mean obtained using SRS of size n1 from a population of

wi values rather than yi values. So, using the theory of SRS

[3],
var[µ̂HH ] =

N − n1

Nn1(N − 1)

N∑

i=1

(wi − µ)2 (6)

with unbiased estimator

v̂ar[µ̂HH ] =
N − n1

Nn1(n1 − 1)

n1∑

i=1

(wi − µ̂HH)2 . (7)

C. Efficiency Analysis of ACS Estimators
The estimator efficiency of ACS over SRS depends on

the characteristics of the environmental phenomena (i.e.,

mineral distribution being sampled). In particular, µ̂HH is

more efficient than the conventional sample mean µ̂ for SRS

if var[µ̂HH ] < var[µ̂]. Using the theory of SRS [3],

var[µ̂] =
N − ν

Nν(N − 1)

N∑

i=1

(yi − µ)2 (8)

The total sum of squared difference between yi and µ in (8)

can be partitioned into within-network and between-network

components:
N∑

i=1

(yi − µ)2 =

N∑

i=1

(yi − wi)
2 +

N∑

i=1

(wi − µ)2 (9)

Using (6), (8), and (9), var[µ̂HH ] < var[µ̂] if and only if

(
1 −

n1

ν

) N∑

i=1

(yi − µ)2 <
(
1 −

n1

N

) N∑

i=1

(yi − wi)
2 (10)

It can be observed from (10) that µ̂HH is more efficient

than µ̂ if (1) the within-network variance of the population

(rightmost term) is sufficiently high, (2) the final sample

size ν is not much larger than the initial sample size n1

for µ̂HH so that 1 − n1/ν is small, and (3) n1 ≪ N
so that 1 − n1/N is large. However, conditions 2 and 3

can oppose condition 1 because a small difference between

initial and final sample size, and a small initial sample

size usually mean small within-network variance. So, ACS

with µ̂HH performs better than SRS with µ̂ if the networks

are small enough to restrict the final sample size but large

enough for the within-network variance to represent the

population variance reasonably. That is, it works better with

environmental phenomena that are clustered into a few small

hotspots. Even though drastically lowering the threshold

for condition C can increase the within-network variance

and improve condition 1, it increases the final sample size

tremendously and violates condition 2 easily.

Although it is straightforward to compare var[µ̂HT ] (3)

and var[µ̂], the result cannot be easily interpreted since

var[µ̂HT ] involves the intersection probabilities. However,

empirical results in Section VI show that µ̂HT is consistently

more efficient than µ̂. In the next section, we will show how

the variances of the ACS estimators can be reduced to be

even more efficient.

V. UNBIASED RAO-BLACKWELLIZED ACS ESTIMATORS

An estimator t(Do) of a population characteristic µ is a

function t which maps our observed data Do to an estimate

of µ. Saying that µ is a population characteristic means

there is a parameter vector θ which completely describes

the distribution of our population, and µ = µ(θ) is a

function of θ. In our setting, Do is an ordered list of pairs

〈is, yis
〉 where is is the unit sampled at step s and yis

is

its mineral content. The population characteristic of interest

µ is the average mineral content of the explored region.

The population parameter is θ = 〈y1, . . . , yN 〉, which is the

vector of true mineral contents for all units in the population.

The estimators of µ that we are interested in are µ̂HT and

µ̂HH .
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To evaluate an estimator t(Do), its distribution conditioned

on a possible value of θ can be examined. Good estimators

have low Mean-Squared Errors (MSEs), i.e., the distribution

P(t(D0) − µ|θ) is concentrated around 0. We will now

describe how to reduce the MSEs of µ̂HT and µ̂HH .

Rao-Blackwellization is a procedure that can reduce the

MSE of an arbitrary estimator t(Do) [3]. The improved

estimator is E(t(Do)|D), where D is a reduced description of

our data that omits some redundant information. In particular,

D is defined as a statistic if it is a function of our data

Do (i.e., D = g(Do)), and D is defined as a sufficient

statistic if it contains all relevant information in Do about θ,

i.e., P(Do|D, θ) = P(Do|D). Given these definitions, Rao-

Blackwellization is the process of computing E(t(Do)|D)

when D is a sufficient statistic. In our case, D is set to

be the unordered set of distinct, labeled observations, i.e.,

D = {〈i, yi〉| i ∈ S} where S is the set of distinct unit

labels in our data sample.

The following theorem, adapted from the Rao-Blackwell

theorem, justifies the use of Rao-Blackwellized estimator:

Theorem 1: Let t = t(Do) be a (not necessarily unbiased)

estimator of µ. Define tD = E[t|D]. Then

(a) tD is an estimator;

(b) E[tD] = E[t];

(c) MSE[tD] ≤ MSE[t] with strict inequality for all θ such

that Pθ(t 6= tD) > 0.

Corollary 1: If t is unbiased,

var[tD] = var[t] − EDE[(t − tD)2|D]
= var[t] − ED{var[t|D]} .

(11)

The proofs of Theorem 1 and Corollary 1 are provided in

[6]. From (11), var[tD] ≤ var[t] since the variance reduction

term ED{var[t|D]} ≥ 0.

Rao-Blackwellization does nothing if g(Do) is already a

function of D. On the other hand, it achieves the largest

possible reduction in variance when D is a minimal sufficient

statistic. A minimal sufficient statistic is one that reduces Do

as much as possible without losing information about θ:

Definition 1: A sufficient statistic D = g(Do) is minimal

sufficient for θ if, for any other sufficient statistic D′ =
g′(Do), D is a function of D′.

In our case, D is minimal sufficient, and µ̂HT and µ̂HH

are not functions of D; they depend on the order of selection

[6]. In order to Rao-Blackwellize µ̂HT and µ̂HH , we will

need several notations. Let G =
(

ν
n1

)
be the number of

combinations of n1 distinct initial sample units from the

ν units in the final sample and let these combinations be

indexed by the label g where g = 1, 2, . . . , G. Let τg be the

value of an estimator t when the initial sample consists of

combination g, Ig be an indicator variable of value 1 if the

gth combination can result in D (i.e., is compatible with D),

and 0 otherwise. The number of compatible combinations is

then ξ =
∑G

g=1
Ig . It follows that P(t = τg|D) = 1/ξ for all

compatible g. So, the improved Rao-Blackwellized estimator

is

tRB = E[t|D] =
1

ξ

G∑

g=1

τgIg =
1

ξ

ξ∑

g=1

τg . (12)

The variance of tRB is obtained using (11) where tD = tRB .

The unbiased estimator of var[tRB] is then

v̂ar[tRB] = v̂ar[t] − var[t|D] = v̂ar[t] −
1

ξ

ξ∑

g=1

(τg − tRB)2 .

(13)
Since (12) and (13) are based on samples compatible with

D, naively, the ξ compatible samples have to be identified

from the G combinations and their corresponding ξ estima-

tors have to be evaluated. ξ and G can be potentially large,

which would render the Rao-Blackwellized method compu-

tationally infeasible. However, closed-form expressions exist

for the Rao-Blackwellized HT (RBHT) and HH (RBHH)

estimators, which are described in [6]. These expressions

are computationally efficient if relatively few networks of

size larger than 1 are intersected by the initial sample. This

assumption is valid if the prospecting region contains only a

few hotspots.

VI. EXPERIMENTS AND DISCUSSION

This section presents quantitative evaluations of the ACS

strategy and its estimators for wide-area exploration with

a team of four robots. The experiments were performed

using Webots, a mobile robot simulator, which incorporated

10% white noise in its sensors and actuators. 16 directed

distance sensors with 0.3 m range were modelled around

the 0.32 m (L) × 0.27 m (W) × 0.2 m (H) robot body.

Each robot could sense its global position through GPS1,

and communicate spectrometric and tour data with the base.

The robots used the potential fields method for navigation

between sampling units and obstacle avoidance. Each robot

could move at a maximum speed of 0.425 m/s and consumed

about 28.2 J/m. It used the Alpha Particle X-Ray Spectrom-

eter (APXS) (1.3 W) for sampling, which required about

2 hours to obtain a high-quality x-ray spectrum of the mineral

content. So, sampling each unit would use about 9.5 kJ. The

6.46 km × 4.61 km prospecting region is discretized into a

28×20 grid of sampling units such that each unit’s width is

about 231 m (Fig. 1a). The robots were placed at a sampling

unit in the center of the region and had to rendezvous at this

same unit after all selected units were sampled.

To compare the performance of the estimators, the Root

Mean-Squared Error (RMSE) criterion is used to measure

their efficiency:

RMSE[t] =

[
1

R

R∑

i=1

(τi − µ)2

] 1

2

where R = 20 is the number of test runs, τi is the mean

mineral content estimate obtained in test run i.
Using this measure, a quantitative test was conducted to

compare the estimators described above. For ACS, the initial

sample size n1 was 10, 20, or 40 sampling units. After 20

test runs for each n1, it resulted in an average final sample

size E[ν] of approximately 41, 64, and 92 units, which

corresponded to 7.4%, 11.5%, and 16.4% of the 560 total

sampling units. The SRS and SS schemes were conducted

using the same sample sizes as E[ν].

1Deployment of space exploration infrastructure would ultimately result
in GPS or similar localization capability on the Moon and Mars.
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Fig. 3. Comparison of (a) RMSEs of different estimators and sampling strategies, (b) energy consumption of different sampling strategies, (c) mission
time of different sampling strategies, (d) energy consumption, and (e) mission time of ACS strategy with different robot team sizes.

Test results (Fig. 3a) show, with statistical signifi-

cance, that the ACS estimators perform better than the

non-ACS estimators, and among the ACS estimators, the

Rao-Blackwellized estimators achieved lower RMSE. This

implies that the ACS estimators, especially the Rao-

Blackwellized ones, are practically more appealing because

more accurate mineral density estimates can be obtained with

a reasonably small sample size. Using t-tests (α = 0.1),

the differences in RMSEs between the estimators have been

verified to be statistically significant if these differences are

more than 0.007, 0.013, and 0.008 for the sample sizes of

41, 64, and 92 units respectively. Note that the biased sample

mean estimator µ̄ under the ACS scheme is not included in

Fig. 3a; it has extremely large RMSEs of 0.682, 0.670, and

0.524 corresponding to 7.4%, 11.5%, and 16.4% of the total

sampling units.

To compare the robot team performance between different

sampling/exploration strategies, the previously mentioned

optimality criteria are considered: minimizing (1) total en-

ergy consumption of all robots, and (2) maximum mission

time of any robot. Figs. 3b and c show the results after

20 test runs for the first and second criterion respectively;

the mineral yield, energy consumption, and mission time

recorded for the various sampling strategies are given as a

percentage of the corresponding values for RS (i.e., complete

sampling of 560 units). As a result, varying the size of the

prospecting region does not change our results. Note that

each strategy (other than RS) has three different records in

its plot, which correspond to E[ν] of 41, 64, and 92 units;

a smaller sample size gives a smaller mineral yield. The

line for RS shows a constant ratio of energy consumption

or mission time to mineral yield. We observe that the ACS

strategy yields more minerals than SRS and SS with less

energy and mission time. The differences in mineral yield,

energy consumption or mission time between ACS and the

other two strategies have been verified using t-tests (α = 0.1)

to be statistically significant.

Furthermore, in contrast to SRS and SS, we observe that

ACS falls below the dotted line of RS, which implies it

achieves a lower ratio of energy consumption or mission

time to mineral yield than RS. Hence, it is both energy- and

time-efficient to utilize ACS for exploration in place of RS.

We also expect the ACS strategy to be even more efficient

in exploration when the cost of sampling/sensing increases.

For example, the Mössbauer spectrometer runs at 2 W and

needs 6 hours. In our experiments for ACS, the spectrometry

incurs 35% of the total energy consumption and 73% of the

overall mission time for a typical sample size of 92 units.

These figures will increase substantially if the Mössbauer

spectrometer is used instead.

Lastly, the robot team performance is compared with

varying team sizes (i.e., 1, 4, and 8 robots) for the ACS

strategy. Figs. 3d and e show the results after 20 test runs

for the first and second criterion respectively. Fig. 3d shows

that the team of 8 robots is less energy-efficient than 1 robot

and the team of 4 robots; the larger team incurs a greater

amount of physical interference during rendezvous. Fig. 3e

shows that the reduction in mission time decreases with more

robots; the teams of 4 and 8 robots achieve, respectively,

28.9% and 18.7% of the mission time taken by 1 robot,

which are greater than the expected 25% and 12.5%. This

is due to the competitive ratio of the tour allocation, which

increases with the number of robots (Section II).

VII. CONCLUSION AND FUTURE WORK

This paper describes the application of the ACS strategy

and estimators to multi-robot wide-area exploration. They

can exploit the clustering nature of the environmental phe-

nomena (i.e., hotspots) and therefore perform better than SRS

in such environments as shown in the analysis. Quantitative

experimental results in the mineral prospecting task simula-

tion show that the ACS strategy is most efficient in explo-

ration by yielding more minerals and information with fewer

resources, and the Rao-Blackwellized ACS estimators can

provide more precise mineral density estimates than previous

methods. In future work, we will apply these techniques

on a larger robot team and real robots. Our planner will

be improved using other minimum spanning tree heuristics

or stochastic search strategies to reduce the tour lengths so

that ACS can be even more efficient than RS. We will also

consider the effect of noisy and multivariate mineral content

data on the ACS strategy and estimators. Lastly, adaptive

systematic and stratified sampling will be examined.
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