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Abstract—In many applications of robot manipulators, the
end-effector is required to make contact with environment.
In these applications, it is necessary to control not only the
position but also the interaction force between the robot end-
effector and environment. Most research so far on motion
and force tracking control has assumed that the kinematics
and constraint surface are exactly known. In this paper, we
propose a visually-servoed adaptive Jacobian controller for
motion and force tracking control with structural uncertainties
in kinematics, dynamics and constraint surface. It is shown
that uniform ultimate boundedness of the tracking errors can
be guaranteed. Simulation results are presented to illustrate the
performance of the proposed control law.

I. INTRODUCTION

Most of industrial robots are used only for positioning tasks such
as spray-painting and spot welding. To expand the applications of
robots, such as polishing and deburring, it is important to control
not only position but also force of interaction between the robot and
environment. Many control methods have been developed for force
control of robot manipulators. Despite the diversity of approaches,
most of them can be classified into two categories: impedance
control [1] and hybrid position/force control [2]. A review for
the research in force control can be found in [3]. Several model
based approaches have been proposed for motion and force tracking
control [4], [5] of robots and these controllers can achieve very good
performance when the system is well calibrated. However, exact
kinematic and dynamic models of the robot system are required
in these approaches, which means that the robot can not adapt to
changes and uncertainties in the models. For example, when the
robot picks up different tools of unknown lengths, the kinematics
and dynamics of the robot changes and are difficult to derive exactly.

To alleviate this problem, much effort has been devoted to
understand how the robot cope with dynamic uncertainties. Several
adaptive motion and force control laws have been proposed to
deal with dynamics uncertainties [6]—[9] but these controllers have
assumed that the kinematics of the robot is exactly known.

Recently, several approximate Jacobian controllers [10]-[12]
have been proposed to overcome the uncertainties in both kine-
matics and dynamics. The proposed controllers do not require
the exact knowledge of kinematics and Jacobian matrix. However,
the results in [10]-[12] are focusing on free motion control of
robot where the robot end-effector is not in contact with the
environment. In order to expand the feasible applications of robots,
several position and force controllers [13]-[15] using approximate
Jacobian have been proposed to overcome the uncertainties in both
kinematics and dynamics. These controllers do not need the exact
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knowledge of kinematics and dynamics but the results are limited
to setpoint control or point-to-point control of robot manipulators.
In some applications, it is necessary to specify the motion in
much more details than simply stating the desired final position.
Thus, a desired trajectory should be specified. Recently, an adaptive
Jacobian controller [16] is proposed for motion and force tracking
control with uncertain kinematics and dynamics. In this result, the
task space is defined as Cartesian space and hence the constraint
surface is assumed to be known exactly. This is due to the fact that
the desired trajectory on the constraint surface cannot be obtained
if the constraint surface is not known exactly. To overcome this
problem, a vision and force tracking controller [17] with uncertain
dynamics, kinematics and constraint surface is proposed. However,
in this result, the structure of the constraint surface is assumed to
be known and the uncertain parameters of the constraint Jacobian
are assumed to be linearly parameterizable. In addition, the normal
direction of the constraint surface is assumed to be known. In
most applications of constrained robots, it is hard to determine the
structure of the constraint function. In the presence of uncertainty,
it is also difficult to obtain the normal direction of the contact force
exactly.

In this paper, we extend the result in [17] to a neural-network
vision and force tracking controller. This vision-force controller
does not need exact knowledge of kinematics, dynamics, camera
model and constraint surface. In addition, the structure of the
constraint surface and exact normal direction of the contact force
are not required. The use of vision sensor introduces additional
uncertainty and transformation from Cartesian space to image
space and the motion and force errors are defined in two different
coordinate frames. A Lyapunov function is presented to prove the
stability of the proposed vision-force controller. It is shown that
uniform ultimate boundedness can be guaranteed with uncertainties
in kinematics, dynamics, camera model and constraint surface.
Simulation results are presented to show the effectiveness of the
proposed controller.

II. ROBOT DYNAMICS AND KINEMATICS

We consider a vision-force control system consisting of a robot
manipulator and camera(s) fixed in the work space. In this system,
the end effector is in contact with a constraint surface. First, let
r € R™ denote a position of the end-effector in Cartesian space as
[11] [18]-20],

r=h(q) M
where h(-) € R™ — R™ is generally a non-linear transformation

describing the relation between joint space and task space, ¢ =
[q1,---,qn]T € R™ is a vector of joint angles of the manipulator.
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The velocity of the end-effector 7 is related to joint-space velocity
q as:

P =Jm(q)q (@)

where Jm(q) € R™*™ is the Jacobian matrix from joint space to
task space.

For a visually-servoed system, cameras are used to observe the
position of the end-effector in image space. The mapping from
Cartesian space to image space requires a camera-lens model in
order to represent the projection of task objects onto the CCD
image plane. We use the standard pinhole camera model, which
has been proven adequate for most visual servoing tasks [21].
Let x € R™ denote a vector of image feature parameters and
¢ the corresponding vector of image feature parameter rates of
change. The relationship between Cartesian space and image space
is represented by [21],

& = Jr(r)r, 3)

where Jr(r) € R™*™ is the image Jacobian matrix. The image
Jacobian was first introduced by Weiss et al. [22], who referred
to it as the feature sensitivity matrix. It is also referred to as the
interaction matrix [23] and the B matrix [24], [25].

From equations (2) and (3), we have,

&= Ji(r)Jm(q)d = J(q)4; C))

where J(g) € R™*"™ is the Jacobian matrix mapping from joint
space to image space.

The equations of motion of constrained robot with n degree of
degrees of freedom can be expressed in joint coordinates as [20]
[26]:

M(@)i+ (3M(@) + 5(0,0)i +9(a) =7 + Jh @) ©)

where M (q) € ™ ™ is the inertia matrix, S(q, ¢) is a symmetric
matrix, 7 € R™ is the applied joint torque to the robot, f € R" is
a contact force vector and g(¢q) € R™ is the gravitational force.

We consider a constraint surface that can be defined in an
algebraic term as :

U(r) = 0, ©)

where ¥(r) : R™ — R! is a given scalar function. Differentiating
equation (6) with respect to time yields the following velocity
constraint:
ov(r)
or

7 =0. @)
The contact force on constraint surface is then given by

[ =d(r), )

( 6\@/(:) )T

where d(r) = Gy

. . or | . .
direction to the constraint surface, A € R is defined as a magnitude
of the contact force. Hence, equation (5) can be represented as

€ R™ is a unit vector denotes a normal

M(@)i+ (3M(a) + 5(a.0)i +9(a) =7+ DT(@)A, ©)

T
where D(q) = %Jm(q) is a Jacobian of the constraint

function such that

D(q)¢ = 0. (10)
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III. ADAPTIVE NEURAL-NETWORK VISION AND FORCE
TRACKING CONTROL

In some force control applications, the uncertain parameters of
the constraint surface can not be linearly separated or the structure
of the constraint surface is unknown. In this section, we consider a
robot with unknown dynamics and kinematics, The parameters and
structure of the constraint surface are also unknown. An adaptive
neural-network vision and force tracking controller is developed to
deal with the above mentioned uncertainties.

Neural network has many important properties. For control
purposes, the ability to approximate an arbitrary nonlinear function
f(x) up to a small error is the most important property. In order to
approximate a function, an approximating function is chosen first,
then the weights W are updated according to an algorithm based on
the output errors [27]. For this purpose, different types of neural
networks architecture can be used, such as multi-layer networks
and Radial basis function (RBF) networks. In this paper, the neural
network is designed so that it can be linearly parameterized and
update law can be used to update the weights of the neural network
online. The RBF network is suitable for this case and is used in
this paper. The function approximation using a RBF network is
[28]-[30]

flz) = Wo(z) + E, (11)

where W is the matrix of neural network weights, £ is called neural
network functional approximation error, it generally decreases when
the number of neurons increases. 6(x) is the activation function.
There are many kinds of activation functions that can be chosen
for RBF networks. It has shown that a linear superposition of
Gaussian radial basis function results in an optimal mean square
approximation to an unknown function which is infinitely differen-
tiable and whose values are specified by a finite set of points in
R [29]. Therefore, Gaussian RBF networks are used in this paper.
The Gaussian function is given as [27]
2
() = eapl =10, (12)
where o is called center and o is distance. In this paper, the weight
matrix is updated online and the update law will be derived from
Lyapunov method.
The manipulator Jacobian J;,,(¢) and the Jacobian matrix J(q)
in equation (4) can be approximated by neural networks as

where Wiy,i(i = 1...m) and Wy;(¢ = 1...n) are matrices of
neural network weights, 0,,(¢) and 6. (q) are vectors of activation

functions, E',, and F, are bounded and small approximation errors.
When J,,(q) and J(q) are uncertain, they are estimated as

T (@ Win) = (Win10m(q), s WinmOm (q)),
j(Qv Wx) = (leax(Q)v s Wxnex(‘]))v

13)
(14)

15)

where Jm(q, Win) and J(g, W.) are estimations of .J,,(¢) and
J(q) respectively and the estimated neural network weights Wi
and W, will be updated by update laws to be defined later.

Next, a vector &, € R™ is defined as,

j"r = (fl?d*&A(L‘)ﬁ’/B(jm(q’ Wm)j+(q7 WI))ilRCZ(r)AF; (16)

where o and (3 are positive constants, z4(t) € R™ is the desired
image motion trajectory and Z4(t) € R™ is the desired speed
trajectory, Az = x — x4 is image motion tracking error, J (g, WI)
is an estimation of J(q), Jt(q,W,) is the pseudo inverse of
J(q,Wa) and AF = [} (A(0) — Aa(0))do, Aa(t) is the desired
force trajectory, R is a rotation matrix which will be defined later,
d(r) is a fixed estimation of d(r).
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The estimation error Jy,(q)(d(r) — d(r)) is approximated by
neural networks as

Tn(g)(d(r) — d(r)) =

where where Wy is a matrix of neural network weights, 67(q) is a
vector of activation functions and E; is a vector of approximation
errors that is bounded and small.

In order to prove the stability of the vision-force tracking system,
an adaptive sliding vector is defined using equation (16) as,

Wibys(q) + Ey a7

8o =& —dr = J(q, Wa)§ — &r, (18)

Differentiating the above equation with respect to time, one has,

= J(@,Wa)i+ J(a, Wa)i — &, (19)

E*Z”

8, =
Next, let
qT = j+(q7 WT)'TT+ ([n _j+(Q7W$)j(Q7 WT))Q/)7 (20)
where ¢ € R" is minus the gradient of the convex function to be
optimized [31].
An adaptive sliding vector is defined in joint space as,
$=4q—qr, 21
and
§=d—r. (22)
Multiplying both side of equation (21) by .J(g, W..) and using
equation (18), one has
J(a, Wa)s = J(q,Wa)d — dr = 3z, (23)
Substitute equations (21) and (22) into equation (9) to get,

M(q)$+ (3M(q) + S(q,4))s + M(q)ir
+(3M(q) + S(g,d))dr + g(q)
=74+ DT(g)\, (24)

The last three terms on the left hand side of equation (24) can
be expressed as

M(q)ir + (5M(q) + S(a,9))dr + 9(q)
= Wa 0a(q, 4, 4r, Gr) + Ea. (25)
where W, is a matrix of neural network weights, 04(q, ¢, ¢r, Gr) is
a vector of activation functions and Ejy is a vector of approximation

errors that is bounded and small. Then the dynamics equation (24)
can be expressed as:

M(q)é+ (3M(q) + S(q,d))s
+Wd ad(qv (17 qT7 qT) + Ed
=74 DT (g)), (26)

The vision and force tracking controller is proposed as:

r=—JT (¢, Wa)KpAz — Kus
+Wd ed(qa q.7 qTa qT) - jgl(qa Wm)d(r)/\ - erf(q))\
+J5(q, W) RA(T) (kAN + yAF) — Kod(r)A — KX, (27)
where A& = & — @4, & and « are positive constants, K, and K,

are positive diagonal gain matrices, Ky, is a matrix designed to
compensate the estimation error of J.% (g, W),

kmij = _I;:mijsgn(SidAj('f’)) (28)

and kp,;; is the element in the it" row and jth column of Km1 Ky
is a vector to compensate the estimation error of J,, (q)(d(r)—d(r))
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and Ky; = ky;sgn(s;). The estimated parameters Wa, Wy, and
W, are updated by,

Wdi = proj(Qai), (29)
Wiy = proj (Qomis), (30)
Wiy = prof(Qess), 31)
Wy, = proj(@y.), (32)
where
Qui = ki Wi — Laisi0a(d, 4, dr dr),

Qm” - kQW'rz;zg + Lng 81 ( ))\0 (q)
Qzij = k‘gWxY;j + Lm]-Axikpiqux(q)
in = k4VAVj’?’; + Lfisiﬁf(q), (33)

where Wdz, Wm”, ij and sz are the z row vectors of Wd,
Wm], W, and Wf, si, di(r), ¢; are the i*" elements of s, d(r)
and ¢, Az; is the 7' element of Az, and ky; is the j*" element
of the diagonal matrix Kp, Lgi = lgil, Limij = lmijl, Lei; =
leijI,Ly; = lg;] are positive gain matrices, k1, k2, k3 and kqy
are positive constants and the function proj(€24) is a projection
algorithm defined as [32]

Qa; if Wdi > Wy,
Qai if Wa =W, and Qg >0
. 0 if Wa=W, and Qg4 <0
Qi) = ~ —di 34
prog(§a;) 0 if Wa=Wai and Qu; >0 9
Qdi ’Lf Wdz - Wdz and Qdi S 0
Qdi ’Lf Wdz < Wdz

where W ;. and W; are the lower and upper bounds of Wy;. The
projection algorithms proj(€.,) and proj(€4) can be similarly
defined as above. The functions proj(-) are defined to ensure that
JT(q, W) and Jy(q, Wi,) are bounded during adaption.

In the above controller, R is a rotation matrix designed [13] so
that

sEyRd(r) =0, (35)
where
son = {BATT Ky (i (g, Win) T¥ (¢, Wa)) ' AF
+s5 (kAN +yAF)}T
Sm = jm((b Wm){q —Jt (q, Wx)(xd — alAz)
_(In - J+ (Q7 Wx)J(Q7 W%))w}v (36)

Substituting equation (27) into equation (26), the closed-loop
equation is obtained as

M(q)$ + (3M(q) + S(g,d)s + I (¢, Wa) KpAz + Ko
+AW4 04(q, 4, dr, Gr) + Ea
= AW (q)d(F)A + Emd(r)A + AW;0;(q)A + EfA

+J5 (g, W) RA(T) (KAX + YAF) — Kpd(r)A — K4 X, (37)

where AWy = Wy — Wa, AWy, = Wy, — Wi and AW, =
Wy — Wy

To carry out the stability analysis, the Lyapunov-like function
candidate V' is defined as:

V=1"M(q)s + 1A2" KAz + 187 AWy L AW,
35X ST AWenij Ly AW s 4SS5 AW L AW,

mij
+ 30 ST AW L s AW + 5 BRAF?, (38)

2351



where AW,i; = Waij — Waij. Differentiating V' with respect of

time yields,
V=sTM(q)s+ %STM(Q)S
+AzT KpAd — ST AWEL W g

SR AWE LTI g — S S AW Lo W,
fEﬁlEgzlAijL;inj + BrAFAN. (39)
From equations (21) and (16), note that
7jm(q7 Wm)j+ (q7 WI)(md - QAQJ)
— I (@, Win)(In — J ™ (q, W) J (¢, Wa) )¢ — BRd(r)AF
— BRA(r)AF. (40)

Substitute equations(37), (18), (16) and (40) into equation (39)
and using equations (35) and (18), one has

V = —aAzTK Az — sTK,s — AeT K, A&
+AzTKyAi — ByAF? — sTEy — 5T (K — Ep)d(r)A
—s"(Kf — Ef)A — s" AWa 0a(q, 4, dr, r)
+5T AW 0, (q)d(r )>\ + sTAW 05 (q)A

=T
-7 E?:lﬁwzszz” ng - Ezn:lAWdiL;ilwdi

T
—Sr ST AW L) Wm” — S AW L W g,

mij

(41)

where RTR = 1 and d”(r)d(r) = 1. From equations (14) and
(15), since & = & + AW05(q)d + E=q, one has

Ai = Az + AWo0:(q)§ + Exq. (42)

Substituting equations (31) and (42) into equation (41), using
(29)-(34), gives

V< —anTKpr —sTKys+ AJCTKpEx(} — BYAF?
—5TEy— sT(Kpm — Em)d(r)
ks S5 1AWWLWWZJ kS AWai Ly W
— ko NP S AWonis Ly L Wikss — kaXf AW L W 43)

mij

Let ¥ = min{71, J2, ¥3, k1, k2, k3, ka}, it can be shown that

V<3V +p, (44)
details of the proof from inequalities (43) to (44) can be found in
appendix. The above inequality implies

K —ct
:}e .
v

Then it can be concluded that the system is uniformly ultimate
bounded.

Theorem The adaptive Jacobian control law (27) and the update
laws (29), (31), (30) and (32) for the robot system (9) result in
the uniformly ultimate boundedness of vision and force tracking
errors when K,, K,, a and vy are chosen to satisfy condition (60).
Moreover, the errors can be made arbitrarily small by adjusting the
control gains.

Proof: From inequality (45), it can be concluded that s, Az, AWy,
AW, AW,, AWy and AF are uniformly ultimate bounded.
This implies that Wy, Wy,, W,, W; and x are bounded, and
Sy = j(q, VAVI)S is also bounded. Next ., 2 are bounded as seen
from equations (16) and (18). From equation (20) one can conclude
that ¢- is bounded when J(g, W) is nonsingular. Therefore ¢ is
bounded since s is bounded. The boundedness of ¢ means that z,

V< % +{V(0) - (45)

7 are bounded. Hence Az is bounded and cZ(r, 7) is also bounded
because r, 7 are bounded.
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Then from equations (37) and (25), one has

M(q)i+ (3M(q) + S(g,d))dr + 9(q)
—I—jT(q7 Wx)K Az + K,s

= AWinBm (Q)d(r)A + Emd(r)X + AW 07 ()X + Ef A
+J2 (g, Wi ) RA(F) (kAN +YAF) — Kmd(r)X — KfX. (46)
Since D(q)§ = —D(q)q , one has
—D(q)¢+ D(q )M’l(q)h(t)
= D()M (@{(AWinbin(q) + Em — Km)d(r) AN
+(AW04(q) + Ef — )A/\Jrf-cJT(q, ) RA(r) AN} (47)
where r1(t) = (5M(q) + 5(¢,4))dr +9(q) + I (¢, Wa) Kp Az +

Kys— (AWmHm( )+ Em
Kp)Aa =7 (q, Win) Rd(r) A
The above equation can be ertten as:

K )Ci(?”))\d — (AWf@f( )+Ef —

71(t) = k(t)AX (48)
where )
7(t) = —D(q)d + D(q)M " (q)r+(t) 49)
and
k(t) = D(q)M ™ () {AWnbm(q)d(r) + Emd(r)
+AW05(q) + Ef — Kmd(r) — K§
+1JE5 (g, Won)Rd(r)} (50)

are bounded scalars. Hence the force tracking error A\ is also
bounded. ANNA

Remark. Overfitting is a common problem in neural network
design. However, in these techniques (as in [28]) overfitting is
not a problem since the algorithms are designed to achieve task
convergence rather than parameter convergence

IV. SIMULATION RESULTS

In this section, simulation results are presented to illustrate
the performance of the proposed controller. Consider a two-link
manipulator whose end-effector is required to move on a constraint
surface as shown in figure 1. A fixed camera is placed distance
away from the robot.

=

e

Fig. 1. A two-link robot in contact with a constraint surface
In this simulation, uncertain constraint surface and Jacobian
matrix are considered. The constraint surface in Cartesian space
is described by
U(x) = sin(ax1 +b) —z2 = 0, (51)

Note that in this constraint function, the parameters in ¥(x) can
not be linearly separated.
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An image path in image space is obtained from the camera, The
initial position of the end effector on the path is set at (520, 199).
zq(t) is set as xq(t) = 520 + 5¢ pixels and yq(t) is obtained
from the image path. The desired contact force is set as 20+5sin(2t)
Newton. In this simulation, the control gains are setas o« = 0.6, 3 =
0.01,y =15,k = 0.5, K = 3.8 x 107*I, K, = 2001,.

In this simulation, Gaussian RBF neural networks with input
q were used. The centers were chosen so that they were evenly
distributed to span the input space of the network. The distance of
neural networks was fixed at 1.1 and the number of neurons was
set as 40. The gains for the networks were chosen as k1 = k2 =
ks =0.001, Ly = L, = L, = 0.01, k,,, = 0.001.

The simulation results are shown in figures 2, 3 and 4. The results
show the effectiveness of the proposed controller in dealing with
uncertain structure of constraint surface and Jacobian matrices.

3
T
I

Vision tracking error in X(pixel)

_ I I I I | I
0 2 4 8 8 10 12 14
Time(sec)

Fig. 2. Image tracking error in X

Vision tracking error in Y(pixel
°

- i i i i i i
0 2 4 6 8 10 12 14
Time(sec)

Fig. 3. Image tracking error in Y

Force tracking error(N)

P i i i i i i
0 2 4 6 8 10 12 14
Time(sec)

Fig. 4. Force tracking error

V. CONCLUSION

In this paper, the stability problem of visually-servoed motion
and force tracking control system with uncertain kinematics, dy-
namics and constraint surface has been studied. A neural network
Jacobian controller has also been proposed to deal with uncertain
structure of the Jacobian matrices and constraint surface. A new
Lyapunov-like function has also been presented for the stability
analysis of the control systems. It has been shown that that
uniformly ultimate boundedness can be guaranteed in the presence
of the above-mentioned uncertainties. Simulation results have been
presented to illustrate the performance of the proposed control law.

APPENDIX

The appendix presents the detailed derivation from inequality
(43) to inequality (44):
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From equations (20) and (21), one has
(j =s+ q.r
= s+ JV(q, Wa)(dq — aAx)
+/8j+ (q7 WI)(jm(qa Wm)j+ (q7 WI))ilRJ(T.)AF

+(In — JH (g, Wa)J (g, Wa))eb. (52)

Substituting equation (52) into equation (43), one has

1% < —anTKpAJC —sTKys — ﬁfyAF2 —sTEy,
—8T (K — Em)d(r)A — ks X7 57 AWai; L L WS
k1S AWas Ly Wil — koS0 Sy AW Lyt Wik
+A2TKpEys + AxT K, By J (q, Wa)ida
—aAxT KB, J (q, Wa) Az
+B8A2" Ky Eo ™ (g, Wa) (Jm (¢, Win) J T (q, Wa)) "' Rd(r) AF
+ALT Ky B J T (q, We) (I — T (q, Wa) J (g, Wa))¥b. (53)

Next, note that

s"Ea < 5(|IslI” + 1Eal®)

AxTK,Eys < 22 (|| A + ||s?)
AzT Ky By J T (g, Wa)ia < 22282 (|| Az + ||2a]?)
aAJcTKpExj+(q, Wy)Ax < abpbesbr || Az||?
BALT Ky ErJ b (4, Wa) (Jm (g, Win) JH (g, We)) " Rd(r)AF
< Bobeshi®2 (| Ag® + AF?)
AWTKpEijr((L Wx)(ln - j+((I7 Ww)j(% Wx))w

bpbezrbib
< 28 (| Az|? + [|9]1?). (54)

where beg, by, b1, b2, by are upper bounds of E;, Ky, { (g Wm),
(Jm(q7 Wm)J (q7 WT)) ! and [ - J (Q7 WQC)J(qv WT) In ad-
dition,

ki AWaiLg Wi > gi=(1AWa||* = [Wail|)

= zzd
k2Aszng1]szg - Qlkz (||AI/I/f1]H2 - ||Wf1]H )
ks AW,y LW > TS—(HAWWHQ — [Wais|*). (55)
Using inequalities (54) and (55), then V becomes
. - bewbp+1
V < —(kpmin — BIIAZ] — (kumin — 2240 5]
=5 (Km — Bm)d(r)A — B(y — 225222 ) A2 4
— o E"lnawdzn? N T AW |
— 2T TN (56)
where
B: beabp 4 bpbeabr b, bedn Jrab bowbi + eLble + bpbe:;ble
by b”b b, bub b n
p= EHE [[# + 22255203 + 223 g’fji S [[Wail* +
2 S Wais* + 225 S S Wi, (57)

where bq and by, are upper bounds of 4 and 1. When |kni;| is
set sufficiently large so that |kmi;| > |Emij|, one has

g 7 bexbp+1

V < —(akpmin = D)|AZ]* — (kvmin — ==22==)[s]*
—B(y - —"P"”blb2>AF2+u S S | AW |2

2lk3 Em 1||AW9”J||2 mij En j:1||AWmij||27 (58)
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Let kpmin, kvmin, @, 3,7 be chosen sufficiently large so that

bewbpt1
Oék‘pmm —b>0
— bebeshiba (59)
There exist positive constants 41, %2, 73 such that
(Romin — “==222) [s]* > Z-5" M(q)s
(akpmin — b)[|Az|* > 2 Az" K,Ax
Bly — PR )AF? > B BRAF, (60)
Let ¥ = min{71, 2, ¥3, k1, k2, k3, ka }, one has
V<AV +p. (61)
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