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Abstract—We present the design of an optimal trajectory
controller for landing a helicopter on a moving target. The
trajectory planner is based on the Variational Hamiltonian and
Euler-Lagrange equations. We use a kinematic model of the
helicopter to derive an optimal controller that is able to track
an arbitrarily moving target and then land on it. Simulations
are shown to verify the performance of the optimal trajectory
controller. Data from real flight trials is presented to validate the
inputs obtained from the trajectory planner to track a desired
trajectory. We present initial trials in simulation for landing
the helicopter autonomously on a moving target.

I. INTRODUCTION

Unmanned aerial vehicles, particularly ones with verti-
cal takeoff and landing capabilities (VTOL), have received
considerable attention in the past decade [1–4]. Helicopters
are highly maneuverable vehicles that can perform agile
maneuvers, as well as hover in place. They can take-off and
land from moving platforms such as a shipdeck. Autonomous
helicopters equipped with the ability to land on moving
targets would be very useful for various tasks such as search
and rescue, law enforcement and military scenarios where
micro air vehicles (MAVs) may want to land on a convoy of
enemy trucks.
We have previously developed a system which was suc-

cessful in landing a helicopter autonomously on a stationary
target using vision and global positioning system [5]. In this
paper we present the design of a trajectory planning and
control algorithm for landing on a moving target.
We decompose the problem of landing on a moving target

into four stages. The first stage consists of detecting the
target. We use vision for this purpose. We assume the target
shape is known and no distractor targets are present. The
second stage is tracking the target. We formulate the tracking
problem as a Bayesian estimation problem and (under linear
system and Gaussian white noise assumptions) solve it using
a Kalman filter. The third stage is motion planning which
plans a desired landing trajectory for the helicopter to land
on the moving target. The fourth and last stage is control,
which regulates the location of the helicopter over time, in
accordance with the planner output.
The general problem of trajectory planning and control for

landing a helicopter on a moving target can be formulated
as: Given a mechanical system (state denoted by X) and
initial and final conditions X(t0) X(t f ) ∈ ℵ where ℵ is
the state space of the system, we have to find a control
signal u : t → u(t) such that at time t f the system reaches
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Fig. 1. The Autonomous Vehicle Aerial Tracking and Reconnaissance
(AVATAR) [6]

Fig. 2. Avionics Package for the helicopter

X(t f ). The generalized problem is to find control inputs
for a model helicopter for the entire range of a family of
trajectories. Although such problems have been considered
for general cases [7], to our knowledge, this is the first time
that such a formalization is being applied to a combination
of tracking a moving target and landing on it using an
unmanned helicopter.
The first two stages of the problem - target detection and

target tracking have received considerable attention in the
vision literature. For a general introduction to vision-based
control the reader is referred to [8,9] and for target tracking
to [10]. The reader is referred to [11, 12] for algorithms
which are used particularly for tracking and landing on a
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stationary target using visual inputs from a helicopter. We
have previously solved the problem of tracking a moving
target with known features using an helicopter in [5]. In the
present paper we focus on optimal trajectory planning and
control for landing a helicopter on a moving target.

II. TRAJECTORY CONTROL

We use a reduced model of the helicopter for generating
the optimal landing trajectory for landing on a moving
target. In the early 1990s, [13] and [14] researched methods
of optimal trajectory path planning for trajectory following
and terrain masking using a reduced order formulation for
a helicopter based on a constant velocity approach. We
formulate the problem based on the same approach but do
not make any assumptions about the velocity. Also while [15]
has used the same formulation for trajectory optimization and
rendezvous problems, we use the approach for landing on a
moving target.
The problem is formulated using the kinematic equations

of the helicopter and an optimal trajectory controller for
the helicopter is found using the Hamiltonian and Euler-
Lagrangian formulation. This method is capable of rapidly
generating optimal solutions and is based on the Pontryagin’s
minimum principle.
In general trajectory synthesis via optimal control theory

demands the solution of a two-point boundary value problem
which is often time-consuming. In the technique described
here the optimal route to any final condition can be generated
by selecting the initial value of the heading angle and inte-
grating the three first-order differential equations of motion
forward in time. The algorithm requires the existence of the
first and second order partial derivatives of the trajectory to
be followed. This is possible since we use a cubic spline
parameterization of the trajectory as discussed below.

A. Cubic Spline Trajectory

We approximate the desired trajectory to be followed by
the helicopter for tracking and landing by a cubic polynomial
where the altitude z varies with time t at a given position x
and y as follows:

z(t) = a0+a1 · t+a2 · t2+a3 · t3 (1)

The following boundary conditions should be satisfied

z(0) = zo z(t f ) = zc ż(0) = 0 ż(t f ) = 0

where t f is the final time. In the above equations z(t)
represents the height of the helicopter above the ground at
time t (parameterized as a cubic spline). z(0) represents the
height of the helicopter at time t = 0 1. z(t f ) represents the
final altitude given by zc since the target is at a height zc
above the ground. Also ˙z(0) and ˙z(t f ) represent the initial
and the final velocities in the z direction and they should be
zero. Finally when the helicopter has landed on the target the
velocity of the target and the helicopter should be the same.

1t = 0 is the time when the helicopter first acquired the target
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Fig. 3. Schematic for landing on a moving target

This is represented by ẋh = ˙xtarget . We restrict the class of
trajectories by imposing these additional set of constraints:

ż≤ ˙zmax ˙xh(0) = 0 ẋh(t f ) = ẋtarget(t f )
xh(t f ) = xtarget(t f )

The above constraints provide a lower bound on the time
of flight 2 i.e, the time of flight for the helicopter can never
be less than tmin where tmin is given by

tmin ≥ −4a2+
√
4a22−12a3a1
6a3

(2)

Vmax ≤ x
tmin

(3)

We assume that the helicopter has to intercept the target
and land on it at a distance of X meters [See Figure 3].
Initially the helicopter is at a height of zh from the ground. It
has to land on a target at a distance of x meters and at a height
of zc from the ground. Since the maximum velocity of the
helicopter is given by żh and has to follow the cubic spline
trajectory given by equation 1, the minimum time needed
for the helicopter to land is given by equation 2. Hence the
maximum velocity of the target is bounded by Vmax given by
equation 3. This can be seen in figure 3.
Since the altitude is obtained from a cubic spline inter-

polation, the first and the second derivatives exist and are
continuous. For landing on a moving target the helicopter
altitude is required to follow the above profile with a speci-
fied altitude clearance of zc.

z= g(t) (4)

In Equation 4, z is the helicopter altitude.

2We only start landing trajectories after we have determined that ż over
the entire trajectory is less than ˙zmax
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B. Equations of Motion

A kinematic model of the helicopter will be employed for
finding the optimal controls for following the trajectory as
specified by the cubic spline formulation. To a degree results
from this analysis can be corrected (for using dynamics of
the helicopter) using singular perturbation theory [15]
The simplified equations of motion of the helicopter in

x,y,z dimensions are given by

ẋi = V cosψ (5)

ẏi = V sinψ (6)

where V is the vector summation of the velocities in x, y,
z directions and ψ is the heading of the helicopter. 3.
In the above equations the variables x and y represent

the position of the helicopter in the x− axis and y− axis
respectively. Also gx and gy represent the partial derivatives
of equation 4 with respect to x and y respectively. We assume
that the initial and the final positions of the helicopter are
specified to us.
The cost equation used for this problem is

J =
∫ t f

0
[(1−K)+Kg(t)]dt (7)

In the above equation the function g(t) is given as a function
of time and position. Also K can vary between 0 and 1 and
determines the relative importance of time with respect to
the glide slope in terms of optimization. When K = 0 the
equations are optimized with respect to time. When K = 1
the path is optimized with respect to the trajectory following
capability.

C. Optimal Control

For finding the optimal trajectory we use the Hamilto-
nian [16]. The Hamiltonian equation with respect to the
above cost function is given by

H = 1−K+Kg(t)+λxV cosψ +λyV sinψ (8)

The equations governing the moving target are given
by [17]

˙xtg = Vtg cosψtg (9)

˙ytg = Vtg sinψtg (10)

In all the above expressions it is assumed that the velocity
and heading are known at all times. The moving target
presents a new boundary condition given by

ψ(t f ) =
[
x(t)− xtg(t)
y(t)− ytg(t)

]
t=t f

(11)

For the above condition to be true the Hamiltonian equa-
tion should satisfy

3Roll and pitch are assumed to be negligible in this formulation

H(t f ) = −λ T [
∂ψ
∂ t

] =Vtg[λx cosψtg+λy sinψtg]t=t f (12)

The Euler-Lagrange equations for the optimal control
problem are given by

λ̇x = −∂H
∂x

(13)

λ̇y = −∂H
∂y

(14)

with the optimality condition given by

∂H
∂ψ

= 0 (15)

yielding the below equations

λx = λy
cosψ
sinψ

(16)

Since the initial and final conditions of all the states
are specified, the costates are free at the boundaries. The
differential equations 6 and 14 together with the optimality
condition given by Equation 15 constitute a two point non-
linear boundary value problem, which can be solved if the
initial conditions on the costates λx and λy are known.
The solution procedure is further simplified by the fact that

the variational Hamilton does not depend on time. Hence one
has

H(t) = 0 0≤ t ≤ t f (17)

Solving the above gives us the values of the costates as:

λx =
−(1−K+Kg(t))cosψ

V
(18)

λy =
−(1−K+Kg(t))sinψ

V
(19)

The condition that at time t = t f the helicopter should
land on a moving target can be expressed by substituting the
costates in Equation 12

H(t f ) = [
Vtg[1−K+Kg(t)]cos(ψ−ψtg)

V
]t=t f (20)

From Equations 15 and 19 one can find the optimal control
for heading to be

ψ̇ =
cosψ[Kġ+V 2]

[1−K+Kg(t)]sinψ
(21)

Now consider the second control variable, viz the heli-
copter speed. Since the second control variable V appears
linearly in the variational Hamiltonian and is bounded, the
optimal control is given by

V = Vmax, i f S< 0 (22)

V = Vmim, i f S> 0 (23)

V = Singular, i f S= 0 (24)
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(b) Control commands to the helicopter

Fig. 4. The helicopter trajectory and control commands while landing a target. The position and velocity of the target are known beforehand.

where S the switching function is given by

S =
∂H
∂V

(25)

After substitution and simplification we get

S =
−(1−K+Kg(t))

V
(26)

Since V is always positive the sign of the switch function
is determined by the term within the braces. This term is
always less than zero by definition (0≤ K ≤ 1, 0≤ g(t)).
This expression suggests that the maximal speed setting is
optimal throughout the trajectory.
Once the control variables V and ψ are found out, we can

track arbitrary trajectories for landing. Given the trajectory
of the target and the final time/position to land on the target
optimal trajectories can be found using Equations 21 and 24.

III. TRAJECTORY TRACKING

Simulation results are presented where the helicopter is
asked to track a target moving in a straight line trajectory
and also a spiral trajectory. The simulation results show that
the helicopter is able to follow the specified trajectories to
land on the target 4.
Figure 4(a) shows the trajectory of the helicopter in

x−y−z plane while following a target. The target is moving
with a constant change in heading (with a heading rate of
0.1 rad/sec) for 50 seconds. The optimal control commands
for the helicopter to follow the trajectory are shown in
Figure 4(b). The helicopter follows almost a constant velocity
of 1 meter/sec and a heading rate of 0.1 rad/sec to track the
target and land on it. The descent trajectory is the spiral
shown in Figure 4(a).

4In these simulations the position and velocity of the target are known
beforehand

In Figure 5(a) another target trajectory is shown and the
associated control commands to the helicopter are shown in
Figure 5(b). The maximum and the minimum velocities for
both the simulations were set at 0 m/sec and

√
2 meters/sec.

The plots show the components of the velocities in x and y
directions but the magnitude of the velocity

√
(v2x + v2y + v2z )

always remains the same 5.

IV. EXPERIMENTAL RESULTS

In order to validate our algorithm, we performed experi-
ments with the USC AVATAR shown in Figure 1
We performed initial trajectory control experiments where

the helicopter is asked to follow a particular trajectory with
a specified velocity. To test the trajectory controller we
assumed that the helicopter was tracking an imaginary target
and the helicopter had perfect knowledge of the target’s
position and velocity. Since we have previously performed
accurate target tracking [5] we believe that this assumption is
valid. Also the main theme of this paper is trajectory control
and hence we removed target tracking.
The helicopter was hovered manually at a height of 15 me-

ters above ground level. The helicopter was in autonomous
hover mode and then commanded to move 20 meters laterally
with a speed of 4 m/s. Results from this experiment are
shown in Figures 6(a) and 6(b).
In Figure 6(a) the helicopter starts from hover and is

asked to move laterally by a distance of 20 meters and then
hover again. The velocity increases to 5 m/s and then stays
constant till the helicopter reaches the position(20 meters
offset laterally from initial position) and then drops back to
0 meters/sec. This is consistent with equation 24 where the
velocity is predicted to go to a maximum value and then
drop to the minimum value. The position of the helicopter
during this time is shown in Figure 6(b)

5From equations 24 this is to be expected
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Fig. 5. The helicopter trajectory and control commands while landing a target. The position and velocity of the target are known beforehand.
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of interest. The velocity stays constant for the entire tracking period as
predicted in section II
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Fig. 6. Experimental results from trajectory tracking from the AVATAR helicopter.

A. Simulated Landing Experiments

To simulate actual landing of the helicopter on a moving
target, we performed simulations where the target position
and velocity were unknown. An estimator was used to
continuously estimate the position and velocity of the target.
Then using Equations 1 and 2 a cubic spline trajectory is
constructed. Once such a trajectory is formulated the optimal
heading and velocity controls for the helicopter to track that
trajectory given by Equations 21 and 24 are used to find
the heading and velocity controls for the helicopter. Those
controls are used for tracking the target and then landing on
it.
Figure 7(a) shows the simulated trajectory followed by the

helicopter while tracking the target. Note that in this plot the
target’s position is not always known to the helicopter as was
assumed in previous sections. A Kalman filter [18] is being

used to predict the trajectory of the target and the helicopter
is tracking that trajectory. The plot shows the trajectory of
the target (solid) and the trajectory of the helicopter (dashed).
As can be seen the helicopter is able to track the target quite
well. Figure 7(b) shows the height of the helicopter with
respect to time.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper describes the design of an algorithm for landing
on a moving target using an autonomous helicopter. We have
previously shown how to track a target from a helicopter.
This paper shows the trajectory planning and controller for
landing the helicopter on the target. We use a kinematic
model of the helicopter to design an optimal trajectory con-
troller for the helicopter based on the variational Hamiltonian
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Fig. 7. Simulated experimental results where the position of the target was estimated using a Kalman filter.

and Euler-Lagrange equations. The trajectory controller thus
designed is shown to track arbitrary trajectories for landing
the helicopter on a moving target. Simulation results are
presented that show that the helicopter is able to track a
straight line as well as a spiral trajectory of the helicopter.
Finally real-life results are presented that show the helicopter
following a pre-specified trajectory parameterized by position
and velocity inputs.

B. Future Work

We are in the process of integrating the trajectory planner
with our previous Kalman filter implementation to land the
helicopter on a moving target (for example on the back of a
moving truck). We would also like to incorporate dynamics
of the helicopter into our model. Although incorporating
dynamics into the model has the drawback that no closed
form solution for optimal trajectories exists, using numerical
approximations we would like to test the accuracy of the
simplified kinematic model that we have used.

ACKNOWLEDGEMENTS

This work was supported in part by the National Sci-
ence Foundation under grants CNS-0540420, CNS-0520305,
and CCF-0120778. We thank Alan Butler (our pilot) and
Jonathan Kelly for support with flight trials.

REFERENCES

[1] Office of the Under Secretary of Defense, “Unmanned aerial vehi-
cles annual report,” Defense Airborne Reconnaissance Office, Pen-
tagon,Washington DC, Tech. Rep., July 1998.

[2] O. Amidi, “An autonomous vision-guided helicopter,” Ph.D. disserta-
tion, Robotics Institute, Carnegie Mellon University, 1996.

[3] V. Gavrilets, I. Martinos, B. Mettler, and E. Feron, “Control logic for
automated aerobatic flight of miniature helicopter,” in AIAA Guidance,
Navigation and Control Conference, Monterey, CA, USA, Aug 2002.

[4] P. Talbot, B. Tingling, W. Decker, and R. Chen, “A mathemtical model
of a single main rotor helicopter for piloted simulation,” NASA TM
84281, Tech. Rep., 1982.

[5] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Visually-
guided landing of an unmanned aerial vehicle,” IEEE Transactions
on Robotics and Automation, vol. 19, no. 3, pp. 371–381, June 2003.

[6] University of Southern California Autonomous Flying Vehicle Home-
page, “http://www-robotics.usc.edu/˜avatar.”

[7] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Hemisphere,
1975.

[8] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual
servo control,” in IEEE Transaction on Robotics and Automation, vol.
12(5), October 1996, pp. 651–670.

[9] Y. Ma, J. Kosecka, and S. S. Sastry, “Vision guided navigation for
a nonholonomic mobile robot,” IEEE Transactions on Robotics and
Automation, vol. 15, no. 3, pp. 521–537, June 1999.

[10] Y. Bar-Shalom and W. D. Blair, Multitarget-Multisensor Tracking:
Applications and Advances. Artech House, 1992, vol. 3.

[11] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-based
autonomous landing of an unmanned aerial vehicle,” in IEEE Inter-
national Conference on Robotics and Automation, Washington D.C.,
May 2002, pp. 2799–2804.

[12] O. Shakernia, Y. Ma, T. J. Koo, and S. S. Sastry, “Landing an
unmanned air vehicle:vision based motion estimation and non-linear
control,” in Asian Journal of Control, vol. 1, no. 3, September 1999,
pp. 128–145.

[13] P. K. Menon, E. Kim, and V. H. L. Cheng, “Optimal trajectory
synthesis for terrain-following flight,” Journal of Guidance Control
and Dynamics, vol. 14, no. 4, pp. 807–813, August 1991.

[14] E. Kim, “Optimal helicopter trajectory planning for terrain following
flight,” Ph.D. dissertation, Georgia Institute of Technology, 1990.

[15] S. Twigg, A. J. Calise, and E. N. Johnson, “On-line trajectory opti-
mization for autonomous air vehicles,” in AIAA Guidance Navigation
and Control Conference, no. AIAA-2003-5522, Austin, TX, August
2003.

[16] T. Kailath, Linear Systems. Prentice-Hall Inc, 1980.
[17] R. Issacs, Differential Games. John Wiley and Sons, 1965.
[18] R. E. Kalman, “A new approach to linear filtering and prediction

problems,” Trans ASME, vol. 82, no. D, pp. 35–45, March 1960.
[19] R. Bellman, Dynamic Programming. Princeton University, 1957.
[20] P. K. A. Menon, A. J. Calise, and S. K. M. Leung, “Guidance

law for spacecraft pursuit-evasion and rendezvous,” AIAA Guidance
Navigation and Control, 1988.

[21] G. K. F. Lee, “Estimation of the time-to-go paramter for air-to-air
missiles,” Journal of Guidance Control and Dynamics, vol. 8, no. 2,
pp. 262–266, April 1985.

[22] N. Rajan, U. R. Prasad, and N. J. Rao, “Pursuit-evasion of two aircraft
in a horizontal plane,” Journal of Guidance Navigation and Control,
vol. 3, no. 3, pp. 261–267, May 1980.

ThA12.5

2035


