
 
 

 

  

Abstract—Great amounts of raw data acquired with the use 
of an innovative mechatronic platform during an extensive 
clinical trial in a neuro-rehabilitation setting needs an analysis 
and  interpretation. The platform records data from eight 6 
DOF force-torque sensors during an isometric functional 
assessment of post-stroke patients. The identification of pre-
processing parameters and onset detection methods, developed 
thanks to the close collaboration between biomedical engineers 
and clinicians, is presented in the paper. The present work 
presents also the implementation and testing of the software for 
the data pre-processing. 

I. INTRODUCTION 
HE approach for assessing the recovery state of stroke 
patients presented in this paper relies on repeated 
measurements of motor efforts during movement 

initiations for specific tasks. As the emphasis in stroke 
rehabilitation is on the improvement of functional 
performance, an ideal measuring tool must use Activities of 
Daily Living (ADL) tasks [1]-[4] as a principle for its 
quantitative measurements. 

The correctness of performing the tasks is in line with 
important functional milestones that stroke patients acquire 
during recovery. The basic assumption inspiring this 
research work, is that the initiation of a task has the same  
functional properties as performing the task [5]-[8]. 

The presented platform was designed in order to perform 
isometric measurements during ADL tasks; the motivation 
for the isometric approach is based on the 
neurophysiological assumptions that in the first days after 
stroke, the active range of motion is very limited and that  an 
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isometric analysis at the start of a functional directed 
movement can overcome this problem. The outcome of 
these measurements can contribute to verify the integrity of 
a post-stroke existing or altered “internal model” for a 
particular functional task.  

The importance of isometric measurements as an 
assessment in rehabilitation has been widely demonstrated 
for specific parts of the human body [9]. The measurements 
consist of time trajectories of isometric forces and torques 
obtained by a diagnostic device (ADD, Alladin Diagnostic 
Device) (Figure 1) equipped with eight dedicated 6 DOF 
sensors. 
 

.  
Figure 1. A view of the proposed mechatronic platform  (ALLADIN 
Diagnostic Device)  

The complete description of the ADD, the tasks to be 
performed and the measurement method are explained in 
detail in two public project deliverables [10], [11] and in 
previous papers [12]-[14].  

This paper deals with the interpretation of the data 
collected during the clinical trials. A number of research 
issues have been faced in collaboration with the clinicians. 
Among them: 

- detection of the onset movement time and the 
identification of a time window of interest; 

- data pre-processing with the aim of extracting 
useful information from the recorded force-torque 
signals; 

- data mining algorithms. 
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The paper addresses the first two phases while papers 
dedicated to the third one have been already presented [15].   

II. DEFINITIONS AND APPROACH 
As a convention, the eight force-torque sensors (JR3 Inc., 

Woodland, USA) have been numbered as described in Table 
I. 

 

Thumb Index Middle Arm Trunk Seat Foot Big Toe
0 1 2 3 4 5 6 7 

RS RS RS TS TS RS RS RS 
 

Table I. Correspondence among the force-torque sensors, the indices and 
the mounting side(RS=Robotic Side, TS=Tool Side) 

  

The data are acquired at a sampling rate of 100 Hz 
through two PCI acquisition boards, which means that three 
force and three torque values are captured for each sensor 
every 10 ms. 

 

Figure 2. The coordinate systems according to the installation manual for 
JR3 force-torque sensors 

 An important issue of a multi-sensor dynamometric 
platform like the ADD, is to define a coordinate system for 
each sensor. A general convention is crucial to make the 
user correctly understand the measured data. The orientation 
of the sensor coordinate system depends on the mounting of 
the sensor. The coordinate systems are shown in Figure 2.  

The sensor has two sides, henceforth named as “robot 
side” and “tool side”. The sensor measures positive force 
and torque when the tool side is fixed and the robot side is 
loaded and moved. 

 For structural reasons, the sensors were fixed to the frame 
either with the tool side (TS) or the robot side (RS), 
according to the Table I.  

Once the sensors mounting sides are defined, the 
interpretation of forces and torques measured by any of the 
sensors can be homogenously defined for the whole ADD.  

Other general definitions needed for extracting 
meaningful parameters from the measured signals are here 
presented. The block diagram for selection of the parameters 
that have to be extracted by a dedicated pre-processing 
software tool is illustrated in Figure 3, in terms of overall 
functional architecture. Data processing is based on the 
following basic assumptions: 

1. Parameters should be calculated for both forces and 
torques measurements of all four attempts (baseline 

and three repetitions of the specific task) for all the 
sensors and all the tasks in each session; 

 
 

Figure 3. Overall architecture of the APT - Alladin Pre-processing Tool 
 

2. The usefulness of torques in terms of added-value for 
an effective data mining should be evaluated.  

3. Stroke patients typically demonstrate reduced ability in 
controlling generated force-torque, both in intensity 
and in spatial direction, therefore force-torque vector 
direction and amplitude should reflect the presence of 
impairments and can be visualized by comparing 
deviations between current force-torque signals and 
previous force-torque trace. 

4. The amount of information is huge, which means that it 
should be processed by data mining algorithms. 
Relevant standard statistical parameters should be 
extracted from the distribution of deviation angles over 
time. 

5. Stroke patients demonstrate abnormal time activation 
patterns due to limitation in forward model generation, 
motion planning and supervision, sensory-motor 
control. The sequence of activation of the different 
sensors and the relative time delays during the 
execution of the same task should be of clinical interest 
for estimating ‘distance to normality’.   

III. ONSET DETECTION AND PRE-PROCESSING PARAMETERS 

A. Activation time of the sensors (onset detection)  
There is latency between the start of the voluntary 

muscular contraction of different body segments of the 
subject and the start time of the force-torque recording. The 
determination of the movement onset time in the recorded 
signals represents a fundamental aspect of the pre-
processing analysis.  

Starting from the in-depth review of the state-of-the-art 
techniques and after an internal debate between engineers 
and clinical experts, candidate methodologies for automatic 
onset time estimation were identified by: 

 

1. the point where the force-torque signal reaches 2% of 
its peak value; 

2. using a 2nd order derivative of the force-torque signal 
(with low-pass filtering at 3 Hz or at 5 Hz); 

3. using the Spectral Flatness Measure (SFM) of the 
force-torque signal, based on a maximal information 
redundancy criterion; 
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4. using a Probability Density Function (PDF) estimate of 
the force-torque signal through a kernel smoothing 
based method (ks-density). 

 

- The 2% rule. Former neuro-rehabilitation research 
inspired the proposed technique [16]. The input to the 
threshold-based algorithm consists of the three components 
of the force Fx, Fy and Fz (or torque) signals.  

It computes the 2% of the peak value on the signal and 
finds the minimum time corresponding to that value for each 
component. This value is taken as onset time.  

- The second derivative method. A previous study on the 
gait analysis inspired the present technique [17]. Three 
versions of the present algorithm (b, c, d) have been 
developed. The description of the single steps follows: a. it 
finds the threshold point on the 1st derivative of the input 
signal at the 15% of its maximum. b. it searches the nearest 
maximum peak of the second derivative of the 3 Hz filtered 
signal (2nd derivative-filtered 3 Hz). c. it searches the 
nearest maximum peak of the second derivative of the 5 Hz 
filtered signal (2nd derivative-filtered 5 Hz). d. it searches 
backward the zero crossing in the first derivative line (2nd 
derivative-zero crossing). This is similar to the 2% rule, 
except that it scans backward from a higher speed, so initial 
small velocity peaks are neglected.  

- The SFM method. The SFM method is thoroughly 
described in [18].  

- The kernel smoothing based method (ks-density). The 
ks-density function computes a PDF estimate of the input 
vector. Typically stationary values (e.g. flat regions) of 
force-torque signal correspond to maxima of the PDF while 
values where the slope of the signal is high generally 
correspond to minima of the PDF.  

The algorithm locates the minimum of the local minima 
(Minimum Density Point, MDP) in the ks-density function 
[19]. A first version of the PDF estimation algorithm outputs 
the MDP as the onset time. In a second version, the 
intersection of the line passing through the MDP with a 
slope equal to the mean value of the first derivatives of an 
arbitrary interval around the MDP is computed.  

Table II presents the results of the comparative analysis 
among the performances of the different techniques with 
respect to the reference performance of three clinical 
experts. 

 

Onset technique 
Mean 
value  

(s) 

Standard 
deviation 

(s) 

Variance 
(s) 

Median 
(s) POC 

2% rule 0.5080 0.8524 0.7266 0.3887 0.57 

SFM 0.0968 0.7870 0.6194 0.0990 0.69 

ks-density - 0.0252 0.7959 0.6335 - 0.1766 0.71 

2nd derivative  
(zero crossing) 0.3361 0.6186 0.3827 0.0992 0.78 

2nd derivative 
(filtered 3 Hz) 0.2136 0.6223 0.3873 - 0.0188 0.89 

2nd derivative 
(filtered 5 Hz) 0.2044 0.6241 0.3894 - 0.0276 0.89 
 

Table II. Results of the comparative analysis on the first reference dataset 

First, the Mean Reference Vector (MRV) was derived by 
computing the mean of onset values provided by the experts. 
Then the Mean value, Standard Deviation, Variance and 
Median of the error vector related to each of the techniques 
were calculated (columns 2-5).  

Finally, also a non-parametric statistical feature, defined 
as the Probability Of Correctness (POC), was computed. 
POC is calculated as the ratio Nc/N, where N is the total 
number of samples and Nc is the number of samples, which 
fall between the 5th-percentile and the 95th-percentile of the 
MRV. 

The best technique for onset time estimation was selected 
by comparing the results obtained from the onset detection 
algorithms with the results given by the visual inspection of 
clinical experts (performed via a modified version of the 
Visualization Tool described in Section IV D). The 
comparison was performed on a reference data set by 
selecting 96 sample measurements. It was important that the 
chosen solution could guarantee a minimum loss of useful 
information needed as entry for the data mining module. 

The analysis on the dataset has enlightened the following 
results:  

i) all the four proposed onset detection techniques work 
properly for detecting the onset in terms of Signal to Noise 
Ratio;  

ii) the proposed techniques can be used to remove those 
parts of the signal which are useless; 

iii) the first phase of the data mining stage should be 
dedicated to the identification and recognition of typical 
pattern, which then could allow a narrower time windowing.  

A second and larger reference dataset was identified, 
prepared and delivered to the clinical experts in order to 
perform a second onset estimation. The additional 
comparative analysis between the automatic techniques and 
an extended set of manually detected onset times 
demonstrated that the results were not significantly different 
from those previously obtained. 

B. Time window of interest 
As the length of the recorded force-torque signal 

increases, also the computational burden increases. In order 
to keep it as low as possible, a novel approach for the 
development of pre-processing techniques was proposed: the 
basic idea is that only the portion of signal with sound 
content will be used for further processing, instead of the 
whole raw signal. 

The selection of a suitable time window must handle the 
trade-off between keeping any useful information and 
reducing computational burden.  

The measurement recording time during different ADL 
tasks ranges from a minimum of 2.4 s to a maximum of 5.4 
s, depending on the specific ADL task (Table III). 

From a clinical point of view, the data of interest to be 
extracted from the ADD measurements are conveyed by the 
very initial part of each recording, before the patient starts to 
adapt to the isometric constraint.  

Therefore, in order to extract meaningful parameters, the 
complete force and torque signals at a given sensor were 
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considered only within a finite-length analysis frame. Time 
window starts from the estimate of the onset time and lasts a 
few hundreds of milliseconds, corresponding to a finite 
number N of samples. 

 
Task Baseline (0) Video (1) 1st rep (2) 2nd rep (3) 3rd rep (4)
Glass 3.0 5.4 5.4 5.4 5.4 
Key 3.0 3.7 3.7 3.7 3.7 

Spoon 3.0 3.4 3.4 3.4 3.4 
Bag 3.0 2.4 2.4 2.4 2.4 

Reaching 3.0 4.0 4.0 4.0 4.0 
Moving 3.0 6.0 6.0 6.0 6.0 

 
Table III. Duration times (s) of the different recordings during a typical 
ADD session 

 

At the moment there is no definite frame length and the 
duration of the time window can be easily adapted in order 
to cope with possible uncertainties in the onset time 
estimation as illustrated in the following sub-section.  

After a time window was identified and applied to the 
original signals of the input data set, a set of parameters was 
extracted from these data. 

The choice of these parameters is the result of an internal 
debate between clinical partners, bioengineers and data 
mining experts. The ultimate aim was to identify parameters 
with a clinical soundness and appropriate to be processed by 
the data mining algorithms in order to estimate ‘distance 
from normality’ of the different patients along rehabilitation 
period. 

C. Parameters definitions 
A recording was defined as the set of force and torque 

measurements at a given measurement site, for a given 
patient, during a given session and for a given task. Hence, 
every recording is uniquely identified by the site identifier, 
the patient identifier, the session number, the task and 
attempt number.  

The recordings for all these combinations represent a 
large amount of raw data to be processed in order to capture 
relevant characteristic features with respect to stroke patient 
recovery.  

 

Figure 4. Example of deviation from the mean direction vector (red) for a 
sample measurement from a normal control 

The iterative identification process of suitable parameters 
was done in collaboration with the clinicians and yielded to 
the following four main categories: 

- Angular deviations from the mean direction. The 
underlying hypothesis relies on the consideration that 
trajectories in pathological subjects could show larger 
deviations from the mean direction than in normal controls. 
Figure 4 shows an example of such deviations from the 
mean trajectory in a normal control. 

- Angular deviations between successive effort samples. 
The smoothness of the effort can be evaluated by computing 
the angle between successive force and torque samples. 

- Cumulative sum of effort series. The integrals of the 
effort signals are expected to convey some information on 
the velocity of the imaginary movements and on the stroke 
patient ability to perform some movement velocity patterns 
thereof. 

- Cross-sensor time delay estimation. For each of the 
proposed ADL task, a correct synchronization among the 
different parts of the body is needed for an optimal 
performance. The synchronization among the forces and 
torques during the recording of the isometric task can be 
computed by means the theoretical statistical dependency, 
known as mutual information [20].  

IV.  IMPLEMENTATION AND TESTING OF DATA PRE-
PROCESSING SOFTWARE 

The data pre-processing software is composed by 
different modules (Figure 3), which have been implemented 
using the Matlab environment v6.5 (The Mathworks, Inc. 
Natick, USA) whose functional description follows. 

A. Alladin Pre-processing Tool 
The Alladin Pre-processing Tool (APT) is a software tool 

that automatically derives specific parameters from the ADD 
recordings; store the output data into a structure using a 
format for subsequent data mining analysis that has to lead 
to the extraction of clinical markers and milestones, relevant 
for functional assessment of patients.  

The APT also includes a Visualization Module which 
allows visual inspection of data during the pre-processing 
operations. 

B. Alladin Download Module 
The Alladin Download Module, that was developed in 

Visual Basic, provided a user-friendly access to the Alladin 
Global Database. The implementation of ADM is foreseen 
for future upgrade of the APT in view of its final 
integration. 

C. Alladin Filtering Module 
A two-channel parallel low-pass filtering, one featuring a 

cut-off frequency at 40 Hz and another with a cut-off 
frequency at 2 Hz was proposed and implemented in order 
to provide two separate data sets for subsequent processing. 
The two cut-off frequencies were selected taking into 
account that, on one hand, human muscles can generate 
mechanical signals up to a maximum frequency of 40 Hz 
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(muscle sound) [21], while, on the other hand, human 
voluntary movement typically generates signals within the 
frequency range 0-2 Hz [22].  

The 40 Hz-channel is the main channel used for feature 
extraction, while the 2 Hz-channel is used for visualization 
and onset time estimation operations. 
D. Alladin Visualization Module 

The ALLADIN Visualization Module (AVM) was 
developed in order to visualize the ALLADIN 
measurements (Figure 5). Through the controls positioned 
on the main window, the patient ID, session, task and 
measurement number can be selected. Data filtering, 
calculations (minimum, maximum, mean) and coordinate 
transformations can be applied to the measurements, and 
plotted for inspection. 

Also a slightly different version of AVM was 
implemented with the aim of simplifying the clinical 
experts’ task. The module allows manual selection of the 
onset time directly on the plot, by simply clicking on the 
window by using the PC mouse.  

 

 
Figure 5. Main AVM window 

E. Alladin Feature Extraction Module (AFEM) 
The Alladin Feature Extraction Module (AFEM) receives 

the filtered data from the 40 Hz-filtered channel of the AFM 
and generates the output data containing statistical and 
temporal features calculated for all the ADD measurements 
of the input data set.  

The AFEM computes the complete list of parameters 
based on the assumptions given in Section II and the 
definitions described in Section III C. The APT generates, 
through the AFEM module, an output data structure variable 
(F).  

The extracted parameters for every recording were stored 
in the above hierarchical structure of strings, arrays and cell 
arrays containing the identification information as well. 
Every stored parameter presented a description and a value.  

An example follows. 
 

pF = [MaxdF MeandF StddF SkewdF KurtdF colatdF azimdF]    
 

 = [0.077  0.012  0.021  1.578  4.287  2.799  0.139] 
 

pF is the vector containing the parameters calculated on 
the angular deviations force vector, where MaxdF is the 
maximum values, MeandF is the mean value, StddF is the 
standard deviation, SkewdF is the value for the skewness, 
KurtdF is the value for the kurtosis [23], colatdF and 
azimdF corresponds to the colatitude angle and azimuth 
angle, respectively [24]. All parameters are computed on the 
vector of angular deviations from the mean  force vector. 

F. AFEM testing 
Test signals were created by Matlab scripts: for each 

Cartesian reference axis (x, y, z), force and torque 
trigonometric signals having a length of of 400 ms were 
generated. The choice of such signals (sine and cosine with 
different amplitudes) and the relative time interval (6π) is 
adequate for reproducing a signal with 3 peaks, ideally 
corresponding to the 3 repetitions of the typical recording 
during a measurement session (Figure 6). 

 

  
(a) 

 
(b) 

Figure 6. Testing signals for the force (a) and the torque (b) components 
 

Each test signal was passed as input vector to the AFEM 
and the output vector was compared with the explicit 
calculation of the statistical parameters. As expected, a null 
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vector was been obtained as the difference between the 
previous two vectors.  

The test was performed for both force and torque signals. 
The results obtained from the tests performed on the AFEM 
module, after its validation, suggests that the AFEM module 
properly calculates all the parameters defined so far. 

V. CONCLUSIONS AND FUTURE WORKS 
This paper describes the technical issues on the use of a 

mechatronic platform for whole-body isometric force-torque 
measurements for functional assessment in neuro-
rehabilitation. In particular, thanks to the close collaboration 
between medical doctors (physiotherapists, neurologists, 
etc.) and biomedical engineers, after several clinical tests, a 
multidisciplinary approach could be proposed to simplify the 
problem of handling the great amount of acquired raw data. 
In the proposed approach the relevant part of the raw signal 
(i.e., the part in which the force-torque exerted by the patient 
is clearly visible) was selected through the use of a series of 
movement onset detection algorithms. Then a first set of 
parameters were extracted as possible feature candidates in a 
preprocessing stage.  

These pre-elaborated data input to data mining, will 
strongly decrease the computational workload. The thorough 
analysis performed during this work will be used to further 
investigate if specific body segments are involved during 
particular tasks and/or if the addition of one or more sensors 
to the platform could provide further useful dynamic 
information. All this information will lead to a possible re-
design of the platform, with the aim to improve the present 
version of the device for functional assessment and for basic 
research in the Neuroscience domain as well. 
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