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Abstract—The multi-robot task allocation (MRTA)
problem has become a key research topic in the field of
distributed multirobot coordination in recent years.
In this paper, two algorithms for the distributed
solution of the MRTA problem are presented. In our
market-based approach, robots consider their local
plans when bidding and multiple tasks can be allo-
cated to a single robot during the negotiation process.
The second algorithm described in the paper is based
on the negotiation of subset of tasks and can be
considered as a generalization of the first one, which
only negotiates single tasks. Both algorithms have
been tested in a multirobot simulator with multiple
missions consisting in visiting waypoints with promis-
ing results.

I. INTRODUCTION

An important issue in distributed multirobot coordi-
nation is the multi-robot task allocation (MRTA) problem
that has recently become a key research topic. It deals
with the way to distribute tasks among the robots and
requires to define some metrics to assess the relevance
of assigning given tasks to such or such robot. This
paper is focused on the distributed solution of the MRTA
problem, but centralized ([3], [4]) and hybrid ([5], [14])
approaches have been also addressed in the literature. On
the other hand, only independent loosely-coupled tasks
will be considered, i.e., tasks that only need one robot to
be executed (task allocation problems where tasks need
tight coordination of more than one robot can be found
in [9], [12] and [13]).
Several multirobot architectures considering the

MRTA problem in a distributed manner have been vali-
dated on either physical or simulated robots. ALLIANCE
[16], one of the earliest demonstrated approaches and
Broadcast of Local Eligibility (BLE) [21], a distributed
behavior-based architecture, are examples of systems
based on behaviors with high fault tolerance and adapt-
ability to noisy environments. On the other hand, in the
last years a very popular approach to the MRTA problem
considers the application of market-based negotiation
rules. This negotiation is usually implemented by using
some variant of the Contract Net Protocol (CNP) ([18],
[19]).

One of the first distributed market-based systems was
M+ [1], defined within a general architecture for the
cooperation among multiple robots [2]. In this system,
when a robot computes the cost of a task, it considers
the next one in its local plan in order to increase the
efficiency of the solution. In MURDOCH ([8], [10]), a
robot which is executing a task, does not take part
in the different negotiation processes. Therefore, the
mechanism of task allocation is based on a purely greedy
method that assigns each new task to the most suitable
available robot in the system. TraderBots [6] considers
dynamic environments [7] and total/partial failures of
the robots and communication links. Unlike the previous
mentioned works, robots have a local plan and more
than one task can be allocated to each robot during the
negotiation. In general, this approach leads to solutions
closer to the global optimum. In this work, as our goal
is to find solutions close to the optimum, robots consider
their local plans when bidding and multiple tasks can be
allocated to a single robot during the negotiation process.
Therefore, the work in this paper can be posed as an
instance of the ST-SR-TA case [11]: single-task robots,
single-robot tasks and time-extended assignment.
The paper is organized as follows. The next section is

devoted to describe a first algorithm called SIT-MASR
which is based on the ideas presented in [6]. Then, a sim-
ple mission is presented to point out some limitations of
this algorithm. In order to reduce those limitations, a new
algorithm called SET-MASR which considers subsets of
tasks in the negotiation process was developed. This
algorithm is presented in Section III. Then, synchroniza-
tion issues related with both algorithms are described
in Section IV. Finally, their performance is compared in
Section V with missions consisting in visiting waypoints.
Conclusions and future work are discussed in Section VI.

II. DYNAMIC SINGLE TASK NEGOTIATIONS
WITH MULTIPLE ALLOCATIONS TO A

SINGLE ROBOT (SIT-MASR)
A. Description
As our goal was to find solutions close to the global

optimum (minimize the sum of all the individual costs
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assuming independent tasks), the approach presented in
[5] was taken as a starting point as it has been mentioned
above. In the same manner, robots with a local plan
and multiple tasks allocated to a single robot during the
negotiation were considered. Following those ideas, a first
algorithm called SIT-MASR (SIngle Tasks negotiation
with Multiple Allocations to a Single Robot) was devel-
oped. Regarding the implementation of this algorithm,
several differences with the work in [5] can be pointed
out: revenues are not used, a different synchronization
method is applied (see Section IV) and there is an agent
acting as an entry point for the tasks.
In the negotiation process, each robot bids for a task

with the cost of inserting this task in its local plan
(marginal cost). Therefore, this marginal cost associated
with a task Ti for the robot j is the difference between
the local plan including the new task and the current
local plan:

MCij = C(Pj , Ti)− C(Pj), (1)

where C(Pj) is the total cost of the current local plan
for robot j and C(Pj , Ti) is the cost of a new local
plan including task Ti. Each robot should compute the
optimal insertion point of a new task in its current plan.
Taking into account the local plan of each robot in the
negotiation leads to better solutions, as it will be shown
in Section V.
The SIT-MASR algorithm is based on two different

roles played dynamically by the robots: auctioneer and
bidders. In each auction there is only one auctioneer
which is the robot that has the token (see Section IV).
The auction is opened for a period of time and all the
bids received during it are considered. When the auction
is finished and the task is allocated, the auctioneer
considers to pass the token to another robot. If so, the
auctioneer changes its role to a bidder role and the robot
with the token becomes the new auctioneer. These basic
steps of the algorithms executed by the auctioneer and
the bidders are given in Algorithms 1 and 2. In Algorithm
1, the best bid collected by the auctioneer is increased
by a given percentage (usually 1%) to avoid transactions
that will not significantly improve the solution.

Algorithm 1 SIT-MASR auctioneer algorithm
if there is any task to announce then
announce task
while timer is running do
receive bids

end while
calculate best bid
if best bid is bigger than the auctioneer bid then
send task to best bidder

end if
delete task from announcement list

end if

Algorithm 2 SIT-MASR bidder algorithm
a new message is received
if new message is a task announcement then
calculate the optimal position of the task in the local
plan
calculate bid (marginal cost)
send bid to the auctioneer

else if new message is a task award then
insert task in the local plan in the position calculated
before
introduce task in announcement list

end if

The main difference with the basic CNP protocol is
that the bid of each robot depends on its current plan
and every time the local plan changes, the negotiation
continues until no bids improve the current global allo-
cation. When the initial negotiation is over, the mission
execution starts, but new tasks can be generated at any
moment. Therefore, the negotiation is dynamic in the
sense that new tasks are handled also during the mission
execution. All the robots take part in the negotiation of
those new tasks with the only restriction that the current
tasks in execution are not re-negotiated.
The SIT-MASR algorithm has been tested in mul-

tirobot missions consisting in visiting waypoints and
returning to their home positions (see Section V. In this
case, the local plan cost for a robot j visiting a set of
waypoints Pi with i = 1, 2, . . . ,M can be expressed as:

C(Pj) = D(Rj , P1)+
M∑

i=2

D(Pi−1, Pi)+D(PM ,Hj), (2)

where Rj and Hj are the current and initial positions
of the j-th robot and D(X,Y ) is the euclidean distance
between points X and Y . In this particular missions,
each robot should build its own local plan visiting the
waypoints in an order that minimizes the total distance
travelled. This problem is equivalent to the TSP problem
which is a well known NP-hard problem. In our imple-
mentation, a greedy approach has been applied to solve
it, inserting the new task in the position which minimizes
its insertion cost. In Section V, several simulation results
are compared with the global optimal solution.

III. DYNAMIC TASK SUBSETS NEGOTIATION
WITH MULTIPLE ALLOCATIONS TO A

SINGLE ROBOT (SET-MASR)
A. Motivation
Although the SIT-MASR algorithm leads to good

solutions in general, simple missions can be found where
it does not find the global optimum. For example, let us
consider the mission in Figure 1, consisting in visiting
waypoints wp1 and wp2. If task wp2 is announced before
task wp1, the SIT-MASR algorithm will not find the
global optimal solution (represented in Figure 1,a):
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Fig. 1. A particular mission that shows some limitations of the
SIT-MASR algorithm.

1) Task wp2 will be allocated to robot 2 (Figure 1,b)
which is the nearest one.

2) As the marginal cost of task wp1 is lower for robot
2 than for robot 1, this task is also allocated to
robot 2 (Figure 1,c).

3) Robot 2 announces both tasks, but it has the
lower marginal costs for them and keep both tasks
(Figure 1,d).

4) After a given timeout expires, robot 2 starts exe-
cuting their tasks.

In this particular mission, the optimal solution would
have been found if robot 2 had announced a subset of
tasks composed by wp1 and wp2. This idea has been
used to develop the algorithm described in the next
subsection.

B. Description
In order to find better solutions for the mission ex-

plained above, the negotiation of subset of tasks was
considered in the design of a new algorithm called SET-
MASR (dynamic task subSETs negotiation with Multiple
Allocations to a Single Robot). The basic idea behind
this algorithm is that negotiating subsets of tasks pro-
vides more information to the robots than negotiating
tasks one by one. It should be also noted that the SET-
MASR can be considered as a generalization of the SIT-
MASR algorithm, which tries to improve the quality of
the solutions.
Given a subset of tasks Γi = {T1, T2, . . . , TN} with

cardinality | Γi |= N , the marginal cost associated with
this subset for the robot j is given by:

MCij = C(Pj , Γi)− C(Pj), (3)

where C(Pj) is the total cost of the current local plan
for robot j and C(Pj , Γi) is the cost of a new local plan
including the subset of tasks Γi. In our implementation, a
greedy approach has been applied to find where to insert
the tasks of the subset in the current local plan in order
to minimize the insertion cost.
On the other hand, a policy for building the subsets of

tasks to be auctioned during the negotiation process is
required. As a brute force algorithm to try all the possible
combinations is not feasible, in our algorithm each robot
computes the subset of tasks with the highest cost in its
local plan. The computational cost to find this subset is
not significant for the number of tasks usually managed
by a single robot (less than 50).
As in the SIT-MASR algorithm, there are two roles:

auctioneer and bidders. The basic steps of the algorithm
for the auctioneer is given in Algorithm 3 whereas Algo-
rithm 4 is used by the bidders. When the cardinality of
the subset of tasks to be announced is one, the algorithm
behaves exactly as the SIT-MASR. Once all the tasks
have been allocated and there are no changes in the local
plans of the robots during a given period, the subset
cardinality is increased by some robot. This robot will
start the next phase of auctions with subsets of two
tasks. Finally, the algorithm will stop when there is no
interchange of tasks during a given phase or when the
subset cardinality is greater than the number of tasks
to be announced in every robot. Once the algorithm has
finished, the robots will start executing their local plans.

Algorithm 3 SET-MASR auctioneer algorithm
if subset cardinality is ≤ dim of announcement list
then
calculate the subset of tasks to be announced
announce the subset of tasks
while timer is running do
receive bids

end while
calculate the best bid
if best bid is bigger than the auctioneer bid then
send subset of tasks to the winner of the auction

end if
delete subset of tasks from announcement list

end if

IV. SYNCHRONIZATION DURING THE
NEGOTIATION

The synchronization during the negotiation process
has a relevant impact on the solutions. For example,
in [6] it is shown that having only one auction process
running at a given time leads to better solutions. When
the auctions run in parallel, robots can be bidding with
invalid marginal costs if tasks in their local plans are not
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Algorithm 4 SET-MASR bidder algorithm
new message received
if new message is task announcement then
set the cardinality of the subset equal to the number
of tasks announced;
calculate the optimal position of the subset of tasks
in the local plan
calculate bid (marginal cost)
send bid

else if new message is a task award then
insert subset of tasks in the local plan in the posi-
tions calculated before
introduce the subset of tasks in the announcement
list

end if

finally allocated to them. In our approach, a single token
with a modified round robin algorithm has been used to
guarantee only one auction running at a given time.
The token is created by the first robot which starts

an auction. Each robot with tasks to announce, requests
the token periodically. Once the current auction is over,
its owner passes the token to the robot with more tasks
to be announced. In order to implement properly this
basic idea, communication channel characteristics, such
as delays and errors in the messages, should be consid-
ered. For example, the robots assume that the last robot
which has announced a task is the owner of the token.
But due to communication delays, the owner can change
after some requests for the token have been sent to the
old owner. To solve this problem, this old owner answers
with a rejection message containing the identification of
the new owner.
On the other hand, robot failures are also considered.

For example, if the token is requested and no answer is
received in a given period of time, the token is assumed
lost (due to a robot communication system failure for
example) and a new token is generated.

V. SIMULATION RESULTS
Amulti-robot simulator has been programmed in C++

[20] using a three layer architecture [15] for each robot.
An important objective in the design of the simulator
was to have C++ code directly reusable in the real
robots. Therefore, each simulated robot runs the same
software which is on board the real robot and uses a layer
that emulates the hardware and its interfaces. It should
be also pointed out that the software allows simulating
heterogeneous robots (i.e. ground and aerial robots) in a
common virtual space.
On the other hand, inter-processes communication has

been implemented by using the BBCS (BlackBoard Com-
munication System) recently developed by the Technical
University of Berlin [17]. It is a robust communication
system implemented via a distributed shared memory,
the blackboard (BB), in which each network node has a

local copy of the BB portion it is accessing. This commu-
nication system allows to run a multi-robot simulation in
a single or multiple machines, and is used also to com-
municate the real robots. However, communication range
constraints have not been considered in the simulations.
Multirobot missions consisting in visiting waypoints

and returning to home positions have been used to test
the algorithms in the simulator. Hundreds of simulations
with different number of robots and tasks have been
performed to compare the algorithms presented in the
previous sections. Moreover, a third algorithm has been
implemented in order to evaluate the relevance of the
local plans in the quality of the solutions. This algorithm
will be called NoP (No Local Plan) and uses a basic CNP
protocol where robots only participates in the auction
when they are idle. Furthermore, a brute force algorithm
has been used to compute the global optimal solutions
when the sum of robots and tasks is below a certain value.
In particular, for each given number of robots and way-

points, one hundred missions have been run in a virtual
world of 1000x1000 meters using random positions for the
robots, with a size of 1x1 meter, and the waypoints. Each
mission has been simulated with the three algorithms
implemented and Table I shows the different solutions
compared with the global optimum. In each cell the first
number is the arithmetic mean of the global cost for the
100 random missions, the value between brackets is its
standard deviation (in meters) and the third number is
the difference in percentage with the optimal solution.
The global cost is given by the sum of the individual
costs of the robots.
From the results, it should be noted that using a local

plan during the auction process improves the solutions
significantly. On the other hand, the algorithms pre-
sented in this paper achieve very good results, with a
maximum difference of 4.7% w.r.t. the optimal solution.
Moreover, the SET-MASR algorithm computes better
solutions in mean than the SIT-MASR, but the difference
is small. In fact, it has been found that the SET-MASR
algorithm improvement is very sensitive to the particular
initial positions of the robots and waypoints. Using
the mean global cost of one hundred random missions
“smooths” this improvement and the different is not so
significant. Also, it is important to point out that the
standard deviation values are high because of the random
nature of the missions (i.e., the global cost for those
random missions can have quite different values).
Tables II, III and IV show the results from testing the

algorithms with more waypoints for three, five and seven
robots. In those cases, it was not possible to compute the
optimal solution with our brute force algorithm due to
the NP-hard nature of the problem. Therefore, in these
tables the percentage value corresponds to the difference
with the solutions found with the SET-MASR algorithm.
The rest of values have the same meaning and units
explained for Table I.
With three and five robots the results are quite similar:
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Robots Tasks NoP SIT SET Optimum
3 3 2371, 22

(742, 4)
65, 18%

1453, 44
(369, 63)
1, 25%

1444, 9
(364, 23)
0, 66%

1435, 4
(362, 36)

3 5 4144, 7
(923, 42)
101, 23%

2097, 83
(414, 52)
1, 74%

2088, 1
(405, 38)
1, 27%

2061, 8
(396, 3)

3 7 5073, 2
(788, 75)
114, 73%

2473, 65
(385, 46)
4, 7%

2457, 5
(381, 27)
4, 01%

2362, 6
(335, 81)

3 9 6070, 8
(850, 46)
129, 13%

2816, 59
(398, 16)
6, 3%

2773, 3
(392, 7)
4, 6%

2649, 5
(332, 58)

5 3 1764, 36
(627, 87)
39, 49%

1274, 88
(365, 74)
0, 79%

1268, 21
(359, 53)
0, 27%

1264, 78
(356, 04)

5 5 3808, 55
(921, 45)
112, 37%

1842, 96
(363, 62)
2, 76%

1816, 77
(348, 94)
1, 3%

1793, 35
(337, 56)

5 7 5407, 59
(1238, 38)
150, 15%

2225, 67
(384, 74)
2, 96%

2209, 71
(381, 82)
2, 22%

2161, 68
(365, 82)

TABLE I
Solutions computed with three different distributed task
allocation algorithms and the optimal result. The first
number is the arithmetic mean of the global cost, the
value between brackets is its standard deviation (both

values in meters) and the third number is the difference in
% w.r.t the optimal solution.

Tasks NoP SIT SET
9 6070, 8m.

(850, 46m.)
118.9%

2816, 59m.
(398, 16)m.
1.5%

2773, 3m.
(392, 7m.)

15 9146, 9m.
(1104, 5m.)
152, 90%

3655, 61m.
(401, 85m.)
1, 07%

3616, 78m.
(372, 64m.)

20 12324, 99m.
(1085, 64m.)
198, 9%

4157, 12m.
(379, 07m.)
0, 83%

4122, 79m.
(364, 75m.)

30 16780, 74m.
(1490, 19m.)
236, 97%

5035, 43m.
(414, 09m.)
1, 11%

4979, 8m.
(476, 56m.)

40 22045, 37m.
(1909, 91m.)
294, 9%

5634, 98m.
(332, 9m.)
0, 94%

5582, 42m.
(353, 1m.)

TABLE II
Solutions computed for missions with three robots and

different number of waypoints.

a significant difference between the NoP algorithm and
the others (at least 118, 9%) and very similar results for
the SIT-MASR and the SET-MASR algorithms, being
the largest difference of 3, 01%. But with seven robots the
solutions of the NoP algorithm are better as expected:
with few robots, a single robot has a higher probability
to execute a task with high cost if the others are not idle.
Finally, Figure 2 compares the mean of messages

transmitted by each robot using the different algorithms
in one hundred missions with five robots. As expected,
the number of messages increases with the number of
tasks. The SET-MASR algorithm needs more messages
than others due to its more complex negotiation protocol,

Tasks NoP SIT SET
9 6558, 51m.

(1282, 5m.)
142, 31%

2744, 81m.
(382, 15m.)
1, 41%

2706, 59m.
(378, 55m.)

15 9779, 13m.
(11434, 31m.)
182, 64%

3488, 06m.
(381, 93m.)
0, 81%

3459, 86m.
(383, 12m.)

20 12277, 43m.
(1389, 83m.)
205, 70%

4058, 52m.
(398, 18m.)
1, 05%

4016, 01m.
(389, 47m.)

30 17312, 18m.
(1561, 04m.)
253, 74%

4969, 31m.
(361, 43m.)
1, 53%

4894, 02m.
(391, 54m.)

40 22353, 78m.
(1721, 68m.)
306, 06%

5727, 55m.
(342, 5m.)
3, 01%

5559, 75m.
(756, 3m.)

TABLE III
Solutions computed for missions with five robots and

different number of waypoints.

Tasks NoP SIT SET
9 3214, 16m.

(653, 28m.)
30, 37%

2472, 31m.
(424, 77m.)
0, 28%

2465, 29m.
(422, 53m.)

15 4788, 04m.
(716, 12m.)
43, 46%

3360, 78m.
(414, 97m.)
0, 7%

3337, 36m.
(400, 78m.)

20 6093, 22m.
(806, 31m.)
54, 08%

3975, 39m.
(381, 4m.)
0, 52%

3954, 57m.
(364, 07m.)

30 8592, 23m.
(959, 65m.)
79, 1%

4818, 46m.
(508, 73m.)
0, 50%

4794, 23m.
(430, 94m.)

40 10932, 07m.
(1152, 79m.)
95, 37%

5619, 95m.
(521, 65m.)
0, 44%

5598, 34m.
(470, 45m.)

TABLE IV
Solutions computed for missions with seven robots and

different number of waypoints.

but the number of messages also scales linearly with the
number of tasks. On the other hand, the best ratio be-
tween the improvement of the solutions and the number
of messages required is achieved with the SIT-MASR
algorithm. Finally, the NoP algorithm can be used if the
communication among robots should be minimized.

VI. CONCLUSIONS AND FUTURE WORK
The multi-robot task allocation (MRTA) problem has

recently become a key research topic in the field of
distributed multirobot coordination. In this paper, two
algorithms for the distributed solution of the MRTA
problem have been presented. In both algorithms, robots
have a local plan and multiple tasks can be allocated
to a single robot during the negotiation. Moreover the
second algorithm, based on the negotiation of subsets
of tasks, can be considered as a generalization of the
first one (which only negotiates single tasks) designed
to improve the solutions. Some implementation details
related to the problems derived from the asynchronous
nature of the negotiation process have been also pointed
out.
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Fig. 2. Mean of the messages sent per robot in one hundred
missions with five robots and different number of waypoints.

From the simulation results, it is derived that using
a local plan during the auction process improves the
solutions significantly. Furthermore, the algorithms pre-
sented in the paper lead to good results when comparing
with the global optimal solutions in missions consisting in
visiting waypoints. Moreover, the SET-MASR algorithm
computes better solutions in mean than the SIT-MASR,
being this improvement sensitive to the particular initial
positions of the robots and waypoints. On the other
hand, both algorithms performance scale well when the
number of robots and tasks increases.
Future work includes evaluating the impact of partial

or total communication and robot failures in the perfor-
mance of both algorithms. Furthermore, the autonomous
generation of new tasks from the distributed perception
of the environment is also being implemented. Finally,
it would be interesting to have some kind of formal-
ism to represent the distributed algorithms in such a
way that researchers could understand other approaches
easier. Moreover, a common set of missions should be
also available with the solutions computed by different
algorithms to allow an easier comparison. In this sense,
the missions used in Section V have been uploaded in
http://grvc.us.es/mrta with the solutions computed
by the algorithms presented in this paper.
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