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Abstract— This paper presents a probabilistic framework
where uncertainties can be considered in the mosaic building
process. It is shown how can be used as an environment
representation for an aerial robot. The inter-image relations are
modeled by homographies. The paper shows a robust method
to compute them in the case of quasi-planar scenes, and also
how to estimate the uncertainties in these local image relations.
Moreover, the paper describes how, when a loop is present in the
sequence of images, the accumulated drift can be compensated
and propagated to the rest of the mosaic. In addition, the
relations among images in the mosaic can be used, under certain
assumptions, to localize the robot.

I. INTRODUCTION

Knowledge about the environment is a critical issue for
autonomous operations. In general, the environment repre-
sentation depends on the kind of sensors used to estimate
it and the tasks and circumstances in which the vehicle
will be involved. This paper addresses the environment
representation problem for aerial vehicles and its estimation
by means of monocular imagery.

In the case of an aerial robot that is not affected by
obstacles at the flight altitude, geo-referenced mosaics can be
sufficient as environment model for certain tasks. A mosaic is
built by aligning to a common frame a set of images gathered
while the aerial vehicles is moving. Image alignment is based
on feature matching techniques and projective geometry
tools.

If the scene is planar (which is, in general, a valid ap-
proximation when the ratio between the distance to the scene
and the ground elevation is high [1], [2]), a set of matches
between two views can be used to estimate a homographic
model for the apparent image motion. This model can be
composed with the estimated motion of the rest of images
in order to build the mosaic. Moreover, for a planar scene,
the motion of the aerial vehicle can be derived from the
alignment of its images with the mosaic [3].

The main problem of this approach when large areas are
covered is the small image motion inaccuracies, they lead
to an erroneous estimation of the mosaic and, as a result,
to a drift in the estimated position of the robot. In [2],
an online mosaicking architecture that allows to improve
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the alignment of the central pixel of the images within the
mosaic is presented; however, only translation errors are
corrected. Pizarro [1] proposes an accurate method for image
alignment and mosaic building, but its iterative nature leads
to processing problems in online implementations.

This paper proposes a new technique in which a complete
homography and its associated full covariance matrix are
used to represent the alignment of the images in the mosaic.
It draws an accurate model that considers the uncertainties
in the local relations between the images that compose
the mosaic. The proposed mosaic architecture allows the
detection of loops and hence the reduction of the image
drift which is present in this kind of methods. Furthermore,
the uncertainty reduction in the local image alignment can
be propagated to the rest of the mosaic thanks to the full
covariance matrix computation.

This document describes the steps needed to introduce
uncertainties in the mosaic building procedure by means of
the Kalman filter. Firstly, an overview of the approach is
presented. Then, the estimation of the local relations among
images is outlined. Finally, the proposed Kalman filter for
stochastic mosaicking is detailed and some experimental
results are shown.

II. AN OVERVIEW

The motivation of this work are the results presented in
[3], where monocular imagery is used to compute the real
motion that a camera attached to an aerial robot undergoes.
The odometer presented there is based on the fact that it
is possible to obtain the motion of a calibrated camera, up
to a scale factor, from the homographic models that relate
several images of a planar scene. The local homographies
between consecutive images can be composed to obtain the
global motion of the vehicle, but the local errors lead to a
progressive drift in the estimated location of the vehicle. Fur-
thermore, the mosaic can be used to reduce the cumulative
errors associated to the odometry. However, the construction
of the mosaic itself is affected by errors, which are not
considered.

In the approach proposed in this paper, the mosaic building
presented in [3] is improved at two levels. Firstly, a new
approach is presented for the homography computation in
pseudo-planar scenes where the planar assumption may not
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(a) (b)

Fig. 1. Basic scheme: (a) when a part of the mosaic is revisited, (b) the drift
is corrected and the correction propagated. Although only the covariances
on the position are shown (which are used to determine potential loops),
the full covariance matrix for all homographies is maintained.

hold. In addition, the covariance matrix associated to the
homographies is computed in order to have an estimation of
their accuracy.

Finally, the covariances of the estimated homographies are
used in a new mosaic building architecture. When a zone
of the mosaic is revisited, a procedure is used to reduce the
accumulated drift. A full covariance matrix that considers the
correlation among the estimated homographies in the loop
is computed, and the stochastic information is employed to
propagate the correction to all the images involved (see Fig.
1).

III. HIERARCHICAL HOMOGRAPHY
COMPUTATION

The technique proposed to build the mosaics is based on
the homography computation between images. The algorithm
used to compute the homography is described in detail
in [4]. It basically consists of a point-feature tracker that
obtains matches between images, and a combination of Least
Median of Squares and a M-Estimator for outlier rejection
and accurate homography estimation from these matches.

However, there are two factors that may reduce the ap-
plicability of the technique, mainly when the UAV flies at
altitudes of the same order of other elements on the ground
(buildings, trees, etc):
• In 3D scenes, the parallax effect will increase, and

the planarity assumption may not hold. The result is a
dramatic growth of the outliers and even the divergence
of the M-Estimator.

• Depending on the frame-rate and the vehicle motion, the
overlap between images in the sequence is sometimes
reduced. This generates a non-uniform distribution of
the features along the images.

The above problems are related, in the sense that both
generate an ill-posed system of equations for the computation
of the homography. If the matches are not uniformly dis-
tributed over the images, there may exist multiple solutions;
and if the parallax effect is significant, there may exist
multiple planes (whose transformation should be described
by multiple homographies).

A classical solution to improve the results is to introduce
additional constraints to reduce the number of degrees of

Fig. 2. Levels in the proposed hierarchical homography computation.
Accuracy increases with the complexity of the model.

freedom of the system of equations. In the proposed solution,
this is accomplished through a hierarchy of homographic
models (see Fig. 2), in which the complexity of the model
to be fitted is decreased whenever the system of equations
is ill-constrained.

Therefore, depending on the quality of the available data,
the constraints used to compute the homography are differ-
ent; thus, the accuracy of the changes as well. An estimation
of this accuracy will be given by the covariance matrix of
the computed parameters. If this stochastic information is
available, it can be used to define the accuracy of the image
alignment inside the mosaic.

A. Hierarchy implementation

The following paragraphs presents the way to progres-
sively reduce the complexity of the homographic model and
the laws that govern the transitions among the hierarchy.

Summarizing, any non-singular invertible 3x3 matrix can
be consider as homography:

H =




h00 h01 h02
h10 h11 h12
h20 h21 h22


 (1)

A complete homography has 8 degrees of freedom (as it is
defined up to a scale factor). The degrees of freedom can be
reduced by fixing some of the parameters of the 3x3 matrix.
The models used are the defined by Hartley in [5]: Euclidean,
Affine and Complete Homographic models, which have 4, 6
and 8 degrees of freedom respectively (see figure 2).

The percentage of successful matches obtained by the
point tracker is used to have an estimation about the level
of the hierarchy where the homography computation should
start. These percentage thresholds were obtained empirically
by processing hundreds of aerial images. Each level involves
the following different steps:
• Complete homography. Least median of squares

(LMedS) is used for outlier rejection and a M-Estimator
to compute the final result. This model is used if more
than the 65% of the matches are successfully tracked.

• Affine homography. If the percentage of success in
the tracking step is between 40% and 65%, then the
LMedS is not used, given the reduction in the number
of matches. A relaxed M-Estimator (soft penalization)
is carried out to compute the model.
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• Euclidean homography. If the percentage is below 40%,
the set of data is too noisy and small to apply non-
linear minimizations. The model is computed using
least-squares.

In addition, it is necessary a rule to know when the current
level is not constrained enough and the algorithm has to
decrease the model complexity. The M-Estimator used in
the complete and affine computations is used for this. It
is considered that the M-Estimator diverge if it reaches the
maximum number of iterations and, hence, the level in the
hierarchy has to be changed to the next one.

B. Homography covariance estimation

Once the homography is computed, it is necessary to
obtain a measure of the estimation accuracy. In this approach
the covariance matrix is used as this accuracy measurement.
By rearranging the homography matrix of (1) in the follow-
ing vector:

h =
[
h00 h01 . . . h22

]T (2)

the covariance is represented by a 9× 9 matrix with the
variance of these variables in the diagonal and the cross-
variances in the upper and lower triangles.

Hartley [5] proposes a method to compute the covariance
matrix of this estimation. Thus, given a set of n matches:

Sm = {{m1,m′
1},{m2,m′

2}, ...{mn,m′
n}}

mi =
[

xi
yi

]
,m′

i =
[

x′i
y′i

]
(3)

The method can be summarized in the following 3 steps:
1) Obtain the Jacobian of the transformation from m to m′

with respect to the 9 parameters of the homography h,
evaluated at the estimated homography by the previous
procedure. This Jacobian is a 2n× 9 matrix derived
from the homographic relation between the n matches:

x′i = (h00xi +h01yi +h02)/(h20xi +h21yi +h22)
y′i = (h10xi +h11yi +h12)/(h20xi +h21yi +h22)

(4)

This Jacobian will be denoted as J
2) Compute the covariance of the error for each match

used to compute the homography (this is a 2x2 ma-
trix denoted by Cmi ). Assuming that the errors in
the matches are uncorrelated, the diagonal matrix is
created with the contribution of each match:

Cm = diag(Cm1 ,Cm2 , . . . ,Cmn) (5)

3) Known J and Cm, compute the homography covariance
as:

Ch = (JT Cm
−1J)−1 (6)

The unknown parameters in this algorithm are the error
covariance for each match (Cmi ).

A rather straightforward approach could be to calculate
the variance of the residue between m′

i and m̂′
i = Hmi

(the estimation of the match by means of the computed

Fig. 3. Image bucketing carried out to improve the covariance estimation.

homography) and use it as error covariance for all the
matches, so it is assumed that the error is approximately
the same in the whole image. This method works well when
the estimated homography is accurate, but usually fails when
the estimation is poor, because the error may not be uniform.

To improve the calculation of the covariances a bucketing
technique is proposed. The key idea is to divide the image
in several sections (see figure 3) and compute the variance
of the residue separately in each area. The bucketing se-
lected takes into account the properties of the homographic
transformations. In this way, each Cmi is the variance of the
residue computed in the area to which the match i belongs.

C. Experimental results

This section shows some results of the proposed technique
in real conditions. The algorithm was applied to a long
image sequence captured at relatively low altitude, and the
computed homographies were used to align each new image
with a mosaic. This experiment tries to visually demonstrate
the coherence of the homographies computed by using the
proposed technique, not to build an accurate mosaic.

The images were taken by KARMA, an autonomous blimp
developed by the RIA research team at LAAS, Toulouse [6].
The blimp is equipped with GPS, IMU and other navigation
sensors like altimeter. In addition, it carries a digital camera
and an on-board processor devoted to perception tasks.

Figure 4 shows the mosaic built with more than 400
images taken by KARMA. The scenario is the parking at
LAAS, and the distance from the blimp to the ground is 27
meters. The low altitude makes evident the parallax effect;
some trees are 15 meters high.

The technique described in [3] were applied to this image
sequence but the parallax effect made impossible the homog-
raphy computation during the processing and only a small
portion of the mosaic were computed.

The image sequence used to build the mosaic (figure
4) was processed at a rate of 2 images per second with
resolution of 1024x768. The final mosaic has a 4300x2400
effective resolution.

IV. STOCHASTIC MOSAICKING

The goal of this section is to improve the environment
model by attaching stochastic information to the mosaic.
This information will be used to improve the positions of
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Fig. 4. Mosaic of “le petit parking” at LAAS (Toulouse). Images taken at
27 meter over ground. Images taken by KARMA

the images within the mosaic when a close-loop is detected.
In this approach, the mosaic is represented by a database of
images and associated data; the mosaic is no longer a static
image, but a set of images linked by stochastic relations.

When a close-loop is detected the relations among the
images involved in the loop are updated according to the
accuracy of the measurement and the estimation of the
position of each image. A minimization process based on
a Kalman Filter is used to optimize the estimation of the
inter-image relations.

A. Closing the loop

Each time a new image is gathered by the cameras of
the UAV, the homography that relates it with the previous
one is computed, as well as its covariance. The position
of the image inside the mosaic is obtained multiplying the
current homography by all the previous homographies until
the reference frame is reached.

The loop-closing is computed by detecting the crossover of

the current image with one or more images of the database.
For this purpose, the estimated position (and its covariance)
of the central pixel of each image in the mosaic is stored
in the database. The crossover detection consists of finding
one image whose Mahalanobis distance to its central pixel
is within a certain empirical range.

Once the crossover is detected, a feature matching pro-
cedure is launched to compute the alignment between both
images. In the general case, the task of matching images
taken from very different points of view is difficult and
computationally costly. Even if a good estimation of the
translation between images is available, the tracking algo-
rithm [4] cannot deal with a rotation higher that 45 degrees,
as the features used are not affine invariant.

However, due to the pseudo-planar nature of the scene, the
matching complexity can be drastically reduced. An initial
estimation of the location (a complete homography) of the
image inside the mosaic is available, so this estimation can be
used as a searching seed for the feature matching procedure.
At time i the homography that aligns the current image Ii
to the mosaic is Ĥ0i. If a crossover with image I j, whose
estimated position inside the mosaic is given by Ĥ0 j, is
detected, the initial estimation of the transformation from
Ii to I j is defined by:

Ĥ ji =
i

∏
k= j+1

Ĥ(k−1)k (7)

If the estimation error for each homography were zero,
the alignment of Iw

i (the result of warping Ii according to
Ĥ ji) with respect I j would be perfect, but inaccuracies in
the estimated homographies produce unavoidable alignment
errors.

However, computing matches between the warped image
Iw
i and I j is an easier task. From this data is possible to

obtain the homography He
ji that describes the drift between

both images and then obtain the correct alignment:

H ji = Ĥ jiHe
ji (8)

It is clear that by using this method the matching algorithm
does not have to deal with the complete motion between
both images, only with the accumulated errors. It will reduce
the complexity of the matching algorithm needed and will
improve the alignment results.

In addition, using normalized correlation allows to deal
with the illumination problems that appears in close loops
when images are taken at different time of day. The erroneous
matches associated to different causes like shadows and
parallax are later removed by the outlier detection and robust
estimation performed in the homography computation.

B. Updating the mosaic after a loop-closing

As stated before, when a loop-closing is detected a mea-
surement about the alignment between the current image Ii
and the crossover I j is given by the system. This measure is a
homography H ji and its covariance matrix Ch ji . The problem
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now is how to update the relations among the images from
I j to Ii under the following constraint:

H ji =
i

∏
k= j+1

Ĥ(k−1)k (9)

For this purpose, a minimization process based on the
Extended Kalman Filter is launched each time a loop-closing
is detected. This filter re-estimates the relations among
the images involved in the loop, taking into account the
uncertainty of the loop-closing and the stochastic information
stored in the database. The next sections will detail the
structure and dynamics of the filter.

1) The state vector: It is assumed that a close-loop is
detected between I j and Ii, with n+1 images involved, and
the transformation that aligns both crossover images is H ji
with covariance Ch ji . For simplicity, it can be supposed that
j = 1 and i = n+1.

The a priori state vector will be composed by the n
transformations that align the n images (I2, ..., In+1) with I1,
thus:

x− = [x1,x2, ...,xn]T = [h12,x1 ·h23, ...,xn−1 ·hn(n+1)]
T (10)

where xi and hi j are the vector representation of the homog-
raphy matrices Xi and Hi j , as shown in equation (2). The
operator “·” is the product of two homographic vectors, and
the result is expressed as a vector.

It is easy to see that the state is obtained by recursively
applying equation (7): x1 is the product at k = j +1 = 2, x2
is the product at k = j+2 = 3 that can be written in function
of x1 and so on.

The calculation of the a priori state vector and its a priori
covariance matrix P− is done in an incremental fashion for
the n states using the following prediction equation:

xi = xi−1 ·hi(i+1) (11)

It is easy to compute the Jacobian of this expression with
respect to the state vector (matrix A) and with respect to the
variables of hi(i+1) (matrix W). A will be used to generate
the corresponding rows and columns of the matrix P− (see
figure 5) and, with W, to compute the covariance matrix of
xi by means of:

Cxi = ACxi−1 AT +WChi(i+1)W
T (12)

The structure of the full covariance matrix shows that
every homography is correlated with the previous ones in
the loop.

2) Updating the mosaic: The previously described state
vector is arranged in order to minimize the number of
operations needed to update it with the measurement
(H1(n+1),Ch1(n+1)). Thus, the state xn of x− represents the
transformation from the current image n + 1 to the loop
reference frame 1, so h1(n+1) = xn. This fact is described
in the following measurement equation:

h1(n+1) = Fx =
[
09x(9n),I9x9

]
x (13)

Fig. 5. Generation of the a priori covariance matrix of the state vector

It is easy to update the state vector and its covariance ma-
trix following the classic Extended Kalman Filter equations.
This simple measurement function F will significantly reduce
the computation needed to obtain the gain K and, later, the
a posteriori covariance matrix P.

Special attention is required for the state vector updating:

x = x−+K(h1(n+1)−Fx−) (14)

The homographies are defined up to scale factor; thus, a
homography multiplied by a constant k represents exactly the
same transformation, although its components are different
to those of the original matrix. To implement the substraction
of homographies in (14) it is necessary to perform a normal-
ization of the scale factor. The proposed solution is to set the
determinant of both homographies to 1 before computing the
state vector.

Finally, the relations among the images involved in the
loop are updated with the measurement but they are ex-
pressed in the local coordinate frame of the loop (the first
image of the loop, I1, is the reference frame) and have to be
transformed into the mosaic system reference. From equation
(11) can be easily obtained:

Hi(i+1) = (Xi−1)−1Xi (15)

and the covariances can be derived from the Jacobian of this
expression.

V. RESULTS OF VISION-BASED LOCALIZATION
EXPERIMENTS

This section shows some experiments to demonstrate the
correct operation of the proposed algorithm. The framework
of the experiments is the position computation by means of
monocular imagery. The position of the vehicle is estimated
by means of the algorithm described in [3] and the inputs
are the homographies computed with the proposed stochastic
mosaicking.

The images were taken by KARMA during one experi-
ment in the parking at LAAS. The sequence is composed by
two hundred images. Figure 6 shows the mosaic built with
the images and the computed homographies.

More that 15 short loops (less than 20 images involved)
and one large loop (more than 100 images) were closed

ThA12.1

2008



Fig. 6. Position estimation experiment with mosaic computation. Mosaic
of “le grand parking” at LAAS (Toulouse). KARMA was flying at 22 meter
over the ground. Image based XY position estimation (dashed line) and GPS
position measurement (solid line) are displayed.

during the experiment. In figure 6 the image based XY posi-
tion estimation and GPS position measurement are displayed.
Notice the sudden left turn in the vision based estimation at
coordinates (31, -50), it is automatically carried out when
the plane inducted by the floor (our ground truth) becomes
the scene dominant plane again.

Figure 7 shows the evolution of the errors associated to the
position estimation. The error is calculated as the Euclidean
distance between the GPS and the estimated position at each
image sample. It can be seen that the error is moderate: its
maximum value is 3 meters and the mean is 1.76 meters.

VI. CONCLUSIONS AND FUTURE WORKS
Mosaics can be a convenient environment representation

for UAV tasks, such as monitoring events, identification of
changes and others. The paper presents an approach for
building mosaics based on planar homographies. A hierar-
chical homography computation increases the robustness of
the approach, allowing to deal with quasi-planar scenes.

An important aspect of the paper is the inclusion of
uncertainty measures in the mosaic. The mosaic is no longer
a static picture, but a collection of relations among images.
Although the alignment errors will grow over time, they
can be partially reset when part of the mosaic is revisited.
Moreover, the correction can be propagated to the rest of the
mosaic by considering the relations among images.

UAV position estimation is an interesting potential appli-
cation of the proposed approach. It is possible to determine
the motion of a calibrated camera [3] from plane-induced
homographies. The estimated motion is affected by the drift
of the homographies computed. The current procedure allows
to reduce it.

The main drawback of the approach is the storage re-
quirements. Not only the images of the mosaic should be
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Fig. 7. XY estimation error per image sample.

stored (although this number can be controlled, depending
on the degree of overlap), but also the state augments along
the sequence of images. The current state of the technology
allows to solve the image storage by means of solid state
hard disks which support high capacity at low weight.
However, this approach can’t deal in real-time with the
computation needed to update the mosaic in very large loops.
In this sense, new techniques based on the downsampling of
the homographic relations between images and the use of
Sequential Map Joining [7] will be researched.
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