
 Abstract - In this work, the relative pose problem is 
addressed in our structured light system. Assuming that there 
is an arbitrary planar structure in the scene, we suggest a 
method for estimating the rotation matrix and translation 
vector between the camera and the projector. In this system, 
the varying focal lengths of the camera are allowed and can be 
obtained without any further assumptions. Finally, we give 
some experimental results to validate this method. 

I.  INTRODUCTION 
alibration of a vision system has always been an active 
topic in the computational robot vision. In general, this 

task involves obtaining the intrinsic parameters and extrinsic 
parameters of the system. During the past decades, many 
techniques have been proposed for solving this problem. 
These methods can be roughly classified into two 
categories, i.e. static calibration and dynamic calibration. In 
static calibration, a calibration target or device with 
precisely known structures is required to perform the system 
calibration [1, 2]. With a planar pattern, the target needs to 
be placed at several positions in front of the vision sensor. 
This process must be repeated again whenever the vision 
system is moved or adjusted. So it’s very inconvenient to 
use this kind of techniques in dynamic environments with 
objects in motion. Therefore, it is desirable for a vision 
system to have the ability of recalibration without requiring 
external 3-D data as those provided by a precision 
calibration device. The vision system will automatically 
recalibrate itself whenever it’s is changed. This kind of 
methods is generally named as dynamic calibration or self-
calibration [3, 4]. 

In practice, the vision researchers find that an improved 
performance can be expected from dynamically calibrating 
the pose parameters while the intrinsic parameters are 
calibrated statically. This is known as the relative pose 
problem and many ingenious methods have been introduced 
to solve this problem. In [5], the authors proposed a 
geometric closed-form solution for the pose parameters 
based on volume measurement of tetrahedra composed of 
target points and the optical center of the vision system. 
When the point depths had been recovered from orthogonal 
decompositions, Paul [6] used two phases to solve the 
exterior orientation, i.e. first calculation of the projective 
parameters and then obtaining the motion parameters. In 
Nister’s work [7], the relative pose problem was addressed 
using five non-coplanar points. However, a tenth degree 

polynomial was involved in his method. Some authors have 
also noticed that the relative pose problem can be solved 
from the correspondences between images of a planar 
structure. One of the earliest techniques is from Tsai [8] 
where the solution was provided by singular value 
decomposition of a plane-base Homography. Given the 
Homography matrix, Zhang [9] proposed a method for this 
problem from a case by case analysis of different geometric 
situations, where as many as six cases were considered. 
Since these methods are primarily for the noise-free images 
and solve for the exact solutions, they will be fragile in the 
presence of noise. For the projector-screen-camera system, 
Raij [10] and Okatani [11] investigated the auto-calibration 
methods by treating the projectors as virtual cameras and 
using the principles of planar auto-calibration. However, 
multiple projectors are required in their methods. 

To overcome the mentioned limitations and improve the 
robustness of the vision system, we presented a calibration 
method using Homographic matrix where over-constrained 
systems were used for determining the relative pose 
automatically in [12]. In that method, algebraic tools, such 
as matrix decomposition, are employed to obtain a closed-
form solution. In this paper, we will continue our work on 
this problem by exploring the geometric information in the 
structured light system. Assuming the internal parameters 
are known and there is an arbitrary planar structure in the 
scene, the translation vector is first obtained by constraints 
from the plane-induced parallax. Then the rotation matrix 
can be computed from the planed-based Homography. 
Besides, we show that some intrinsic parameters of the 
system, e.g. the focal lengths of the camera, can be 
calibrated without any further assumptions. Consequently, 
3D reconstruction can be performed with traditional 
triangulation method. By dynamic calibration, we mean that 
only a single image is required to calibrate our system so 
that the variable parameters can be computed when the 
system is working. With its easy implementation, this 
method promises wide applications for active vision 
systems, such as robot hand-eye calibration and object 
recognition, etc. 

II. PINHOLE MODEL AND THE HOMOGRAPHY 

A. Pinhole Model 

A Study on the Relative Pose Problem in an Active Vision System 
with varying Focal Lengths 

B. Zhang and Y. F. Li* 

Dept. of Manufacturing Engg and Engg Management, City University of Hong Kong, Kowloon, Hong Kong 

*Author for correspondence, Email: meyfli@cityu.edu.hk 

C 

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeD2.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1092



We take the classical pinhole model for the camera and 
the projector is regarded as a dual camera. Hence, they can 
be described by the following two matrices 
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where uf and vf represent the focal lengths of the camera 
in terms of pixel dimensions along U-axis and V-axis 
respectively, and ( )Tvu 00

 is the principal point, s is a skew 
factor of the camera, representing cosine value of the 
subtending angle between U-axis and V-axis. Similar 
notations are defined for the projector. These parameters are 
generally named as the intrinsic parameters of the sensors.  

For the camera and the projector, we define a right-
handed coordinate system originated at their optical centers 
respectively. Let the world coordinate system coincides with 
that of the camera. Then the rotation matrix and translation 
vector between the camera and the projector, denoted by R 
and t, are called the relative pose in the structured light 
system. 

B. Homography 
Given arbitrary plane π in 3D space, its images in the 

camera and the projector are related by a 
33× transformation matrix according to the projective 

geometry. In general, this transformation is termed as plane-
based Homography and denote by H . Let M be an 
arbitrary point on π  and its correspondent projections 
be cm and pm respectively. Then we have 

cp Hmm λ=                                  (2) 

where λ is a nonzero scale factor. 
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H , and its vector be 

 Τ= ),,,,,,,,( 987654321 hhhhhhhhhh . 
For the i-th pair of projections, we 

denote [ ]Τ= 1, iiip vum and [ ]Τ
= 1''

, iiic vum . 

According (2), each pair of corresponding points provides 
two constraints on the Homography. So 
given )4( ≥nn pairs of corresponding projection points of 

the scene, we have the following n2 equations: 
0Ah =                                   (3) 

where: 
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The solution for the vector h can be determined by 
singular value decomposition of matrix A in (3), and so is 
the Homography matrix H . 

III. CALIBRATING THE RELATIVE POSE 

A. Calibration of the translation vector 
For a point on planeπ , it’s well known that its projection 

in the camera can be transferred to the corresponding 
projection in the projector by the plane-based Homography. 
Therefore, the residual vector between the Homography 
transferred point and the projection point is a null vector. 
For a point that is not on the plane, its residual vector will 
not be null. This factor is illustrated in Fig. 1. Here, 

cm and pm represent a pair of corresponding projections of 

3D point M , while '
pm and cm  are projections of 'M . 

Then cHm and pm will represent the same point 

since M belongs to the plane π , but not the case 
for 'M which is out of the plane. The line segment 
joining pm and '

pm is generally named as planar parallax or 

plane-induced parallax. The planar parallax is collinear with 
the epipolar denoted as 'e . Many researchers use this 
property to establish correspondences between images and 
estimate depth information relative to the reference plane 
[13, 14, 15]. For example, Sawhney [14] and Irani [15] 
proposed two methods for 3D analysis based on the idea of 
planar parallax with respect to an arbitrary plane where the 
structure was solved directly from brightness measurements. 
The difference between them is that the former is applicable 
within two frames while the latter extends it to multiple 
frames. However, these methods depend on an accurate 
alignment of the images with respect to the viewed planar 
surface. In this paper, we will compute the translation vector 
and rotation matrix of the system from its geometric 
relationship. Thus, not only the depth information but also 
the three dimensional coordinates of the scene can be 
obtained by the triangulation method. 
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Fig. 1 Geometric relationship in the system 

In Fig. 1, cO and pO represent the optical centers of the 

camera and the projector, and the translation vector t passes 
through them. Considering the plane defined by the three 
points 'M , cO and pO , it’s obvious that '

pm and M belong 

to this plane since they lie on the line 

segments 'MO p and 'MOc , respectively. And pm also lie 

on the plane since it belongs to the line segment MOp . 

Consequently, pm , '
pm and t are coplanar. Then we have 

( )( ) 0' =×− Τ tmmm ppp                            (4) 

From (4), each projection pair provides one constraint on 
the translation vector. Thus two such pairs are sufficient to 
determine the translation vector since it has two degrees of 
freedom. In practice, we use more than two pairs to improve 
the reliability of the solution. So we have the following 
equations: 

0=ΤQtt                                   (5) 
where ( )( ) ( )( )∑ Τ×−×−=

i
ipipipipipip ,,

'
,,,

'
, mmmmmmQ . 

The solution for the translation vector is the eigenvector 
corresponding to the smallest singular value by singular 
value decomposition of Q . 

B. Recovering the Rotation Matrix 
 We assume that the equation of the 

plane π is 1=Τ Mn . For the calibrated camera and 
projector, the Homography matrix can be expressed as 

Τ+= tnRHλ                                (6) 
In (6), H and t have been obtained previously while the 

unknowns include λ, R and n . We will first determine the 
scale factor λ and then the rotation matrix R . 

Let the translation vector be denoted 
as [ ]Τ= 321 tttt and its skew symmetric matrix 

be [ ]
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Multiplying matrix [ ]×t on both sides of (6), we have 

[ ] [ ] RtHt ×× =λ                             (7) 

As R is a rotation matrix, IRR =T . From (7), we 
obtain 

[ ] [ ] [ ] [ ]×××
Τ

× = tttHHt2λ                         (8) 

In (8), the only unknown is 2λ . So we can solve it from 
(8) and the scale factor can be determined by the square root 
of 2λ . The sign of the scale factor should make both sides of 
(2) consistent. With i pairs of projections, if 

0,, <∑ Τ

i
icip Hmmλ                           (9) 

its sign should be reversed. One pair of projection points 
is sufficient to determine the sign. In practice, we use two or 
more pairs to increase its reliability as in (9).     

Now, we can solve the rotation matrix R from (7). The 
method can be described as follows. 

Let [ ] HtC ×= λ . We have 

[ ] CRt =×                              (10) 

Let iR and iC denote the i-th columns of 

matrices R andC respectively. From (10), we get 

ii RtC ×=                              (11) 

With lagrange formulae ( ) ( ) ( )acbbcacba ,, −=×× , 
we obtain 

3211 CCtCR ×+×=  

1322 CCtCR ×+×=  

2133 CCtCR ×+×= . 
Therefore, the solution for the rotation matrix is 

[ ]213132321 CCtCCCtCCCtCR ×+××+××+×=   
(12) 

IV. CALIBRATING THE FOCAL LENGTHS 
In our system, the projector is used as a lighting 

projection device. Its intrinsic parameters are usually kept 
fixed once properly calibrated. The camera can be 
automatically self-adapted (focusing or zooming) for better 
performance. Recently, some researchers have studied this 
case by assuming a camera with vary focal length but zero 
skew, known aspect ratio and the principal point. For 
instance, Sturm [18] and Cao [19] addressed the calibration 
of focal length independently by setting the principal point 
to (0, 0), and the aspect ratio to one in their work. 

In this section, we will show how to recover the possibly 
varying focal lengths of the camera with the remaining 
parameters known. In this case, the Homography matrix can 
be expressed as 

( ) 1−Τ+= cKtnRHλ                               (13) 
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where
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From (13), we have 
Τ+= tnRHK cλ                             (14) 

Multiplying matrix [ ]×t on both sides of (14), we get 

[ ] [ ] RtHKt ×× =cλ                             (15) 
Then we arrive at the following matrix equation: 

[ ] [ ] [ ] [ ]×××
Τ

× = tttHKHKt cc
2λ                   (16) 

In (16), the unknowns include λ and cK . Let 

[ ]Τ= 122
vu ffφ . Eliminating λ2 in (16), we have the 

following linear equations for the intrinsic parameters in 
matrix cK  

0=Ψφ                                                  (17) 

where [ ]γβαΨ =  is a 4×3matrix, 
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and 
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Then we have the following proposition. 
Proposition: The rank of matrix Ψ  in (17) is 2, i.e. 

( ) 2=Ψrank                           (18) 
The proof is briefly given here.  
First, we set two independent vectors as 

Τ
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It is easy to verify that 1λ and 2λ have the following 
relationship with the three columns in matrixΨ : 

2211 λλα αα +=  

2211 λλβ ββ +=  

2211 λλγ γγ +=  

where iα , iβ and iγ are the i-th elements in α , 

β andγ respectively. 
Therefore, the rank of matrix Ψ  must be 2. 
     
By singular value decomposition of Ψ , the solution for 

the vector φ  is the singular vector corresponding to the 
smallest singular value. Considering the focal lengths 
should be positive, their solutions are given as 

3

1
ϕ

ϕ=uf                                   (19) 

and 

3

2
ϕ

ϕ=vf                                  (20) 

where iϕ  is the i-th element ofφ . 

Once cK  is known, the scalar factor λ in (16) is the only 
unknown parameter. So we can solve it using any one 
equation in (16) and again its sign is determined by (9). 

Now, the only unknown in (15) is the rotation matrix R , 
which can be computed by formula (12). 

V. IMPLEMENTATION PROCEDURE 
In summary, the procedure for calibrating the structured 

light system is given as follows: 
Step 1: Computing the Homography matrix H between 

the camera plane and projector plane according to (3); 
Step 2: Establishing constraints (5) and calculating the 

translation vector t ; 
Step 3: If all the intrinsic parameters of the camera are 

fixed and known, determining the scale factor λ and its sign 
using (8) and (9) respectively; 

If the focal lengths of the camera are varying, computing 
them first by (18) and (19), then the scale factor λ; 

Step 4: Calculating the rotation matrix by formula (12); 
Step 5: Optionally, the results can be improved by bundle 

adjustment, after having obtained the relative pose. 

VI. EXPERIMENTS 
 Fig. 2a shows the system setup for real data 

experiments, which consists of a PULNIX TMC-9700 CCD 
camera and a PLUS V131 DLP projector. Fig. 2b gives the 
color-encoded light pattern for the projector, which can be 
used to uniquely identify the correspondences between the 
projector plane and the image plane. Here, seven different 
colors, i.e. red, green, blue; white, cyan, magenta; yellow, 
are used. It should be noted that rather than color dots in 
[16], we use color-encoded grid blocks. In practice, the grid 
blocks can be segmented more easily by edge detection. The 
encoded points are the intersection of these edges, so they 
can be found very accurately. When projecting dots, their 
mass centres must be located. In case of a dot appears only 
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partially in the image, its mass centre will be incorrect. 
Moreover, the grid techniques allow adjacent cross-points to 
be located by tracking the edges, but this is not the case for 
dot representation. This feature not only decreases the 
complexity of image processing but also simplifies the 
decoding process. To decode the light pattern, a code word 
is defined by the color value of a grid block and its eight-
neighbors (north, south, west, east, northwest, southwest, 
northeast and southeast). Then a look-up table can be 
constructed containing the code words and their row’s and 
column’s indexes in the pattern. Since the first and last rows 
and columns in the pattern need not be considered, the table 
has 1862 items. 

 
(a) 

 
(b) 

(a): The experimental setup  
(b): A screen shot of the color-encoded light pattern 
Fig. 2 The configuration of our structured light system 
    
 In static calibration, the intrinsic parameters of the 

camera and the projector were firstly determined by a planar 
pattern using Zhang’s method [17]. Here, we placed the 
pattern at ten different positions to increase the calibration 
accuracy. In the current experiments, we assumed that the 
intrinsic parameters were all kept fixed and the wall in our 
lab used as the planar surface. When the system is working, 
the relative pose between the camera and the projector is 
arbitrarily changed. Then with more than four pairs of 
corresponding projections from the wall, we can calibrate 
the rotation matrix and the translation vector according to 
the proposed procedure. Consequently, 3D reconstruction is 
implemented to test the calibration results.  

 Fig. 3a gave a duck model used in the experiments. Here, 
a random frame from the video sequence was used to 
reconstruct the model. Fig. 3 b and Fig. 3c illustrated the 
polygonized results of the reconstructed point clouds in two 
different viewpoints. Totally 143 points from the model 

were reconstructed. It is observed that they are very similar 
to the original model. Since no attempt has been made to 
obtain the ground truth, we do not know real values of the 
variable parameters of the system and the point clouds. To 
evaluate their accuracy quantitatively, these point clouds 
were back-projected to the image plane and the projector 
plane respectively. Then the discrepancies between the real 
feature points and back-projected points were computed. In 
general, the more accurate the calibrated results, the smaller 
discrepancies we will have. To visualize the results, we 
plotted the feature points and back-projected points in Fig. 
3d and Fig. 3e. Fig. 3f gave one zoomed part of the image. 
We can see that the feature points and back-projected points 
are very close to each other as expected. Quantitatively, the 
mean results of the discrepancies for the camera and the 
projector were given in Table 1. As very small discrepancies 
were obtained, this further demonstrated the validity and 
accuracy of our method. 
Table 1: Discrepancies between image points and re-
projected points 

Image Plane (0.1829, 0.3336) The Mean 
Discrepancies Projector Plane (0.0244, 0.0142) 
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(b)                     (c) 
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(f) 

(a) A duck model used for the experiment 
(b, c) Polygonized results of the reconstructed points clouds 
from two viewpoints  
(b, c, d) Original feature points and back-projected points: 
Blue ‘+’ represents original feature points while red ‘o’ represents back-
projected points from reconstructed 3D points. They should coincide with 
each other theoretically. 
Fig. 3: An experiment on a duck model 

VII. CONCLUSIONS 
In this work, we have investigated the relative pose 

problem in the structured light system. Besides, we show 
that two of the intrinsic parameters, such as focal length and 
aspect ratio of the camera, can be computed without any 
further assumptions. In this method, the analytical solutions 
can be obtained from singular value decomposition and the 
reliability in implementation is easily improved via the use 
of redundant data. Compared with the classical eight-point 
algorithm, our method is more reliable and requires less 
points (six points are adequate) for a linear solution. Since a 
single image is sufficient for the calibration and 3D 
reconstruction, either the objects or the system can be 
moved or adjusted during the task. Besides, the scene plane 
can be a real or virtual one as long as it provides four or 
more coplanar points that will enable the estimation of the 
Homography matrix. Applications of this method include 
navigation of a mobile robot along ground plane, wall 
climbing robot for cleaning, inspection and maintenance of 
buildings and object recognition, etc. Future work includes 
studying the possibility of varying focal lengths of the 
projector and implementing the algorithm on a real mobile 
robot. 
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