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Abstract— This paper presents the joint centre self-
identification of a novel cable-driven anthropocentric shoulder
rehabilitator. For such a wearable rehabilitator, identification
of joint centre is critical for kinematic modeling, path planning
and motion control. However, the shoulder joint centre location
is unknown when a user wears this rehabilitator and it differs
among users. These complicate the initial patient preparatory.
A joint centre self-identification model is formulated based
on the differential change in the cable end-point distance. A
computationally effective algorithm is employed to identify the
shoulder joint centre. It does not require any external mea-
surement devices because of the redundant actuation scheme
in the cable-driven shoulder rehabilitator. In order to verify
the effectiveness and robustness of the proposed algorithm,
we conducted computer simulation studies. In the simulation
example, although large errors (up to ±50mm) had been injected
into the initial estimates, the joint centre was always accurately
identified within four to five iterations.

I. INTRODUCTION

In the last decade, the introduction of rehabilitation ro-
bots (also known as Rehabilitators) has greatly enhanced
rehabilitation techniques. These rehabilitators have eased the
therapist’s load by delivering intensive and repetitive exer-
cise treatments effectively, sometimes achieving dramatically
better results than conventional therapy alone [1], [2]. This
offers potential hope to millions of patients requiring reha-
bilitation in their chronic stages. One of the most common
limbs requiring rehabilitation is the arm. Hence, greater
research efforts have been carried out in this area. Some of
the well-known robotic arm rehabilitators used in research
include the MIT Manus [1], the ARM Guide [2] and MIME
[3]. Inspite of the numerous advantages offered by these
arm rehabilitators [1]-[4], they have a common drawback of
being designed with a self-deterministic or adjustable self-
deterministic structure. This means that the device generates
its own characteristic motion that may not coincide with the
characteristic motion of the human structure. In addition,
most of them are relatively heavy and fixed to a structure
or a wall, which limit the user’s motion range. Hence these
devices cannot fully adapt to the user and place additional
stresses on the human joints while carrying out rehabilitation.
This may result in greater discomfort and harm to the user.

This work is supported by Nanyang Technological University under
Academic Research Fund RG24/06.

1School of Mechanical & Aerospace Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798
{must0003,myeosh}@ntu.edu.sg

2Mechatronics Group, Singapore Institute of Manufac-
turing Technology, 71 Nanyang Drive, Singapore 638075
{glyang,wlin}@SIMTech.a-star.edu.sg

In order to address the above-mentioned shortcomings, a
novel cable-driven anthropocentric arm rehabilitator was pro-
posed in [5] (as shown in Fig. 1). The proposed design com-
bines kinematically under-deterministic cable-driven mech-
anisms with the human arm structure. The outcome is a
deterministic biomechanical structure with improved adapt-
ability and wearability. This 7-DOF arm rehabilitator consists
of a 3-DOF shoulder module, a 1-DOF elbow module
and a 3-DOF wrist module. Due to the novel design of
this 7-DOF cable-driven anthropocentric arm, methods and
algorithms developed for existing robotic arms are not readily
applicable. Hence, this research was pursued in [6], mainly
focusing on issues related to the 3-DOF shoulder module.
This is because the wrist module analysis is similar to that of
the 3-DOF shoulder module, while the 1-DOF elbow module
analysis is a trivial case. Thus, once the shoulder module
analysis is completed, the analysis of the whole 7-DOF arm
can also be readily conducted.

For such a wearable shoulder rehabilitator, one of the
critical issues to address is the identification of the shoulder
joint centre location which is crucial for kinematic modeling
and motion control. An inaccurate kinematic model will in
turn affect the positioning accuracy and the performance
capabilities of the shoulder rehabilitator. This joint centre
location with respect to the rehabilitator base is unknown and
cannot be determined directly from physical measurements.
Furthermore, it varies with each user. These complicate the
initial patient preparatory and subsequent utilization of the
shoulder rehabilitator.

1-DOF Elbow
    Module

3-DOF Wrist
   Module

3-DOF Shoulder Module

Fig. 1. Conceptual design of the cable-driven anthropocentric arm
rehabilitator [5]

The shoulder joint is usually modeled as a perfect ’ball-
&-socket’ with a fixed centre of rotation located at the geo-
metric centre of the humeral head [7]. The earliest method
used to estimate the shoulder joint centre was skin-based.
This location was approximated as ‘two inches inferior of
the right acromion on the lateral surface of the upper arm’
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[8]. Shoulder joint centre identification has since advanced
from skin-based estimation methods to vision and optical
based methods [9,10]. However, these advanced methods
require costly motion tracking cameras to capture the data
and complex data acquisition systems to process the captured
data. Hence there is a need to come up with a relatively
accurate yet cost effective method to determine the shoulder
joint centre for the users of this shoulder rehabilitator.

The design optimization of the shoulder rehabilitator was
carried out in [6], in which the optimized design was a 3-
3 six-cable configuration, as shown in Fig. 2. This 3-DOF
shoulder rehabilitator has a redundant actuation scheme,
driven by six redundant cables. By observation of this 3-
3 configuration, the cable end-points Pi (i = 1,2,3) of the
optimized configuration formed the vertex of three tetrahe-
drons (shown in Fig. 3). Thus, by utilizing the ‘Tetrahedron’
proposition [11] and the six cable length data, we can
determine the distance between the cable end-points i.e.
p12, p23 and p31. The cable end-point distance measurement
residues (i.e. the difference between the computed and the
actual values of p12, p23 and p31) will then allow us to formu-
late a self-identification model to determine the actual joint
centre location for any users of the shoulder rehabilitator.
This model is termed as self-identification because it does
not require any additional external measurement devices.
Instead, the available motor encoders will provide the cable
length information needed to carry out the joint centre self-
identification.
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Fig. 2. Optimized design of the shoulder rehabilitator: 3-3 six-cable
configuration [6]
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Fig. 3. Kinematic model of the shoulder rehabilitator with observed
tetrahedrons

In terms of the initial patient preparatory, after wearing
the shoulder rehabilitator, the user simply needs to position
it at a number of poses and obtain the readily available

cable length data measurements. The initial estimate for the
joint centre will be the skin-based location [8] mentioned
previously. The proposed algorithm will then use these data
and the known mechanism parameters to determine the actual
shoulder joint centre location. The next section will present
the joint centre self-identification methodology, including the
kinematic modeling of the shoulder rehabilitator and the joint
centre self-identification algorithm. This will be followed
by computer simulation examples to validate the accuracy
and robustness of the proposed joint centre self-identification
model.

II. JOINT CENTRE SELF-IDENTIFICATION
METHODOLOGY

This section will present the joint centre self-identification
model followed by the self-identification algorithm. Similar
to robotic manipulator calibration [12], the joint centre self-
identification process consists of three main steps: modeling,
measurement and identification. The ‘Modeling’ step refers
to the formulation of a suitable joint centre identifica-
tion model which will relate the cable end-point distance
measurement residues to the joint centre parameters to be
identified, based on the measurement data of the six cable
lengths. This is followed by the ‘Measurement’ step which
refers to the collection of the six cable lengths which can be
obtained from the motor encoders used in the actual shoulder
rehabilitator. Lastly, the ‘Identification’ step is to determine
the actual joint centre location of the shoulder rehabilitator
based on the joint centre self-identification model and the
measurement data.

A. Joint Centre Self-Identification Model

Before proceeding to the description of the self-
identification model, the kinematic model of the cable-driven
shoulder rehabilitator is first described in order to provide
a better understanding of this model development. Three
coordinate frames (i.e. {B}, {O} and {P}) are used to
describe its kinematic model (as shown in Fig. 3). Frame
{B} is the inertial coordinate frame on the base platform.
Frame {O} is located at the shoulder joint centre, which
undergoes only a translation

−→
BO = {x,y,z}T wrt {B}. Frame

{P} is the local coordinate frame on the moving platform
which undergoes a translation

−→
OP and a rotation ROP wrt

{O}.
−→
BBis are base cable attachment point position vectors

that are fixed with respect to {B}, while
−→
PPis are cable end-

point position vectors that are fixed with respect to {P}.
The objective of the self-identification model is to iden-

tify the unknown joint centre location through observations
of the measurement residues in certain parameters of the
mechanism. The first step in formulating this model is to
identify the relevant parameters and to obtain the relationship
equations between them. At any feasible pose, the known
measurable parameters are the set of six cable lengths, the
position vectors of the cable attachment points,

−→
BBi and−→

PPi (i = 1,2,3), and the lengths of p12, p23 and p31. The
unknown parameters are

−→
BO and

−→
OPi (i = 1,2,3) since we

do not know the actual location of the shoulder joint centre.
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Hence, these values have to be estimated in the kinematic
model (Note: The mechanism is assumed to have error-free
fabrication and assembly in order to simplify the model). At
each point Pi, several distance relationship equations can be
obtained.
The distance relationship equations at point P1 are as follows:

p1 =
∥∥∥−−→OP1

∥∥∥ (1)

L1 =
∥∥∥−−→B1B+

−→
BO+

−−→
OP1

∥∥∥ (2)

L2 =
∥∥∥−−→B2B+

−→
BO+

−−→
OP1

∥∥∥ (3)

The distance relationship equations at point P2 are as follows:

p2 =
∥∥∥−−→OP2

∥∥∥ (4)

L3 =
∥∥∥−−→B2B+

−→
BO+

−−→
OP2

∥∥∥ (5)

L4 =
∥∥∥−−→B3B+

−→
BO+

−−→
OP2

∥∥∥ (6)

The distance relationship equations at point P3 are as follows:

p3 =
∥∥∥−−→OP3

∥∥∥ (7)

L5 =
∥∥∥−−→B3B+

−→
BO+

−−→
OP3

∥∥∥ (8)

L6 =
∥∥∥−−→B1B+

−→
BO+

−−→
OP3

∥∥∥ (9)

In addition, due to the unique 3-3 configuration of the
shoulder rehabilitator (shown in Fig. 3), the ‘Tetrahedron’
approach [11] can be utilized to obtain the position vectors−→
OPi (i = 1,2,3). Based on the ‘Tetrahedron’ proposition, the
top vertex (i.e. Pi) can be uniquely determined with respect
to a tetrahedron coordinate (i.e. Base Frame {B}) provided
two known base vectors (i.e. base cable attachment point
vectors with respect to {O}) and three known space lines (i.e.
the lengths of the two cables attached to Pi and the length
of
−→
OPi) are known. This will determine the cable end-point

distances p12, p23 and p31. The presence of errors in the
estimates of the joint centre location can then be identified by
comparing the differences in the computed and actual values
of p12, p23 and p31. If there is no difference, this means
that the estimation of the joint centre location is accurate.
The following relationship equations are obtained for p12,
p23 and p31:

p12 =
∥∥∥−−→P1P2

∥∥∥ =
∥∥∥−−→OP1−

−−→
OP2

∥∥∥ (10)

p23 =
∥∥∥−−→P2P3

∥∥∥ =
∥∥∥−−→OP2−

−−→
OP3

∥∥∥ (11)

p31 =
∥∥∥−−→P3P1

∥∥∥ =
∥∥∥−−→OP3−

−−→
OP1

∥∥∥ (12)

The next step is to obtain the differential relationship be-
tween x, y, z, p1, p2 and p3 (these contribute to the kinematic
errors), and p12, p23 and p31 (these evaluate the presence of
the kinematic errors). Hence Eq. (1)-(12) are differentiated
and the resulting linear differential equations are rearranged
to obtain the joint centre self-identification model (Refer to

Appendix for details). This model will allow identification
of the joint centre location through observations of the cable
end-point distance measurement residues. At any pose, the
joint centre self-identification model is described as:

Y = D ·X (13)

Where Y = {δp12,δp23,δp31}T ∈ℜ3×1, D ∈ℜ3×6 and X =
{δx,δy,δz,δp1,δp2,δp3}T ∈ℜ6×1. For the terms in Y , δp =
pactual− pcomputed . pactual is determined from the actual mea-
surements made on the mechanism structure, while pcomputed

is determined from Eq. (10)-(12) using
−→
OPi. On the other

hand,
−→
OPi is determined using the tetrahedron approach

which requires the actual cable length data (L1, . . . ,L6) and
estimated values of pi (i = 1,2,3). D is the joint centre self-
identification Jacobian matrix which consists of linear terms
that are functions of

−→
BBi,

−→
OPi, x, y, z, p1, p2, p3, p12, p23

and p31. It describes the gross errors in p12, p23 and p31
resulting from the errors in the estimates of x, y, z, p1, p2
and p3. Based on Eq. (13), as the initial estimates of x, y, z,
p1, p2 and p3 approach the actual values of the mechanism,
the term Y will also approach zero.

B. Joint Centre Self-Identification Algorithm

Similar to the iterative calibration procedure in [13],
a least-squares algorithm based on the proposed self-
identification model in Eq. (13) is employed to determine the
joint centre solution. In order to obtain reliable results for the
joint centre location, it is required to take measurements at
several poses. For m sets of measurement poses, the ith pose
with its set of cable length data measurements will result in
Yi and its corresponding Di. After m sets of measurement
data, Yi and Di are stacked to form the following equation:

Ỹ = D̃ ·X (14)

Where Ỹ = {Y1, . . . ,Ym}T ∈ℜ3m×1 and D̃ = {D1, . . . ,Dm}T ∈
ℜ3m×6. Since the model in Eq. (14) contains 3m linear
equations with 6 variables, the least-squares algorithm is used
(Note: Eq. (14) must have at least two measurement poses).
The least-squares solution of X is given as:

X = (D̃T D̃)−1 · D̃T ·Y (15)

Where (D̃T D̃)−1D̃T is the pseudo-inverse of D̃. The solution
of Eq. (15) is further improved through iterative substitu-
tion as shown in Fig. 4. A refinement in the least-squares
algorithm can be achieved by iterative looping. Once the
kinematic error parameter vector, X is identified, estimates
of x, y, z, p1, p2 and p3 are updated after every loop i by
substituting X into the following equation:

x
y
z
p1
p2
p3


i+1

= X +



x
y
z
p1
p2
p3


i

(16)

This procedure is repeated until the deviation metric, δE
approaches a certain tolerance limit, ε, which is close to
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zero. Then the final x, y, z, p1, p2 and p3 will represent the
actual parameters of the bio-kinematic shoulder rehabilitator
structure. δE is the average measurement residue of p12, p23
and p31, and is mathematically defined as:

δE =

√
1

3m
(Y T ·Y ) (17)

Nominal Joint
Centre Description
x, y, z, p 1, p2, p3

      

Terminate

Yes

No

From m sets of poses,
obtain m sets of
Measured Cable
Lengths (L1 - L6)

Measured lengths between
cable attachment points on
moving platform ( p12, p23 &

p31).

Calculate p12, p23, p31
based on Tetrahedron

method.

Note:
 p = pactual - pcomputed

Carry out Least
Squares Estimation

Calculate D,  p12,  p23,
 p31 & X.

Update x, y, z, p 1, p2,
p3.

~

δ E < ε   

Fig. 4. Iterative Joint Centre Self-Identification Algorithm Flowchart

III. COMPUTER SIMULATION

In this section, simulation studies were carried out on the
optimized 3-3 six-cable shoulder rehabilitator shown in Fig.
2. In the real situation, the actual joint centre location is
unknown. However, in order to evaluate the joint centre self-
identification algorithm, the actual location is assumed to
be known and the initial estimated location will be varied.
Initial estimates with deviations about the actual joint centre
location will be used to test the accuracy and robustness
of the joint centre self-identification algorithm. The first
simulation will investigate the effects of the initial estimates
of x, y, z, p1, p2 and p3 under ideal experimental conditions
(i.e. noise-free cable length data measurements). The second
simulation will investigate the effect of noise in cable length
data measurements. For the simulation studies, the following
procedure is employed:

1) Generate two sets of m random poses (within the
limits of the shoulder joint motion range) and their
corresponding ‘simulated’ cable length data. This is
based on Eqs. (2), (3), (5), (6), (8) and (9), and the
actual kinematic parameters listed in Table I. The first
set will be used for joint centre identification, while
the second set will be used for verification.

TABLE I
ACTUAL KINEMATIC PARAMETERS OF THE SHOULDER REHABILITATOR

Parameter Description† Actual Value‡(mm)
−→
BO

{B}
= {x,y,z}T {0,0,148}T

−→
OP

{P}
= {0,0,d2}T {0,0,96}T

p1 = ‖−→OP+
−−→
PP1‖ 140.8

p2 = ‖−→OP+
−−→
PP2‖ 140.8

p3 = ‖−→OP+
−−→
PP3‖ 140.8

p12 = ‖−−→PP1−
−−→
PP2‖ 178.4

p23 = ‖−−→PP2−
−−→
PP3‖ 178.4

p31 = ‖−−→PP3−
−−→
PP1‖ 178.4

†The letter in the superscript refers to the coordinate frame which the vectors
are based upon.
‡These values are based on the ‘home’ position of the shoulder rehabilitator.
‘Home’ is the pose where all six cables have equal lengths as shown in Fig.
2 and ROP is an Identity matrix.

2) Assign errors in the actual values of the kinematic
parameters x, y, z, p1, p2 and p3 (listed in Table I), to
be used as initial estimates.

3) Identify the actual shoulder joint centre location using
the joint centre self-identification algorithm and the
first set of m ‘simulated’ cable length data.

4) Verify the identified joint centre using the second set
of m ‘simulated’ cable length data.

A. Effect of Initial Parameter Estimate

In this simulation study, it is assumed that the set of cable
length measurement at each pose are noise-free (i.e. ideal
measurements). The theoretical lower bound for the number
of measured poses is two but for accuracy and robustness, it
is set to three. From the viewpoint of computer simulation,
the initial estimate errors {δx,δy,δz} and {δp1,δp2,δp3} are
randomly generated with uniformly distributed deviations of
±d.

From the simulation results in Table II, assigned errors
with uniformly distributed deviations of up to ±50mm are
fully recovered within 4 to 5 iterations. This demonstrates
the accuracy of the joint centre self-identification model for
the wearable shoulder rehabilitator. Fig. 5 shows the joint
centre identification convergence plot for errors in initial
estimates with uniformly distributed deviations of ±50mm.
δE is driven from an initial value of 31.57 to approximately
zero within 4 iterations.

B. Effect of Noise in Cable Length Data Measurement

In practical applications, it is impossible to have noise-free
measurements. Hence this simulation study will investigate
the robustness of the joint centre self-identification model
by introducing noise in the cable length measurement. From
the viewpoint of computer simulation, a randomly generated
noise δLi (i = 1, . . . ,6) with uniformly distributed deviation
of ±` will be injected into the ‘simulated’ cable length
measurement. In addition, more measurement poses will also
be considered since noise exists. In each simulation, two sets
of 100 simulated measurement poses are used. One set is
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TABLE II
SIMULATION RESULTS ON EFFECTS OF INITIAL PARAMETER ESTIMATE

d Assigned Error in Actual Parameters Error after Self-Identification
{δx,δy,δz,δp1,δp2,δp3} {δx,δy,δz,δp1,δp2,δp3}

10 {2.54,−1.39,8.36, {−8.12,4.35,−1.76,
9.56,−4.21,5.23} 1.26,−6.79,1.33}×10−9

30 {18.44,25.37,14.61, {−6.92,1.31,−5.04,
−8.05,−28.8,25.44} 4.28,7.23,1.08}×10−7

50 {−45.02,−17.8,−45.55, {7.34,6.31,−1.84,
7.95,−45.29,−40.33} −1.06,9.3,4.96}×10−6

All dimensions are in millimeters. ε is set to 1×10−3.

1 2 3 4 5
0

5

10

15

20

25

30

35

No. of Iterations

D
ev

ia
tio

n 
M

et
ric

 δ
 E

31.57

4.53

2.00
3e-3 6e-8

Fig. 5. Joint Center Self-Identification Convergence Plot with noise-free
measurements (d = 50mm)

used to identify the joint centre, while the other set is used
to verify the result of the joint centre self-identification.

With the existence of measurement noise, full recovery
of the assigned errors cannot be achieved. However, from
Fig. 6 and 7, it is observed in both cases that the deviation
metric δE converges to about 0.07mm (with ` = 0.1mm) when
the number of measurement poses is greater than 30. This
implies that the assigned errors in the actual joint centre
parameters are precisely identified.
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Fig. 6. Quantified deviation metric plot versus number of measurement
poses with d = 25mm and ` = 0.1mm

IV. CONCLUSION
The joint centre self-identification is to locate the actual

shoulder joint centre of the shoulder rehabilitator user with-
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Fig. 7. Quantified deviation metric plot versus number of measurement
poses with d = 50mm and ` = 0.1mm

out the use of any external measurement devices. Instead,
it is based on the redundant actuation scheme of the cable-
driven shoulder rehabilitator and the available motor encoder
readings. A joint centre self-identification model is developed
based on the cable end-point distance measurement residue.
This model has a linear form and an iterative least-squares
approach is used to identify the actual joint centre from an
initial estimate.

Simulation studies on the shoulder rehabilitator demon-
strate that the joint centre can be fully recovered with
assigned errors of up to ±50mm, under noise-free mea-
surement conditions. In the presence of measurement noise,
the assigned errors can also be precisely recovered with a
certain number of minimum measurement poses. Hence this
self-identification model is able to accurately and robustly
identify the shoulder joint centre location of a user wear-
ing the shoulder rehabilitator. Future works will focus on
the experimental study of the proposed joint centre self-
identification algorithm on a shoulder rehabilitator prototype.
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APPENDIX

Using mathematical tools from differential theory, the following differential
equations are obtained for Eq. (1)-(12):
(Note that

−→
OPi = {pxi, pyi, pzi}T and

−→
BBi = {bxi,byi,bzi}T )

Eq.(1)⇒ p1δp1 = {px1, py1, pz1} · {δpx1,δpy1,δpz1}T (A1)

Eq.(2)⇒

 (bx1− x− px1)
(by1− y− py1)
(bz1− z− pz1)


T

.

 δx
δy
δz

 =

 (x−bx1 + px1)
(y−by1 + py1)
(z−bz1 + pz1)


T

.

 δpx1
δpy1
δpz1

 (A2)

Eq.(3)⇒

 (bx2− x− px1)
(by2− y− py1)
(bz2− z− pz1)


T

.

 δx
δy
δz

 =

 (x−bx2 + px1)
(y−by2 + py1)
(z−bz2 + pz1)


T

.

 δpx1
δpy1
δpz1

 (A3)

From Eq.(A1)− (A3), we obtain: δpx1
δpy1
δpz1

 = A1
−1.B1.


δx
δy
δz

δp1

 (A4)

Where:

A1 =

 (x−bx1 + px1) (y−by1 + py1) (z−bz1 + pz1)
(x−bx2 + px1) (y−by2 + py1) (z−bz2 + pz1)

px1 py1 pz1



B1 =

 (bx1− x− px1) (by1− y− py1) (bz1− z− pz1) 0
(bx2− x− px1) (by2− y− py1) (bz2− z− pz1) 0

0 0 0 p1


Similarly, from the differential equations of Eq.(4)− (9), we obtain: δpx2

δpy2
δpz2

 = A2
−1.B2.


δx
δy
δz

δp2

 (A5)

And,  δpx3
δpy3
δpz3

 = A3
−1.B3.


δx
δy
δz

δp3

 (A6)

Where:

A2 =

 (x−bx2 + px2) (y−by2 + py2) (z−bz2 + pz2)
(x−bx3 + px2) (y−by3 + py2) (z−bz3 + pz2)

px2 py2 pz2


B2 =

 (bx2− x− px2) (by2− y− py2) (bz2− z− pz2) 0
(bx3− x− px2) (by3− y− py2) (bz3− z− pz2) 0

0 0 0 p2


A3 =

 (x−bx3 + px3) (y−by3 + py3) (z−bz3 + pz3)
(x−bx1 + px3) (y−by1 + py3) (z−bz1 + pz3)

px3 py3 pz3


B3 =

 (bx3− x− px3) (by3− y− py3) (bz3− z− pz3) 0
(bx1− x− px3) (by1− y− py3) (bz1− z− pz3) 0

0 0 0 p3



Eq.(10)⇒ p12δp12 =

 px1− px2
py1− py2
pz1− pz2


T

︸ ︷︷ ︸
.

 δpx1−δpx2
δpy1−δpy2
δpz1−δpz2

 (A7)

Matrix C1

Eq.(11)⇒ p23δp23 =

 px2− px3
py2− py3
pz2− pz3


T

︸ ︷︷ ︸
.

 δpx2−δpx3
δpy2−δpy3
δpz2−δpz3

 (A8)

Matrix C2

Eq.(12)⇒ p31δp31 =

 px3− px1
py3− py1
pz3− pz1


T

︸ ︷︷ ︸
.

 δpx3−δpx1
δpy3−δpy1
δpz3−δpz1

 (A9)

Matrix C3

Substituting (A4) and (A5) into Eq.(A7), we obtain:

δp12 =
1

p12
C1A1

−1B1︸ ︷︷ ︸


δx
δy
δz

δp1

− 1
p12

C1A2
−1B2︸ ︷︷ ︸


δx
δy
δz

δp2

 (A10)

Matrix D11 Matrix D12

Substituting (A5) and (A6) into Eq.(A8), we obtain:

δp23 =
1

p23
C2A2

−1B2︸ ︷︷ ︸


δx
δy
δz

δp2

− 1
p23

C2A3
−1B3︸ ︷︷ ︸


δx
δy
δz

δp3

 (A11)

Matrix D21 Matrix D22

Substituting (A6) and (A4) into Eq.(A9), we obtain:

δp31 =
1

p31
C3A3

−1B3︸ ︷︷ ︸


δx
δy
δz

δp3

− 1
p31

C3A1
−1B1︸ ︷︷ ︸


δx
δy
δz

δp1

 (A12)

Matrix D31 Matrix D32

Combining Eq.(A10),(A11) and (A12), we obtain the joint centre self-
identification model (i.e. Eq.(13)) as follows:

Y = D ·X (A13)

Where:

Y =

 δp12
δp23
δp31

 ,

D =


(D11(1)−D12(1)) (D21(1)−D22(1)) (D31(1)−D32(1))
(D11(2)−D12(2)) (D21(2)−D22(2)) (D31(2)−D32(2))
(D11(3)−D12(3)) (D21(3)−D22(3)) (D31(3)−D32(3))

D11(4) 0 −D32(4)
−D12(4) D21(4) 0

0 −D22(4) D31(4)



T

,

And X =
{

δx δy δz δp1 δp2 δp3
}T .
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