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Abstract— Monitoring ocean dynamics is extremely difficult
due to its enormous physical dimensions and the wide range
of spatio-temporal scales involved in its dynamical behaviour.
It has been recently proposed that the most efficient way to
monitor the ocean is through networks of small, intelligent and
cheap robotic platforms. Drifting profiling floats and gliders
were developed in this context. Floats move with the currents
meanwhile they periodically sample the water column through
controlled immersions. Conversely, gliders are underwater
autonomous vehicles with controllable motion at sea. Both
platforms are extensively employed in oceanography due to
their high autonomy. A network called Argo of around 3000
profiling floats spreads out around the world’s ocean. Glider
networks are starting to settle down at smaller scale in different
places.

The advent of these networks and the still scarce resources
for ocean sampling, create a demand for quantitative tools for
optimizing their use. In this work, the problem of optimally
merging networks of profiling floats and gliders is considered.
Specifically, a genetic algorithm is employed to find optima
gliders trajectories to get together an unevenly distributed
network of floats the best quality of the sampled field. A
measure of the quality of the oceanographic field (objective
function to minimize) is defined in terms of the mean formal
error obtained from an optimum interpolation scheme. Results
show that the quality of the sampled field can be greatly
improved by merging both networks if the resolution of glider
observations is adequately selected. The spatial lag between
glider observations is related to the geometry of the network of
profiling floats and must be order of the grid spacing obtained
from the mean data spacing of the network of floats.

I. INTRODUCTION

Marine environment is an extremely complex system,
characterized by strong links between its physico-chemical
processes and its biological population. The relevance of the
interactions between the physical, chemical and biological
fields and its high spatio-temporal variability difficult the
study of the ocean: first, because they imply to simulta-
neously measuring the physical, chemical and biological
parameters and second because these measurements must be
done with an adequate spatio-temporal resolution.

Spatio-temporal resolution of ocean observations depends
on the characteristics of the observing platform employed.
An observing platform must be capable of mapping an
ocean structure at adequate spatial resolution and faster than
significant changes in the structure occur. Unfortunately, this
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requirement does not hold for many traditional platforms of
oceanographic sampling due to physical, economic and/or
operational limits of the sampling platforms. Present oceano-
graphic surveys are fundamentally limited by too few mea-
surements, taken too slow, at too great cost. For this reason,
a new generation of robotic ocean observing platforms has
been developed to sample the ocean at high spatio-temporal
resolutions. Underlying this technological development is the
idea that the most efficient and economic way to sample the
ocean is through networks of small, intelligent and cheap
ocean observing platforms [9].

Drifting profiling floats and gliders are the two newest
platforms mostly employed in oceanography. This is due to
their long autonomy at sea, up to a year and several months
respectively. Drifting profiling floats are designed to cycle
between the surface and some predetermined depth. The
float spends roughly 10 to 14 days drifting at depth and
returning periodically to surface to report using the Argos
system, its position and information about temperature and
salinity of the water column [3]. Emersion is obtained by the
drifter moving oil from an internal reservoir to an external
bladder, reducing the drifter’s density. Conversely, a latching
valve is opened to allow oil to flow back into the internal
reservoir for immersion. Speed of the float is usually of
several centimetres per second, depending on the current field
at the drifting depth. The spatial period of a cycle is order of
tens to hundred kilometres. Presently, a global array of 3000
free-drifting profiling floats at spacing of about 300 km by
300 km, allows continuous monitoring of the temperature,
salinity, and velocity of the world’s upper ocean.

Gliders are underwater autonomous vehicles designed to
observe vast areas of the interior ocean [12]. Gliders make
use of their hydrodynamic shape and small fins to induce hor-
izontal motions while controlling their buoyancy. Buoyancy
control also allows vertical motions in the water column. In
summary, buoyancy changes and hydrodynamic shape allow
gliders to carry out zig-zag motions between the surface
and bottom of the ocean with a net horizontal displacement.
Nominal horizontal speed is about 2 Km/h with a spatial
cycle period of 800 m for immersion depths up to 1000 m.
Unlike the case of profiling floats, networks of gliders are
still incipient but first attempts to settle them down have
already been done.

The advent of networks of drifting profiling floats and
gliders creates a demand for quantitative tools for optimizing
their use. Specifically, ways of allocating these observational
resources so as to maximize the information content of the
collected data are required. Previous studies have considered
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optimizing cast strategies for isolated networks of drifters [6]
and gliders [10], [11], but the synergy of combining both
observational networks has not been explored yet. Finding
an optimum cast strategy to simultaneously sample the ocean
with a network of profiling floats and gliders is of outstanding
relevance in oceanography, due to the still scarce obser-
vational resources. It also constitutes an interesting robotic
problem concerning fusion of data gathered by networks of
robotic platforms, spanning different ranges of space and
time variability in a spatially distributed system. Networks of
profiling floats are able to capture relatively large and slow
scales of ocean variability (one profile of the water column
every ten to fourteen days with a spatial period of tens to
hundreds kilometers) while small and fast scales are better
represented by networks of gliders (continous sampling of
the water column with spatial periods of few kilometers).
Compatibility between the range of space and time scales
spanned by the different networks is then of key relevance
in the optimization problem.

This study investigates the synergy of combining sam-
pling networks of gliders and profiling floats. To do that,
a procedure to find those glider trajectories that optimize the
overall sampling of the glider and profiling float networks is
proposed. Specifically, a genetic algorithm (GA) is employed
to find the best sampling strategy of a network of gliders in
a region where profiling floats are present. The GA methods
are a global optimization approach based on the idea of
natural selection. They were first proposed in [7] and detailed
described in [5]. GAs have already been applied successfully
to the path-planning problem of underwater mobile robots
[1], [13]. This paper is organized as follows. Section II
defines the problem to be solved. Results are shown in
Section III. Finally, Section IV gives concluding remarks.

II. COMBINING NETWORKS OF GLIDERS AND DRIFTING

PROFILING FLOATS

A set of M drifting profiling floats are considered in an
ocean region. The floats are unevenly distributed over the do-
main of interest, as a result of the spatial variability of ocean
currents that drift each float with different speed. The same
cycling period is assumed for all floats. Thus, the problem
of asynchronous data is not considered here. The observed
ocean field is supposed stationary during the cycling period,
i.e. floats provide a set of synoptic observations. Besides
the profiling floats, a network of Ng gliders is operated in
the region. The problem addressed here concerns planning
gliders trajectories to get, together with data coming from the
profiling floats, the best representation of the sampled field.
Oceanographically, the quality of the sampled field is given
in terms of the dynamical information that can be extracted
from the measured field. This is achieved assigning, from
the data gathered at arbitrarily locations, the best values at
grid points of a regular grid. This is done employing an
optimal interpolation scheme [2], [8] where an estimation of
the observed field at position (x,y) is obtained by a linear
combination of the observations:

F(x,y) = A−1Cxd (1)

A is the covariance matrix of observations, Cx is the co-
variance vector of observations with respect to the estimated
field and d is the vector of observations. In practice, the
covariance function is assumed to be a Gaussian function of
the distance between points, exp(−∆r2/κ), with a decorre-
lation scale,

√
κ , depending on the dynamical aspects of the

oceanographic processes present in the region. The quadratic
error of the estimation (called formal error) is:

e2(x,y) =< F2 > (1−CT
x A−1Cx) (2)

where < F2 > is the variance of the field. The formal error
depends on the number and location of observations in the
spatial domain, through the covariance matrix and vectors.
A reasonable election of objective function to optimize the
quality of the sampled field would be to consider the spatial
average of the quadratic error field (2), expressed as a
percentage of the field variance:

J =
1
N

N

∑
i=1

e2(xi,yi)
< F2 >

=
1
N

N

∑
i=1

(1−CT
x A−1Cx) (3)

With N the number of grid points of the regular grid where
the field is estimated. The number N (i.e. the regular grid
spacing) is fixed by the non-uniform spatial distribution of
profiling floats in the network. Specifically, the so called
random data spacing, ∆nr, can be used as a simple guide
for determining the node spacing in the regular grid. ∆nr

is the distance defined as the mean spacing derived by
distributing the original number of stations uniformly over
the data domain. It is given by [8]:

∆nr = LD
1+M

1
2

M−1
(4)

Where LD is the dimension of the domain. Typical bounds
on the ratio between the grid spacing ∆x and the data spacing
∆nr appear to lie in the range of 0.3-0.5 [2], [4], [8]. A ratio
of 0.4 is considered here.

A GA has been considered to optimize the objective func-
tion (3). In our case, the design variables are the locations
of gliders observations that define their trajectories in the
domain. For each glider, the total number of observation
points, Nv, is limited by the total distance the glider can
cover in one cycling period of the profiling floats divided
by the constant spatial lag between observations (Nv = TaVg

l ,
with Ta cycling period of floats, Vg glider speed and l spatial
lag). Appropriate election of this spatial lag constitutes a
goal of the present study and will be further discussed in
the next sections. Considering straight line paths between
two consecutive observation points, trajectories are defined
by an initial point and a vector of Nv angles [θ1,θ2, ...,θNv ].
With this notation, the spatial coordinates of the i-observation
point are given by:
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Fig. 1. a) Temperature field (oC), drifting current field, floats positions (stars) and initial location of glider deployments (circle), b) temperature field (oC)
interpolated to the grid defined from the configuration of the network of profiling floats.

xi = x0 +
i

∑
k=1

l cos(θk); yi = y0 +
i

∑
k=1

l sin(θk) (5)

With (x0,y0) being the coordinates of the loca-
tion of gliders deployment. If more than one glider
is considered the vector will include the angle vari-
ables required to define the trajectories for all gliders
[θ1,1,θ1,2, ...,θ1,Nv ,θ2,1,θ2,2, ...,θ2,Nv ...] specifying the first
subindex the glider and the second the angle variable.
Following the traditional approach in GAs, vectors of angle
variables are coded into single binary strings to constitute a
population. Given a particular population of binary strings
and their performance (i.e. the value of the objective func-
tion), a new generation is obtained by crossovers between
strings and mutations that flips ”0”s and ”1”s with certain
probability. In the present case, crossover can be compared to
small perturbations in the location of glider observations to
explore the neighbouring space of solutions, while mutations
provide a large scale exploration of the variable space.

III. RESULTS

The framework of the present study is a generic ocean
domain of 672 Km by 672 Km. This physical dimension
was chosen on the basis of the maximum distance covered
by a glider during a cycle period of the profiling floats (LD =
TaVg , LD is the dimension of the basin, Ta = 14 days is the
appropiate cycling period to sample mesoscale features in the
open ocean and Vg = 48 Km per day (Km/d) is the estimated
glider speed).

A temperature field showing complex spatial variability
has been randomly generated in the domain. The field has
been created with a Gaussian power spectrum (exp(−κK2/4)
with K wavenumber) and random phases, on a grid of
40×40 points corresponding to a spatial resolution of 17.2
Km (see Fig. 1a). This produces a temperature field with
Gaussian covariance function with decorrelation scale

√
κ .

The value of κ is 104 Km2 (
√

κ = 100 Km) corresponding
to temperature structures of spatial scales of around few
hundreds kilometers. These are the most energetic scales

in the real ocean and conform the so called mesoscale
processes.

A generic network of twenty profiling floats unevenly
distributed is considered in the domain (fig. 1a). Floats
locations resulted from drifting randomly distributed floats
during 20 cycles (280 days) in a background current field
(Fig. 1a). The current field has a characteristic spatial scale
of variability of around 100 Km and maximum speeds of 8.6
Km/d. Periodic boundary conditions were considered during
the drifting process to keep the number of buoys constant in
the domain. Thus, for each buoy leaving the region a new
buoy enters in the opposite size of the domain. The result-
ing float population is non-uniformly distributed, showing
higher concentration northward than southward. Unevenly
distributions of drifters usually occur in the real ocean, where
profiling floats concentrate in areas of fluid convergence.
Thus, regions of divergence are usually undersampled by
networks of profiling floats.

Following (4), a regular grid with spatial resolution ∆x =
77.4 Km (∆x = 0.4∆nr;∆nr = 193.5 Km) can be defined from
this network configuration. For future comparison, Fig. 1b
shows the temperature field interpolated to this grid.

Besides the floats, three gliders are considered to sample
the temperature field. This is considered as a reasonable
number of gliders for a usual research institute, although
networks with up to twelve gliders have already been ex-
perimented [10]. Sensitivity analysis has shown that the
spatial lag between glider observations should be order
of the resolution of the grid defined by the network of
floats. Spatial lags smaller than grid resolution, generate too
close observations driving to a singular covariance matrix A
that cannot be inverted. On other hand, important dynamic
structures could be lost if a coarser resolution is employed.
In this study, the distance between glider observations was
fixed to l =

√
2∆x = 109.5 Km, but any other spatial lag of

the same order than the grid resolution would be valid. Thus,
trajectories are defined by six observation points. Finally, it is
also assumed that gliders are initially deployed at the centre
of the basin.

The GA employed to optimize the objective function (3),
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Fig. 2. a) Evolution of the objective function versus the generation number in the GA, b) optimum paths of the three gliders obtained from the GA
(dashed circled lines, deployment at white circle).

Fig. 3. Estimated field and formal error expressed in percentage of the field variance obtained from the network of profiling flows, a) and b) respectively,
and obtained by optimum combination of the networks of profiling floats and gliders, c) and d).

has been initialized with a population of 300 individuals.
Crossover and mutation rates were fixed to 0.8 and 0.2,
respectively. Stopping criteria are given by an upper limit
of 200 generations or if the algorithm is stalled for 50
generations. Fig. 2a displays the performance of the GA
during the optimization process. Notice that the value of the
error in the first generation would correspond to the mean
formal error of a network with a total number of nodes
equivalent to the number of gliders plus floats, randomly
distributed. The algorithm was stalled after 153 generations.

Near optimum paths for the three gliders are plotted in
Fig. 2b. Essentially paths are designed to cover those areas
with lowest density of profiling floats. Improvement in the
interpolated field is quantitatively analysed in Fig. 3. Fig. 3a
and b shows the estimated field and formal error (expressed
as percentage of the field variance) respectively, when only
data from profiling floats are considered. The network of
profiling floats recovers part of the temperature structures at
north of the domain. These are the regions where a relatively
high density of floats exists. Conversely, poor estimations are
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Fig. 4. Estimated field and formal error expressed in percentage of the field variance obtained from the overall network of profiling flows and gliders

achieved at the south region. Specifically, Fig. 3b shows an
area of 300 Km by 500 Km southwest the domain where
the formal error is maximum. The mean formal error of the
temperature field estimated from the network of profiling
floats is 0.59.

Fig. 3c and d display the estimated field and the formal
error obtained when data from gliders following optimum
paths are included. Now, the estimated field closely resem-
bles the real field displayed in Fig. 1b. Glider data were
able to substantially reduce the formal error on those areas
poorly covered by the network of profiling floats, specially
at southwest region. The mean formal error of the estimated
field resulting from optimally combining both networks is
0.27.

The resulting overall network including observations from
gliders and profiling floats is characterized by a random
data spacing of ∆nr = 130.12 Km. Thus, the sampled field
can be optimally interpolated to a regular grid with slightly
higher resolution (∆x = 52.04 Km) than the one employed in
the optimization process, Fig. 4a. The mean formal error is
0.259, Fig. 4b. Notice that this network can be defined after
fixing the number of gliders observations, on the base on the
random data spacing of the profiling network.

IV. CONCLUDING REMARKS

This work has investigated the problem of finding opti-
mum cast strategies to sample the ocean, combining net-
works of profiling floats and gliders. The motivation for
this research is given by the recent emergence of these new
robotic platforms, supported by the idea that using networks
of distributed platforms is the most efficient way to sampling
the ocean. An added motivation is the need to optimize the
use of the scarce resources nowadays available to monitor
the ocean.

Networks of profiling floats and gliders already exist.
The former are constituted by drifting robotic platforms
with uncontrollable motion, being their spatial sampling
determined by the ocean currents. This induces unequal
sampling rates of the ocean regions. Conversely, gliders
observations can be planned a priori. For this reason, the
solution proposed here to optimally combine networks of
floats and gliders is to plan gliders paths in order to mitigate

sampling deficiencies of the network of floats. Specifically,
a GA has been employed to find those gliders paths that
reduces the mean formal error when the sampled field is
interpolated to a regular grid. Difficulties have been found
in this procedure due to the different range of spatio-temporal
scales of variability covered by both networks. Planning
high resolution observations for gliders would drive to a
singular covariance matrix, making interpolation unfeasible.
On other hand, little benefit is gain from sampling at coarse
resolutions. A sampling lag of gliders observations of the
same order than the grid size based on the random data
spacing of the network of floats, appeared an adequate
election to make compatible both networks. Results indicate
a substantial increment in the quality of the interpolated
field when glider data from optimum paths are included.
The procedure developed here contributes to a better use of
present sampling resources of the ocean.
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