
Autonomously Flying VTOL-Robots: Modeling and
Control

Konstantin Kondak, Markus Bernard, Nicolas Meyer, Günter Hommel

Technische Universität Berlin,
Real-Time Systems and Robotics Group,
Faculty of Electrical Engineering and Computer Science
Einsteinufer 17/EN10, Berlin 10587

Abstract— In this paper an approach for control of au-
tonomously flying robots with vertical take off and landing
capabilities (VTOL) is presented. After reviewing that the motion
description for different VTOL-robots is very similar, the general
control scheme for VTOL-robots is presented. This scheme is
based on linearisation and decoupling using inversion of the
system model blocks. To compensate the model uncertainties and
disturbances two additional parts are included into the controller:
a reduced state observer based on a robot motion model as well as
a disturbances observer and compensator for orientation control.
The presented approach was applied to two different VTOL-
robots: a helicopter and a quad-rotor. In real flight experiments
it was verified that the presented general but simple controller
provides sufficient performance for a wide range of practical
applications.

I. INTRODUCTION

Autonomously flying robots or Unmanned Aerial Vehicles
(UAV), equipped with different sensors, can be used in many
practical applications e.g. inspections, filming, deploying sen-
sor networks etc. In this paper, we address small size VTOL-
robots (up to 20 kg), see scheme in Fig. 1, which can produce
the lifting force F3 and three torques T1,2,3 independently.
The forces F1,2 can be also produced by the robot, but they
are not required to be independent of F3 and T1,2,3. The
most common examples of this class of VTOL-robots are
helicopters and quad-rotors.

There are many publications where important aspects of
modeling and control for small size helicopters are revealed,
see e.g. [1]–[3]. But one aspect of modeling is not covered
in the most of them: the inertial (gyroscopic) effects of the
main rotor which affect the behavior of the mechanical model.
For commercially available small size helicopters (without
bulky equipment fixed to the fuselage as shown in Fig. 8)
the following simple model approximates the behavior of the
whole system very well: a thin spinning disc (for the main
rotor) with a mass point (for the fuselage) in the middle, see
also our previous work [4], [5]. This important aspect is not
addresed in some papers probably because the authors wanted
to utilize the results achieved for full size helicopters without
necessary adaptation.

There are also many publications where modeling and con-
trol of quad-rotors are explained, see e.g. [3], [6]. Most of them
use the Draganflyer (a small, remote controlled, commercially

available quad-rotor toy) as basic platform. The Draganflyer
has an integrated PI-controller for rotation stabilization. Many
groups use the existing control interface of the Draganflyer and
therefore the integrated PI-controller. In this work, both the
stabilization of the orientation and the control of translation
are considered. The quad-rotor described in this paper with
a mass of 5 kg belongs to an other weight class than the
Draganflyer and is the heaviest autonomously flying quad-
rotor with electrical motors and fixed pitches known to the
authors.

In this paper we show that the motion description for dif-
ferent types of VTOL-robots is similar, Sec. II. After that, the
general control approach for VTOL-robots will be presented,
Sec. III. This approach is based on model linearisation by
means of inverse kinematics and dynamics. A reduced state
observer for estimation of the robot attitude (roll and pitch
angles) is presented in Sec. IV-A. The problem of attitude
estimation was studied by other groups before from different
perspectives: E.g. in [7] a fusion algorithm between the data
of gyroscopes and a delayed orientation data obtained from
an off-board vision system is studied. Another approach is to
fuse measurements taken from different inertial sensors, as in
[8] the data of gyroscopes and accelerometers and in [9] of
gyroscopes and inclinometers are used to estimate the attitude.
In contrast to other studies the presented state observer is based
on the motion description (translation and rotation) of the
VTOL-robot and needs only the robot position, its translation
velocity and rotation speeds as input. The forces and torques
generated by the robot are chosen as abstract system inputs.
This allows us to consider the modeling and control of
different VTOL-robots in a general way. In Sec. IV-B the
conversion from abstract to real system inputs is explained.
To compensate for model uncertainties and disturbances from
outside the mentioned reduced state observer as well as the
disturbances observer and compensator, described in Sec. IV-
C, are used. The presented approach was applied to two
VTOL-robots: a helicopter and a quad-rotor. For both types of
robots the performance of the presented approach was verified
in real flight experiments, Sec. V. Conclusions are drawn in
Sec. VI.

From our experience we can not confirm that control of
VTOL-robots belonging to the defined class requires complex
non-linear and/or adaptive techniques, at least if the con-
troller performance demonstrated in Sec. V is sufficient. In
our experiments the same controller has performed well in
different flight modes: take off, landing, hovering, forward
flight. Therefore we think also that for the defined class of
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Fig. 1. The scheme of the considered class of VTOL-robots.

VTOL-robots there is no need to design different models and
different types of controllers for each of these flight modes. We
will try to explain our point of view on the control problem for
the considered class of robots and will show the main common
issues and main differences to the work which can be found
in the literature.

II. MODELING

The model of the considered VTOL-robots is composed of
two main components: the mechanical model and the model
for generation of aerodynamic forces and torques. From exper-
imental results with helicopters and quad-rotors we concluded
that the generation of aerodynamic forces and torques, at
least for VTOL-robots under 20 kg, can be approximated with
simple algebraic relations. Therefore, the dynamics of the
system are mostly determined by its mechanical model. F3

and T1,2,3 will be considered as abstract system inputs. In
Sec. IV-B the conversion from abstract to real system inputs
will be explained.

A. Kinematics

We introduce six generalized coordinates qi, i = 1, . . . , 6
and six generalized velocities ui, i = 1, . . . , 6. The generalized
coordinates q1,2,3 describe the position of the reference point
CM (center of mass) and the generalized velocities u1,2,3 –
its motion in an inertial frame N . The generalized coordinates
q4,5,6 are Euler-angles defined about axes f1,2,3 describing
the orientation of the fuselage or of the frame F in N . The
angular velocity of the frame F in N is described by means of
generalized velocities u4,5,6: ωF−N = u4f1+u5f2+u6f3. This
definition of generalized coordinates and velocities yields the
following kinematic equations for translation: q̇1,2,3 = u1,2,3,
and for rotation:

q̇4 = (u4 cos (q6) − u5 sin (q6)) / cos (q5)
q̇5 = u4 sin (q6) + u5 cos (q6) (1)

q̇6 = u6 + tan (q5) (u4 cos (q6) − u5 sin (q6))

B. Translation dynamics

The following equations describe the translation dynamics
of the reference point CM in frame N :⎛

⎝
u̇1

u̇2

u̇3

⎞
⎠ M = Cf−n

⎛
⎝

F1

F2

F3

⎞
⎠ +

⎛
⎝

0
0

−g ∗ M

⎞
⎠ (2)

where Cf−n is the orientation matrix of the frame F relative
to N and M is the mass of the whole system.

C. Rotation dynamics for a helicopter

The mechanical model of a helicopter is composed of three
rigid bodies: fuselage, main rotor and tail rotor. In [4], [5] the
authors presented the contribution estimation of these three
rigid bodies to the rotation dynamics. The result was that for
almost all commercially available small size helicopters the
following is true: due to the dominance of the inertial effects
of the spinning main rotor only the main rotor should be
considered as a rigid body in equations for rotation dynamics;
the fuselage can be modeled as a mass point and the mass of
the tail rotor can be simply neglected. Only if some devices
with a distributed mass, like a safety cage as shown in Fig. 8,
dramatically increase the inertial numbers of the fuselage, the
fuselage should be considered as a rigid body like the main
rotor.

The rotation dynamics for a general model composed of
two rigid bodies (fuselage and main rotor) have the following
form:

T1 + (K156u6 + K15) u5 + K1p4u̇4 = 0 (3)

T2 + (K246u6 + K24) u4 + K2p5u̇5 = 0 (4)

T3 + K345u4u5 + K23u̇6 = 0. (5)

The constant coefficients Kxxx depend on helicopter param-
eters as well as on rotation speed of the main rotor and are
explained in [4].

To simplify the analysis of rotation dynamics and controller
design the following assumption will be made:

u6 = const. (6)

This assumption means that in each flight maneuver the
rotation speed around vertical fuselage axis f3 is zero or
constant. This can be achieved by using a separate control loop
for u6. In Eq. (5) the torque T3 can be expressed as follows:
T3 = FTR

2 ∗ L + T MR
3 . The force FTR

2 generated by the tail
rotor, will be exclusively used as input to control u6 (L is
the distance between the main and tail rotor shafts). The drag
torque of the main rotor T MR

3 and the term K345u4u5 will
be considered as disturbances. Eq. (5) shows that, regarding
FTR

2 , u6 behaves like a simple integrator and therefore can
be easily controlled with a PI-controller.

Due to assumption (6) the rotation dynamics for axes f1,2

can be treated independent from rotation about axis f3, and as
Eqs. (3), (4) show, is linear.

As mentioned above, for most of small size helicopters
the inertial effects of the fuselage can be neglected if the
rotation dynamics are considered. The analysis of Eqs. (3), (4)
shows, see [4], [5], that for this case, the rotation dynamics for
axes f1,2 can be well approximated with the following simple
algebraic relations:

u4 = − 1
2 IMR

11 ωMR
T2; u5 =

1
2 IMR

11 ωMR
T1, (7)

where IMR
11 is the inertia number of a solid disc with the same

mass distribution as a spinning rotor with respect to the center
of mass and to an axis which is perpendicular to the rotation
axis of the rotor; ωMR is the rotation speed of the main rotor.
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Fig. 2. Translation control.

D. Rotation dynamics for quad-rotor

The mechanical model of the quad-rotor is composed of
five rigid bodies: four rotors and a fuselage. Two rotors have
positive and two have negative rotation speed. Due to the
compensation of contributions from the first two rotors by
the second two rotating in the opposite direction, the rotation
dynamics for the considered quad-rotor are given mostly by
the inertial effects of the fuselage and is well approximated
by Euler equations:

T1 +(I33 − I22)u5u6 − I11u̇4 = 0 (8)

T2 −(I33 − I11)u4u6 − I22u̇5 = 0 (9)

T3 +(I22 − I11)u4u5 − I33u̇6 = 0 (10)

where Iii, i = 1, 2, 3, are the inertia numbers with respect
to the center of mass and the axes f1,2,3. Like in case of the
helicopter, we assume that u6 will be controlled by a separate
control loop so that (6) holds, and the rotation dynamics of
the quad-rotor can be considered as linear.

III. CONTROL

The motion of the considered VTOL-robots is controlled by
adjusting the orientation of the robot (or direction of the force
F3) and the value of F3. This control scheme is shown in
Fig. 2. The inputs are the desired position q∗1,2,3 and velocity
u∗

1,2,3 of the robot’s reference point. As mentioned in Sec. II-
C and II-D the orientation control for axis f3 is performed
using a separate control loop. This control loop is not shown
in Fig. 2. The control scheme in Fig. 2 is composed of inner
and outer loops. The outer loop controller Rtrans uses the
position and velocity errors as inputs and calculates the needed
translational accelerations in order to reduce these errors. The
resulting accelerations are converted into the orientation of the
robot plane q∗4,5 and value of the lifting force F3 in the block
F−1

123. The orientation of the robot plane is controlled in the
inner loop by means of controller Rori which computes the
input torques T1 and T2.

A. Translation control

As can be seen in Fig. 2, the translation controller is
composed of two blocks: F−1

123 and Rtrans. The equations for
the block F−1

123 can be found by solving Eqs. (2) for q∗4,5 and
F3 with assumption that F1,2 = 0:

F3 = M

√
u̇2

1 + u̇2
2 + (u̇3 + g)2

q5 = arcsin(M
u̇1

F3
)

q4 = − arcsin(M
u̇2

F3 cos (q5)
)
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Fig. 3. Control of orientation angles q4,5.
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Fig. 4. The structure of the decoupling block D.

For the block Rtrans a simple PID-controller is used. The cal-
culation of the coefficients for this PID-controller is explained
in Sec. III-C.

B. Orientation control for axis f1,2

The scheme for the control of orientation angles q4,5 is
shown in Fig. 3. The controller is composed of blocks Q−1, D
and two feedback loops with gains Ku, Kq for rotation speeds
u4,5 and orientation angles q4,5 respectively. The rotation
dynamics for axes f1,2 are described by Eqs. (3), (4) or by
Eqs. (8), (9). In Fig. 3 these equations are represented by the
block W. The block D of the controller is used to decouple the
plant between T1,2 and u4,5. This decoupling can be performed
by means of known techniques from linear control theory. In
this work block D was computed in such a way that the
decoupled plant between w4,5 and u4,5 becomes equivalent
to two independent integrators. This allows the usage of an
additional feedback loop based on a simple P-controller with
gain Ku to control u4,5, as shown in Fig. 3. The structure
of the decoupling block D is shown in Fig. 4. The transfer
functions Rij for the helicopter are computed using Eqs. (3),
(4) with u6 = 0 and have the following form:

R11 = −K1p4; R12 = −K15

s
; R21 = −K24

s
; R22 = −K2p5

(11)
In the same way the transfer functions Rij for the quad-rotor
are computed using Eqs. (8), (9) :

R11 = I11; R12 = R21 = 0; R22 = I22 (12)

The block Q−1 inverts the kinematics of the robot. The
equations for this block are obtained by solving the first two
equations in (1) for u4,5.

If a helicopter without bulky equipment fixed to the fuselage
is used, the rotation dynamics are described by Eqs. (7) and
the control of q4,5 can be simplified even more: Due to Eqs. (7)
and QQ−1 = 1, the plant between e4,5 and q4,5 in Fig. 3 is
equivalent to two parallel integrators. Therefore the control of
orientation angles q4,5 can be achieved with a P-controller, and
the inner feedback loops with the gains Ku can be omitted.
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C. Calculation of the controller coefficients

After inserting the content for blocks Rtrans, F−1
123 and

Rrot in Fig. 2, the general control scheme can be represented
with a linear system shown in Fig. 5. KP , KI and KD are the
gains of the PID-controller from the block Rtrans; Kq, Ku are
the gains of the orientation controller for q4,5, and τ0 is the
time constant of the prefilter G0. The unknown coefficients
KP , KI , KD, Kq and Ku can be calculated using methods
of the linear control theory. In this paper, the simple pole
assignment method was used. The time constant τ0 of the
prefilter could be chosen according to the rule τ0 = τsys/5.

IV. IMPLEMENTATION OF THE CONTROLLER

A. State observer

The two reasons for using a state observer are: determina-
tion of state variables which can not be measured directly, and
adjustment of the state variables to the model which was used
for the controller design. The usage of a similar system model
in the state observer as for the controller design corrects the
state variables in such a way that the system behavior appears
to the controller closer to the behavior of the model used for its
design. In some cases this allows to increase the performance
of the closed loop system.

We used the reduced Luenberber observer to determine the
orientation angles q4,5. For that Eqs. (1) and (2) are linearized
in the point q4,5,6 = 0. The observer inputs are q1,2, u1,2,
u4,5 and its outputs – q4,5. For computation of the observer
gain matrix L, the observer poles should be specified. The
limit for the increasing of the observer poles (or increasing the
gains in L) is given by the measurement noise of the observer
inputs. To be able to rotate the robot about the vertical axis
f3 we have to transform the observer inputs into a coordinate
system in which the angle q6 is always 0. Fig. 6 shows the
observed and directly measured (possible with our motion
tracking system) angle q4 from a real flight experiment with a
helicopter, see Sec. V for more details about experiments and
observer parameters.

In Fig. 6 we can see why the observer can improve the
controller performance. The tail rotor of the helicopter pro-
duces a force F2 which tries to move the helicopter sidewards
and should be compensated in hover configuration by the roll
angle q4 (note that the mean value of measured q4 in Fig. 6 is
not zero). In contrast to the direct measurement, the observer
calculates the angle q4 considering the motion of the system.
That means that in the hovering mode, where no translation

0 500 1000 1500 2000
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0

0.1

0.2

0.01 sec

ra
d

q
4

observer q
4

Fig. 6. Estimated and real orientation angle q4 of the helicopter recorded in
an autonomous flight.

is performed, the projection of the lifting force F3 onto the
axis n2 and therefore also the observed angle q4 will be zero.
The measured value of q4 does not fit the model which was
used for controller design and therefore this discrepancy in q4

should be compensated by the controller. The mean value of
q4 calculated by the observer is approximately zero.

The second advantage of this observer is that only the
gyroscopes are needed to determine the orientation angles q4,5.
Therefore no accelerometers are needed and the IMU of the
robot can be simplified compared to the usual approach to
compute q4,5 using both the gyroscopes and accelerometers.
Of course, the presented observer requires the determination
of the robot position.

B. Calculation of the real input signals

The abstract system inputs (or controller outputs) T1,2,3 and
F3 should be recalculated into the real system inputs. Our
helicopter, see Fig. 8, has a 120◦ swash-plate with three points.
The real input are the four servo signals Sxxx:

Snick = F3 ∗ kcol + T1 ∗ kcyc + �nick (13)

Srl = F3 ∗ kcol − 0.5 ∗ T1 ∗ kcyc + T2 ∗ kcyc + �rl

Srr = F3 ∗ kcol − 0.5 ∗ T1 ∗ kcyc − T2 ∗ kcyc + �rr

Stail = T3 ∗ ktail + �tail.

The subscripts denote the corresponding servo (rl denotes roll
left, rr roll right, nick nick, col collective and cyc cyclic). The
constant coefficients kxxx and constant offsets �xxx are found
by experiments. In the last equations the aerodynamics and the
non-linearities in the lever connections between servos and ro-
tor blades are approximated with simple linear functions. The
experiments show, that this simple approximation works well
in the relevant operation range. The elaborated modeling of the
effects on the main rotor is problematic (among other things
because of the unknown Bell-Hiller bar motion which depends
on several unknown parameters) and, to our experience, does
not improve the controller performance.

Our quad-rotor, see Fig. 9, is driven by four motors with
fixed pitch propellers. The real system inputs are the signal
for the motor controllers, see also Sec. V. First the four forces
f1,2,3,4 to be generated by the propellers are calculated:

f1 = F3/4 − kT12 ∗ T2 + kT3 ∗ T3 (14)

f2 = F3/4 + kT12 ∗ T1 − kT3 ∗ T3

f3 = F3/4 + kT12 ∗ T2 + kT3 ∗ T3

f4 = F3/4 − kT12 ∗ T1 − kT3 ∗ T3.
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From the forces f1,2,3,4 the rotation speeds ω1,2,3,4 of the
motors are calculated: ω1,2,3,4 = kω ∗ √

f1,2,3,4 . After that
the signals for the motor controllers are generated as follows:
S1,2,3,4 = km ∗ω1,2,3,4 +�m. The constant coefficients kT12,
kT3, kω , km and �m were determined by experiments.

C. Model uncertainties and disturbances

The presented control approach is based on the inversion
of the system non-linearities. In several papers the usage
of such inversions is claimed to be sensitive to parameter
uncertainties of the system. For that reason, more complicated
non-linear methods or/and parameter estimation techniques are
considered. Analyzing our experiments we can not confirm this
point of view.

As explained above, the non-linearities of the model are
compensated by blocks F−1

123 and Q−1. The block Q−1

contains only the geometrical relationships describing the ori-
entation of the frame F relative to frame N and is independent
of any system parameters. Of course, this compensation does
not work if the orientation angles can not be measured or
observed properly. The same argumentation can be applied
for compensation of F123 with F−1

123. The only one system
parameter in F−1

123 is the system mass which can be easily
measured precisely enough. In our opinion the elements of
the system model described in Sec. II and III do not need to
be estimated, and can be taken from the presented model.

As explained in Sec. IV-B, the calculation of the real input
signals from the computed abstract inputs F3, T1,2,3 is done by
means of rough approximations which cause the discrepancies
between the system model and the real system. To deal with
these rough approximation and disturbances from outside a
disturbances observer and compensator can be used. Inspired
by work [10], a well known common scheme shown in Fig. 7
was applied to our systems. The observer and compensator
are denoted by the gray rectangle, G1(s)G2(s) is the transfer
function of the system. The disturbances and influences from
parameter uncertainties are modeled by means of the unknown
signal d acting on the system input; r is a measurement noise.
The signal d̂ is the observed disturbance which is used as a
correction for the actual system input w4,5. Q(s) is a low pass
filter and E(s) the estimated time delay neglected by modeling
the system part G1(s). Theoretically the disturbances observer
and compensator in Fig. 7 can be used before each inversion
block, if the corresponding reference signal u4,5 is available.
The presented equations for generation of F3 and T1,2,3,
Eqs. (13) and (14), are the most inaccurate part of the system
model. Therefore the disturbances observer should be used
before the blocks D and F−1

123, see Fig. 3 and 2. In our

Fig. 8. Helicopter during autonomous flight.

Fig. 9. Quad-rotor during autonomous flight.

experiments the usage of the disturbances observer before
the block D (generation of T1,2) has improved the controller
performance, especially for the quad-rotor. For that case we
have: G1(s) = 1/s, Q(s) = 1/(Ts + 1) where T is a
small constant. The compensation of disturbances and system
uncertainties before block F−1

123 has not increased the system
performance notably.

V. EXPERIMENTAL RESULTS

The presented control approach was verified in real flight
experiments with two types of VTOL-robots: a helicopter and
a quad-rotor.

In Fig. 8 the electrical model helicopter Logo14 rigidly fixed
in a safety cage (made of carbon tubes, mass ca. 1.2 kg) is
shown. The diameter of the main rotor of the helicopter is
1.1 m and the total weight of the system with safety cage is
about 4.8 kg. The helicopter is equipped with the commercial
gyroscope based controller GY401 for u6 as well as with the
motor speed controller Jazz 55-10-32 which ensures constant
rotation speed of the main rotor. The presented experiments
were carried out with ωmr = 2000 rpm.

In Fig. 9 our quad-rotor is shown. It is composed of an
aluminum frame with dimensions 0.8 × 0.8 × 0.2 m, four
brushless motors Kontronik KORA 25-16, each driven by
the controller Jazz 55-10-32 with switched off rotation speed
control mode and of four fixed pitch propellers with the
diameter of 39 cm. The mass of the quad-rotor is about 5 kg.

In the conducted flight experiments the position of VTOL-
robots was determined by an optical motion tracking system,
designed in our group. The translation velocities were deter-
mined by first order differentiation of the corresponding coor-
dinates. The angular speeds u4,5 were measured by onboard
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gyroscopes ADXRS 300. The orientation angles q4,5 were
calculated using a state observer described in Sec. IV-A. The
motion-tracking system calculates all three orientation angles
q4,5,6: q6 was used for control, q4,5 only as reference signals
for the assessment of the state observer.

The performance of the proposed control approach is illus-
trated in Fig. 10, where the most difficult case – the position
control – is shown (compared to velocity control). The Fig. 10
shows the test flight of the quad-rotor. In this test flight the
desired position of the quad-rotor was several times changed
with a step function. The desired coordinates were changed
as follows: q1,2 simultaneously, then q1, after that q2 and
again q1,2 simultaneously. The altitude q3 had to be constant
during the whole flight. The desired positions are reached in
a specified time with zero offset. The maximal deviation from
the desired value is ca. 10 cm. The curves for the helicopter
flight are very similar to those in Fig. 10 and therefore are
not shown here. For both robots the poles of the closed loop
system were specified at −1. The poles of the observer for
helicopters are set to −10 and for the quad-rotor to −3 (due
to the larger noise of gyroscopes). The constant T in the
disturbances observer described in Sec. IV-C was set to 0.02
for the quad-rotor and the time delay in G1(s), see Fig. 7,
was estimated with 150 ms. The disturbances observer for the
helicopter has not increased the performance significantly.

In the conducted flight experiments we could verify that the
helicopter and the quad-rotor can be controlled with the same
control approach presented in Sec. III. The reduced observer,
presented in Sec. IV-A, works well with both systems, but
especially for the helicopter it increases significantly the
position tracking performance. The disturbances observer has
also improved the controller performance, especially for the
quad-rotor. The controller seems to be robust to the parameter
variation of the systems as well as of the controller itself.
On the other hand we were not able to achieve positioning
precision better than 0.1 m. At the moment we are not sure of
the main reason for this limit. But this precision is sufficient for
most practical applications. The coefficients in approximations
(13) and (14) for the calculation of the real system inputs could
also be changed in some range and therefore can be easily
determined in experiments.

VI. CONCLUSION

In this paper it was shown that for a large class of flying
VTOL-robots a quite simple general approach for modeling
and control leads to performance which is sufficient for most
practical applications. Based on experimental results (not

presented in this paper) it was stated that the aerodynamics
can be adequately approximated with linear functions and
that the behavior of the considered VTOL-robots is essentially
determined by their mechanical model. It was reviewed, that
under weak assumptions about the rotation speed about the
vertical axis, the rotation dynamics of the mechanical model
are linear. The kinematic equations of rotation are highly non-
linear. But these non-linearities originate from the geometrical
transformation of vectors from the robot into the inertial frame.
These non-linearities do not depend on robot parameters and,
therefore, their inversion can be used for compensating these
non-linearities even if the parameters of the system are un-
known. A state observer for orientation angles was presented.
This observer calculates the pitch and roll angles without using
accelerometers, in contrast to commonly used IMU-devices. It
was shown, that using this state observer the performance of
the closed loop system is increased. The rough approximations
modeling the generation of aerodynamic forces, as well as the
non-modeled influences from outside were compensated by
the additional disturbances observer and compensator.

The methods and algorithms presented in this paper were
verified in flight experiments using VTOL-robots with all six
degrees of freedom. Practical issues, like sensor noise, input
limits, etc., are very important for the assessment of different
control methods for VTOL-robots. Very often the experiments
using robots with some fixed degrees of freedom do not reveal
relevant aspects of the problem. In general, fixing of some
degrees of freedom means reducing the order of the system
and therefore oversimplifies the problem.
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