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Abstract— This paper studies optimal inventory rationing poli-
cies for a retailer of perishable products who sells through its
own stores and third party websites by an affiliate program.
By posting on partners’ webpages, an affiliate program allows
the retailer to attract more customers who otherwise would be
missed. However, the retailer needs to pay out a commission for
each sale originated from the website operator that participates
in the affiliate program. Thus, the net revenue of selling one
unit of product to an online “referral” (online customer) is less
profitable than that to a customer from a physical store. When
the inventory at stores is running low, the retailer may further
refer the online request to somebody else for fulfilling, which is
equivalently to say that the retailer can reject online customer
requests. Therefore, upon the arrival of any demand through
the affiliate program, the retailer needs to decide whether or
not to accept it; and if so, assign which of multiple outlets for
the fulfillment. Based on a discrete-time dynamic programming
model, the optimal admission policy of the retailer is analyzed in
this paper, which is shown to be a two-dimensional threshold
policy. The structural properties of the revenue function are
analyzed, and numerical examples are given to show the revenue
impact of optimal admission control.

I. INTRODUCTION

Consider a retailer which sells through both physical stores

and an online outlet, or with the so-called “clicks-and-bricks”

business model (Gulati and Garino, 2000). The online outlet

does not carry any inventory and operates under a drop-

shipping arrangement with its physical stores, i.e., all online

orders are fulfilled by the physical stores. In addition, the

online outlet also uses third-party websites with some Affiliate

Programs (APs) to attract more online customers. However, a

certain amount of commission is incurred for each sale that

comes from an AP. The extra cost that is associated with

shoppers who first click through to the third-party websites

makes them less attractive as customers than those who

directly visit the etailer’s online or physical store. Therefore,

the fulfillment of in-store demand is always a priority relative

to the AP’s drop-shipping request. When the stock runs “low”,

the retailer has to decide whether to fulfill the AP’s demand

or further refer it to other sources (i.e., reject it) such as a

distributor that supplies the retailer. Two interesting issues

emerge from this scenario: given the initial inventory level,

should the retailer accept the AP’s order or reserve the item

for its own future demand? If the drop-shipper decides to fulfill

the online order, then which physical store should be assigned

to execute the fulfillment?

This paper seeks to shed insight into the problems by

considering a stylized drop-shipping model as follows. A

retailer operates two physical stores which are located in

different territories (say, territory 1 and 2) as well as an online

store which keeps zero inventory. Thus, online orders to the

online outlet will be fulfilled by drop-shipping of one of the

physical stores, which depends on where an online customer

originates – if she come from territory 1 (or 2), then her order

will be met by the store in the same territory unless it runs

out of stock. We do not differentiate two types of demands,

i.e., selling either from the physical stores or from the online

store earns the retailer the same revenue for each sale. Another

stream of online orders is directed from other websites under

an affiliate program, which is less profitable. We will call

demand from this stream online demand for simplicity, and

call all of the third party websites the etailer. In other words,

the less profitable demand stream generates online demand to

the etailer which then forwards it to the retailer for fulfillment.

The product is seasonal and has a finite selling period during

which it is un-replenishable. The retailer dynamically rations

the demand from the etailer and assigns one of the stores

for the order-fulfillment, based on the inventory levels of

both stores and the information regarding where the online

customer comes from, with the objective of maximizing its

expected revenue.

We formulate the above setting as a discrete-time dynamic

programming model which addresses the optimal admission

policy of the retailer. It is shown that the optimal admission

policy is of the two-dimensional threshold type. The structural

properties of its revenue function are also characterized. In the

rest of the paper, Section II briefly surveys the related litera-

tures. Section III formulates the model and optimal admission

policies. Numerical experiment is conducted in Section IV

and finally, concluding remarks are given in Section V. All

technical proofs are available from the authors.
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II. LITERATURE REVIEW

The research presented in this paper relates closely to

two areas: order fulfillment for online retailers, and revenue

management and inventory rationing.

A. Order Fulfillment of On-line Retailing

It has been widely recognized that the potential integration

of the on-line and physical operations has provided many

traditional retailers with opportunities to both increase their

market share and improve service. However, the academically-

oriented research on such channels coordination and related

issues focuses largely on the marketing aspect of Internet

retailing, and is mostly qualitative in nature (for example, see

Gulati and Garino, 2000; Ulaga, 2004; Biyalogorsky and Naik,

2003; and de Koster, 2003). Studies published in traditional

operations management journals on the subject of electronic

retailing are scant, and the literature which addresses the order

fulfillment issues of online retailers through mathematical

modeling is even more scant.

Through simulation Bendoly (2004) studies a wide range of

substitute-inventory availability scenarios, where the multiple

decentralized neighboring stores are sources for the on-line

fulfillment of any given order, and the in-store demand is

always a priority relative to on-line orders at any given store.

In Ayanso et al. (2004), the online retailer uses both in-house

and “drop-shipping” as order fulfillment options. Based on a

simple mathematical model, Chen et al. (2005) use numeri-

cal experiments to assess two inventory strategies of online

retailers: carrying own inventory and outsourcing inventory

to another party. Netessine and Rudi (2003) evaluate three

inventory options of the online retailer: outsourcing inventory,

i.e., drop-shipping; carrying own inventory; and a combination

of both, i.e., the retailer uses local inventory as a primary

source and relies on drop-shipping as a backup. Netessine and

Rudi (2004) analyze the interaction between a wholesaler and

an online retailer for a drop-shipping supply chain, where the

retailer is involved in the marketing and advertising activities

and the wholesaler takes care of the fulfillment business.

B. Revenue Management/Inventory Rationing

The task of dynamically allocating inventory to different

demand classes lies at the heart of many revenue management

models. Examples of dynamic allocation models include Lee

and Hersh (1993), Subramanian et al. (1999), Feng and Xiao

(2000). Interested readers are referred to McGill and van Ryzin

(1999) and Talluri and van Ryzin (2004) for an in-depth survey

of revenue management problems with multi-fare classes.

Inventory rationing is also a revenue management method-

ology, where some inventory is reserved in anticipation of

demand from higher margin customers. Veinott (1965) was

one of the first to consider multiple demand classes in a multi-

period model. Topkis (1968) extends Veinott’s work by con-

sidering how inventory should be allocated between demand

classes. With the initial quantity of inventory being given,

Gerchak et al. (1985) study the dynamic optimal rationing

policies within a fixed time horizon like ours in this paper.

Frank et al. (2003) consider a periodic review inventory system

with two priority demand classes, one deterministic and the

other stochastic. The decision maker has the option to ration

inventory to the stochastic source.

The research presented in this paper differs from the previ-

ous revenue management and inventory rationing literatures in

that most of the previous models focus on the capacity control

of a single resource. In contrast, we analyze a two-resource

capacity control problem, in which the physical retailer has

multiple stores that can be assigned to fulfill the etailer’s drop-

shipping requests. The retailer optimizes the global revenue

by dynamically assigning one of the stores to fulfill the online

order.

III. THE MODEL

A. Description, Notation and Assumptions

The retailer operates two physical stores which are located

at territories 1 and 2, respectively. The two stores have Q1

and Q2 units of identical products to sell within a finite time

horizon [0, T ] without any replenishment opportunity. The

physical transshipment of inventory between the two stores is

not allowed (i.e., transhipment is rather expensive). The retail

prices charged by different stores can be different, denoted as

pi, i = 1, 2, which are fixed at all times. For simplicity, assume

demand at a physical store (including demand originated from

the online outlet but better to be delivered by that physical

store) follows a homogeneous Poisson process with arrival rate

λi, i = 1, 2. However, the model is readily to be extended to

consider time-varying demand rates.

The online orders through the etailer are fulfilled under the

drop-shipping agreement with the retailer. The etailer’s online

demand rate is denoted as λe, which consists of customers

coming from both territories 1 and 2. Denote by β1 and β2

the percentages of online customers who come from territory

1 and 2, respectively, where β1+β2 = 1. Therefore, the arrival

rate of online customers from territory i (= 1, 2) is βiλe.

For any product sold through the etailer, the retailer has to

share some profit with the etailer. Generally, it is much more

economical and preferable to supply the online customers from

territory i(= 1, 2) by store i, since it saves delivery costs and

provides shorter response time. Let wi and ci(i = 1, 2) denote

the unit revenue deductions for each unit being sold by store

i to territory-i and territory-j(= 3− i) online customers. That

is, to deliver one unit of product to online customers located in

territory 1 (or 2), if store 1 (or 2) is assigned, the unit revenue

that can be collected will be p1 −w1 (or p2 −w2); otherwise

if store 2 (or 1) is assigned, the unit revenue will be p2 − c2

(or p1 − c1). We assume the following assumptions:

Assumption 1: For each physical store i (= 1, 2), the unit

net revenue from selling to the online customers of the same

territory is larger; i.e., w1 < c1 < p1, and w2 < c2 < p2.

Assumption 2: For each online demand coming from terri-

tory i (= 1, 2), the unit net revenue is larger if it is fulfilled

by the store that is located within the same territory; i.e.,

p1 − w1 ≥ p2 − c2, and p2 − w2 ≥ p1 − c1.
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Each customer demand from either channel is of unit size.

For tractability, we assume that the three customer flows, λ1,

λ2, and λe are independent of each other. We consider a

discrete-time setting, i.e., the time horizon [0, T ] is divided

into small intervals of equal length ∆t, each of which will be

called a period. ∆t is sufficiently small such that not more

than one demand arrives within each period. Without loss of

any generality, we let ∆t = 1. (This can be done by re-scaling

time and adjusting inter-arrival times of customer arrivals). A

slight modification will convert the discrete time model to a

continuous time model (see Gerchak et al., 1985).

Suppose at the beginning of period t, the inventory levels

at each store are n1 and n2, respectively, then the state of

the retailer can be characterized by a three-dimensional vector

(t, n1, n2), where t ∈ {1, 2, · · · , T}, 0 ≤ ni ≤ Qi(i = 1, 2).
For notational convenience but without loss of generality, the

salvage value of any items that are left unsold at the end of

the sales horizon is assumed to be zero. The retailer is risk-

neutral, and seeks to maximize its own expected revenue of

the two stores, by dynamically rationing the finite inventory

to its own demand and the etailer’s online demand.

B. Optimal Admission Policy

Let Rt(n1, n2) be the maximal total expected revenue of

both stores that can be achieved in interval [t, T ] when the state

is (t, n1, n2). In the last period, the retailer should accept any

request as long as there are some inventories left (or else, the

inventories will become worthless). Because the net revenues

of assigning different stores to supply online customers from

different territories may not be the same, the retailer should

arrange the store with the higher margin to supply the online

customer. Conditioning on all the possible events that may

happen in period T , we have

RT (n1, n2) =






















0, (n1 = 0, n2 = 0);
λ1p1 + λeβ1(p1 − w1) + λeβ2(p1 − c1), (n1 > 0, n2 = 0);
λ2p2 + λeβ1(p2 − c2) + λeβ2(p2 − w2), (n1 = 0, n2 > 0);
λ1p1 + λ2p2 + λeβ1(p1 − w1) + λeβ2(p2 − w2),

(n1 > 0, n2 > 0).

Next we proceed to analyze the revenue functions for 1 ≤
t ≤ T −1. The recursive formulation depends on the inventory

levels of both stores. For n1 = n2 = 0, i.e., both stores have

sold out the product, it is apparent that

∀t, 1 ≤ t ≤ T − 1, Rt(0, 0) = 0. (1)

When one of the stores (say, store 1) runs out of its

inventory, i.e., n1 = 0, upon the arrival of any order-fulfillment

requests from the etailer and after observing where the online

customer comes from, the retailer decides whether or not

to supply the online customer with store 2. For notational

convenience, we denote

R1
t (n1) := Rt(n1, 0), R2

t (n2) := Rt(0, n2).

Consider the case when ni > 0, nj = 0(i = 1, 2, j = 3 − i).
The problem faced by the retailer is similar to the inventory

rationing with 3 demand classes: the in-store demands, the

online demands from territory i, and the online demands from

territory j. Following the literature on revenue management,

we have for ∀ni, ni > 0, nj = 0:

Ri
t(ni) = Ri

t+1(ni) + λi(pi + Ri
t+1(ni − 1) − Ri

t+1(ni))
+λeβi(pi − wi + Ri

t+1(ni − 1) − Ri
t+1(ni))

+

+λeβj(pi − ci + Ri
t+1(ni − 1) − Ri

t+1(ni))
+,

(2)

where a+ := max(0, a). The following optimal decision rule

and structural properties regarding the revenue functions are

well known and easy to verify.

Decision Rule 1: When store j’s inventory level decreases

to zero, store i holds a positive inventory (j = 1, 2, i = 3−j),
and an online order from territory k (= 1, 2) arrives in period

t, the retailer should assign store i to fill the online customer

if k = i and the following relation holds:

pi − wi + Ri
t+1(ni − 1) ≥ Ri

t+1(ni);

the retailer should assign store i to fill the online customer if

k = j and the following relation holds:

pi − ci + Ri
t+1(ni − 1) ≥ Ri

t+1(ni);

otherwise, the retailer should reject the etailer’s drop-shipping

request.

Theorem 1: The value function Ri
t(ni) exhibits the follow-

ing structural properties, i=1,2:

(a) Ri
t(ni) is increasing in ni and decreasing in t;

(b) Ri
t(ni) − Ri

t(ni + 1) is increasing in ni and t.
Here and below, “increasing” and “decreasing” are used

in the non-strict sense, meaning non-decreasing and non-

increasing, respectively. Theorem 1 means that the revenue

function Ri
t(ni) is increasing concave in the inventory level

ni, and decreasing concave in the time period t.
Next, we proceed to investigate the cases when both stores

hold inventories (i.e., n1 > 0, n2 > 0) at the beginning of

period t. When an online demand occurs, the retailer needs

to decide not only whether or not to accept it, but also which

store to fulfill the order (if it decided to accept). Therefore,

the retailer faces three options: arrange store 1 to fulfill the

order, arrange store 2 to fulfill the order, or just reject the

drop-shipping request. The optimal decision depends on the

relative outcomes of the three options. Conditioning on the

possible events in period t, we have the following recursive

formulation:

Rt(n1, n2) = λ1[p1 + Rt+1(n1 − 1, n2)]
+λ2[p2 + Rt+1(n1, n2 − 1)]

+λeβ1 max







p1 − w1 + Rt+1(n1 − 1, n2)
p2 − c2 + Rt+1(n1, n2 − 1)
Rt+1(n1, n2)

+λeβ2 max







p1 − c1 + Rt+1(n1 − 1, n2)
p2 − w2 + Rt+1(n1, n2 − 1)
Rt+1(n1, n2)

+(1 − λ1 − λ2 − λe)Rt+1(n1, n2),

(3)

where on the right-hand side (RHS), the first and second

blocks represent the expected revenues from the physical
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channels. Within the maximum operator of the third and fourth

blocks, a comparison is made between assigning store 1 to

fulfill the online order, assigning store 2 to fulfill the online

order, and rejecting the drop-shipping request. The last block

represents the revenue corresponding the event that no demand

arrives. All of possibilities have been taken into consideration

in the right-hand side. Accordingly, we state the optimal

admission policy as follows.

Decision Rule 2: When both stores hold inventories on-

hand at the beginning of period t, and an online order placed

by an online customer from territory i (= 1, 2) arrives in this

period, the retailer should assign store i to fulfill the order if

the following relation holds:

pi − wi + Ri
t+1(ni − 1, nj)

≥ max{pj − cj + Rj
t+1(nj − 1, ni), Rt+1(n1, n2)},

where j = 3 − i, Ri
t+1(ni − 1, nj) equals Rt+1(n1 − 1, n2)

if i = 1 and Rt+1(n1, n2 − 1) otherwise; the retailer should

assign store j to fulfill the order if:

pj − cj + Rj
t+1(nj − 1, ni)

> max{pi − wi + Ri
t+1(ni − 1, nj), Rt+1(n1, n2)};

otherwise, the retailer should reject the etailer’s drop-shipping

request.

We have characterized the structural properties of the rev-

enue function, Rt(n1, n2), and the major results are summa-

rized in the following Theorem.

Theorem 2: For ∀t(1 ≤ t ≤ T ), the retailer’s revenue

function Rt(n1, n2) holds the following properties:

(a) Rt(n1, n2)−Rt(n1 +1, n2) is increasing in n1 and n2;

(b) Rt(n1, n2)−Rt(n1, n2 +1) is increasing in n1 and n2;

(c) Rt(n1 +1, n2)−Rt(n1, n2 +1) is decreasing in n1, and

increasing in n2.

(d) Rt(n1, n2)−Rt+1(n1, n2) is decreasing in ni(i = 1, 2),
i.e., Rt(n1, n2) is sub-modular in (t, ni);

(e) Rt(n1, n2) − Rt+1(n1, n2) is increasing in t, i.e.,

Rt(n1, n2) is concave in t.
Decision Rule 2 implies that the optimal admission policy

is essentially characterized by the marginal expected revenues

with respect to the inventory levels at both stores. Based

on the above properties (a) – (d) of the revenue function

Rt(n1, n2), we have the following properties regarding the

optimal admission policy of the retailer.

Proposition 1: The retailer’s optimal admission policy ex-

hibits the following structures. When the state is (t, n1, n2)
and an online customer from territory i (= 1, 2) arrives:

• If the retailer’s optimal decision is to assign store i for

the fulfillment, then the retailer should also assign store

i to fill the online customer from territory i for all the

states (t, ñi, nj) where ñi > ni.

• If the retailer’s optimal decision is to assign store j(=
3 − i) for the fulfillment, then the retailer should also

assign retailer j to fill the online customer from territory

i for all the states (t, ni, ñj) where ñj > nj .

• If the retailer’s optimal decision is to reject the drop-

shipping request of the etailer, then the retailer should

also reject to fulfill the online customer from territory i
for all the “lower” states (t̃, ñ1, ñ2) ≤ (t, n1, n2).

To further characterize the optimal admission policy upon

the arrival of an online customer from territory i (say, i = 1),

we define the following three curves:

L1
t (n2) := min{n1 : Rt+1(n1 − 1, n2) − Rt+1(n1, n2)

≥ w1 − p1};
L2

t (n1) := min{n2 : Rt+1(n1, n2 − 1) − Rt+1(n1, n2)
≥ c2 − p2};

L3
t (n2) := min{n1 : Rt+1(n1 − 1, n2) − Rt+1(n1, n2 − 1)

≥ w1 − p1 − c2 + p2}.

Theorem 3: The running trends of the above three curves

go as follows:

(a) L1
t (n2) is decreasing in n2;

(b) L2
t (n1) is decreasing in n1; and

(c) L3
t (n2) is increasing in n2.

Now we consider the situation when an online customer

from territory 1 arrives in period t:

• When the retailer’s inventory levels, (n1, n2) is above

L1
t (n2), i.e., n1 ≥ L1

t (n2), the retailer will be better off

to assign store 1 to fulfill the online customer than to

reject the etailer’s request;

• Similarly, when (n1, n2) lies above L2
t (n1), i.e., n2 ≥

L2
t (n1), assigning store 2 to fulfill the online customer is

better than denying the etailer;

• The third curve, L3
t (n2) splits the areas that assigning

store 1 dominates assigning store 2 for the fulfillment.

That is, when (n1, n2) lies above L3
t (n2), it’s better to

fulfill the online customer that comes from territory 1 by

store 1 than by store 2; or else, it’s better to fulfill by

retailer 2.

Therefore, the three curves, Lk
t (n2), k = 1, 2, 3, split

the two-dimensional inventory space into three areas, and

the optimal admission decisions regarding whether or not to

fulfill the online customer from territory 1, and which store

is assigned for the fulfillment depend on the location of the

inventory levels, which are depicted in Figure 1.

n2 

n1 

)( 2
1

nL
t

)( 1
2

nL
t

)( 2
3

nLt

Assign store 1 to 

fulfill the online 

customer 

Assign store 2 to 

fulfill the online 

customer 

Reject the etailer’s 

drop-shipping 

request 

Fig. 1. Optimal Decision upon the Arrival of an Online Customer

The optimal admission decision upon the arrival of a online

customer from territory 2 can be characterized in a similar way.
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In all, the optimal admission control of the retailer follows a

threshold policy which is two-dimensional, in contrast with

the one-dimensional threshold polices of the single-resource

revenue management models.

Finally, we investigate the relationship between the optimal

admission policy and the time period t. The major result is

summarized in the following theorem.

Theorem 4: As the time period approaches toward the end

of the selling horizon (i.e., t increases), the “rejection area”,

i.e., the area that is below L1
t (n2) and L2

t (n1) shrinks (see

Figure 2).

n2 

n1 

)( 2
1

nL
t

)( 1
2

nL
t

)( 2
3

nLt

Assign store 1 to 

fulfill the online 

customer 

Assign store 2 to 

fulfill the online 

customer 

Reject the etailer’s 

drop-shipping 

request 

)( 2
1

1 nL
t+

)( 1
2

1 nL
t+

Fig. 2. The Movement of the “Rejection Area” w.r.t. Time Period t

Theorem 4 implies that, for the same inventory level

(n1, n2), as the time left-to-go decreases, the retailer becomes

more inclined to accept the etailer’s drop-shipping request.

This is consistent with our intuition.

IV. NUMERICAL EXPERIMENTS AND ANALYSIS

Revenue aside, compared with the optimal dynamic ad-

mission strategy, a static strategy (we call it the “heuris-

tic control”) that always accepts the etailer’s drop-shipping

requests and assigns the store that is close to the online

customer as much as possible is more desirable because it

is more convenient. There are possible additional costs that

are associated with dynamic admission control. Therefore, a

natural question is that of when a dynamic control strategy

should be used and what the magnitude of the revenue gain

will be. In this section, we report the results of several sets of

experiments that are designed to develop some intuition with

regard to these questions.

Consider the following example. A retailer sells Christmas

Gifts through two separate stores as well as through a third-

party etailer. The gifts are quite seasonal and should be sold

out in a period of one months. The selling horizon is divided

into T = 5000 small intervals with equal lengths. The initial

inventory levels are (Q1, Q2) = (100, 100); the selling prices

are p1 = 5 and p2 = 6, respectively; other parameters are

λ1 = 80/T , λ2 = 50/T , λe = 120/T , β1 = 0.7, β2 =
0.3, w1 = w2 = 1, and c1 = 1.5, c2 = 2.5. The physical

retailer dynamically rations its inventories, with the objective

to maximize the total revenue.

In the numerical experiments, we alter the value(s) of only

one parameter at a time. First, the expected revenue of optimal

admission control is compared with that of the heuristic control

with different demand rates, λ2’s and λe’s. The results are

reported in Table I. It seems that when λ2 is very small (say

λ2 = 0) or is very large (say λ2 = 100/T ), implementing the

heuristic control results in a substantial revenue loss. This may

due to the fact that by heuristic controlling more inventory is

sold to the online customers that should have been reserved for

sell to the retailer’s in-store demands. Table I also shows that

as the online demand accounts for a larger proportion of the

total demand, the performance of the heuristic control strictly

decreases. This, again, due to the fact that the retailer over-

sells to the online customers. Note that, when λe is very large

(say λe = 200/T ), the performance of the optimal admission

control over that of the heuristic control is significant.

TABLE I

NUMERICAL RESULTS WITH DIFFERENT λ2’S AND λe’S

λe λ2 Optimal Heursitc Revenue Loss

120 0 862.2 743.6 13.75%

120 20 927.1 860.1 7.23%

120 40 977.4 938.1 4.01%

120 60 1024.5 970.0 5.32%

120 80 1053.7 990.8 5.97%

120 100 1071.7 1007.1 6.03%

0 50 699.9 699.9 0.00%

40 50 864.4 836.7 3.21%

80 50 977.6 927.3 5.14%

120 50 1001.8 956.9 4.48%

160 50 1017.9 940.2 7.63%

200 50 1025.4 927.1 9.58%

The percentage parameters, β1 and β2, determines the

“split” of online demands over the two territories. They have

a great impact on the retailer’s performance, since under the

reasonable assumption that fulfilling the online customer by a

nearby store is generally more economical (Assumption 2), an

appropriate β1 (and β2) can achieve a better match between

each store’s inventory supply and demand. Table II shows that

when β1 (or β2) is low, implementing the heuristic control

results in a larger revenue loss. This is intuitive.

TABLE II

NUMERICAL RESULTS WITH DIFFERENT β1’S

β1 Optimal Heuristic Revenue Loss

0.00 1016.0 981.6 3.38%

0.20 1024.1 993.6 2.99%

0.40 1025.3 997.6 2.71%

0.60 1016.3 972.9 4.26%

0.80 985.0 939.7 4.60%

1.00 950.5 902.3 5.07%

The revenue deduction from fulfilling the online customers

is the underlying reason that makes the retailer less willing to

accept the etailer’s drop-shipping requests. Finally we change

the value of c2 and the numerical comparisons are reported in

Table III. When c2 is large, the revenue loss by implementing
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the heuristic control strictly increases. This again, is consistent

with our intuition.

TABLE III

NUMERICAL RESULTS WITH DIFFERENT c2’S

c2 Optimal Heuristic Revenue Loss

2.00 1009.4 968.6 4.05%

2.50 1001.8 956.9 4.48%

3.00 994.4 945.2 4.95%

3.50 987.3 933.5 5.45%

4.00 980.4 921.8 5.97%

4.50 973.7 910.1 6.53%

V. CONCLUDING REMARKS

We have studied a dynamic admission control model in

which a physical retailer sells seasonal products through

two separate stores and a third-party etailer. For each order

collected from the website, the etailer directs to the retailer

for fulfillment, intending to share some profit. The retailer

needs to decide when to accept such drop-shipping requests,

and if so, assign which store for the order fulfillment. The

decisions are made based on the on-hand inventory levels,

the remaining time, and the information regarding where the

online customer comes from. We have established several

structural properties for the optimal admission policy, which

is shown to be a two-dimensional threshold policy. Numerical

experiments show that implementing a simple heuristic control

of always accepting the etailer’s drop-shipping request and

assigning the store that is more close to the online customers

for the fulfillment as much as possible may result in substantial

revenue losses.

The products studied in this paper are seasonal items, and

we have assumed that the selling prices remain unchanged

during the entire selling season. In reality, their prices are

usually decreasing over time, instead of remaining constant.

Our model can be easily extended to incorporate a time-

varying price pattern. If the pricing trajectory over the season

can be estimated at the beginning of the season (e.g., both

physical store will offer significant discounts during the period

of “Black Friday” and the weeks following Christmas), most

of the results obtained in the previous sections (e.g., properties

in Theorem 2) will remain unchanged with p being replaced

by p(t). Also, the demand rates, λ1, λ2, and λe can depend

on time.

There are two directions for extending the current model.

First, as our model is based on the assumption that each

customer orders only one unit of item, an natural problem for

future research is to consider batch demands. Second, we have

assumed that the etailer carries zero inventory. However, it is

important to note that some etailers adopt a hybrid inventory

strategy: carrying a certain amount of inventory and employing

physical retailers as backups. In such situations, the etailer also

needs to ration his own inventory; that is, should he fullfill the

online customer by his own inventory, or by requesting the

physical retailer? This involves a competitive game between

the etailer and the physical retailer, which is an interesting

topic we are currently investigating.
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