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Abstract— We aim at developing a vision-based autopilot
for autonomous small aerial vehicle applications. This paper
presents a new approach for the estimation of optical flow, air-
craft motion and scene structure (range map), using monocular
vision and inertial data. The proposed algorithm is based on
3 Nested Kalman Filters (3NKF) and results in an efficient
and robust estimation process. The 3NKF-based algorithm was
tested extensively in simulation using synthetic images, and in
real-time experiments.

Index Terms— Small flying robots, optical flow computation,
structure from motion, vision-based autopilot.

I. INTRODUCTION

Milestones in aerial robots have been recently achieved

using sensor suites that include GPS, Inertial Measurement

Units (IMU), laser altimeters, ultrasound sensors to perform

missions like terrain-following, autonomous landing, etc.

Our particular interests, however, involve small UAVs flying

close to the ground in complex environments like urban and

indoor environments. Traditional sensors such as GPS, IMU,

pressure sensors, radar, sonar, laser are not adapted for this

category of UAVs and associated applications. Indeed, the

sensors commonly employed in robotics are too heavy and

energy-consuming to match the limited payload of small

aircraft. Recently, there is a growing interest in applying

Optical Flow (OF) for small aircraft control and navigation.

However, the difficulty found when using imaging sensors

is the high bandwidth of data, and the resulting heavy

computational burden. Furthermore, reliably computing op-

tical flow or extracting and tracking features in video is a

challenge; accurate and robust estimation of arbitrary camera

ego-motion and structure given noisy visual measurements

is another challenge. So, the question is how to use vision

for the control of small UAVs considering the constraints of

real-time applications?

Many researchers have been interested by the world of

flying insects, and recent experimental research in biology

has discovered a number of different ways in which insects

use cues derived from optical flow for navigational purposes.

Indeed, insects like bees and flies have evolved alternative,

simple and ingenious stratagems for dealing with the problem

of 3D vision to perform navigational tasks. These behaviors

originated in research on insect behaviors, and they are

appropriate for implementation in a biomimetic autopilot for

small UAVs and robotics in general [1], [2]. Potential appli-

cations of optical flow for small aerial vehicles are altitude

control and terrain following [3], autonomous landing [3],

[4], [5] and obstacles avoidance [6], [7], [8]. However, most

existing OF-based strategies use a simplified model of the 3D

vision problem, where the UAV motion is usually restricted

to one dimension.

The work presented in this paper represents a major

step toward our goal of developing autonomous small-flyers

capable of navigating within houses or urban and small

indoor environments. Based on the literature review and the

restrictions imposed by robotics applications, we developed

a new real-time algorithm that jointly performs optical flow

estimation and 3D interpretation (recovery of 3D motion and

structure) using monocular images and inertial rate data. The

proposed computational framework is based on 3 Nested

Kalman Filters (3NKF) which allowed to combine three

algorithmic concepts stemming from completely different

areas of research (OF computation, data fusion, Structure

From Motion (SFM) problem) in a favorable manner. The

novelty of the approach is based on the fact that each sub-

module is connected to other modules, thereby allowing

bidirectional exchange of data between them (see Figures

1 and 2). The resulted 3NKF-based algorithm is very fast

(30 Hz), accurate and robust. It is designed to operate in a

static, structurally unconstrained environment, with no prior

knowledge of scene content.
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Fig. 1. Optical flow-based vision module for UAV control

II. PREDICTION-BASED ALGORITHM WITH ADAPTIVE

PATCH FOR ACCURATE AND EFFICIENT OF ESTIMATION

In this section, we present an OF algorithm that has many

advantages for robotics applications. Indeed, we present an

efficient algorithm that combines matching and differential

techniques for accurate measurement of large and sub-pixel

OF. The proposed method takes advantage of UAV dynamics

constraining the camera motion to be continuous and smooth.

Therefore, based on the 3NKF framework, inertial data and

SFM-module outputs (velocity and depth) are exploited to
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Fig. 3. Prediction-based OF algorithm with adaptive patch

predict the displacement of a given patch (block of pixels)

in the subsequent images with adapting the patch shape

(deformation), thereby limiting or reducing the search area

and avoiding erroneous measures. Thus, a block matching

technique computes efficiently the nominal image displace-

ment without suffering from the main issues of standard

block matching methods namely, quadratic complexity and

sensibility to deformations. Once the nominal displacement

dn ∈ Z
2 is computed, we translate the new image I2 by this

amount (i.e., dn) and we obtain a translated image I ′2. Now,

the displacement between the reference image I1 and the new

translated image I ′2 does not exceed one pixel, and the well-

known Lucas-Kanade [9] differential algorithm may compute

easily and accurately the remaining sub-pixel displacement

ds ∈ R
2. Finally, the total image displacement is obtained

by summing dn and ds, which is then filtered with a Kalman

Filter. The main steps of the proposed OF algorithm are

shown in Figure 3, and they are described in the following

subsections.

A. Search center prediction

In order to overcome the major limitation (computational

complexity) of block matching algorithms, we have de-

veloped a new block-based OF estimation algorithm that

employs motion vector prediction to locate an initial search

point, which is called a search center.

The image motion depends on camera motion and the

structure of the observed scene (see equation (14)). Thus,

we use the predicted camera motion (Vpred), the predicted

structure (Zpred) and the measured angular velocity (Ω) in

order to predict the image displacement dpred ∈ R
2 in the

next frame. This prediction process is possible thanks to the

3NKF scheme which connects the different modules (see

Figure 2). Therefore, the predicted position in the new image

I2 of some pixel located at X1 in the reference image I1 is

given by

Xpred = X1 + dpred (1)

Xpred is considered as the center of the Search Area (SA)

that contains the true position X2 of the moved pixel. In clas-

sical Full Search (FS) matching algorithms, SA is centered

at X1 with a radius chosen equal to the maximum expected

image displacement dmax. In our case, the chosen radius r

is rather equivalent to the variation of image displacement

between two subsequent frames. Therefore, r is much lower

than dmax. In simulations and real-time experiments, r is set

to 3 for the computation of image displacements that exceed

25 pixels/frame, (see Figure 7).

The size of the search area is (r + 1) × (r + 1) which is

independent of the amplitude of image displacement.

B. Combined block-matching and differential algorithm

1) Step 1: Nominal OF computation using a Block-

Matching Algorithm (BMA): The BMA approximates the

image motion by a displacement d = (dx, dy) that yields the

best match between image regions at different times. In other

words, to determine the motion of a pixel X1 = (x1, y1) in

a reference image I1(x, y, t), we choose a patch Pν (block

of pixels) centered at (x1, y1) and composed of ν×ν pixels.

We will then try to find the correspondence of this patch

in the successive image I2(x, y, t + δt) by minimizing the

following cost function (Sum of Absolute Differences SAD)

among the search area (i.e., d ∈ SA).

SAD(X1, d) =

ν∑

i=−ν

ν∑

j=−ν

|I1(x1 + i, y1 + j, t) − I2(x1 + i

+ dx, y1 + j + dy, t + δt)| (2)

Then, the nominal displacement dn obtained for the block

Pν located at X1 can be generally formulated as follows:

dn(X1) = arg mind∈SA(SAD(X1, d)) (3)

Let us define SADn = SAD(X1, dn). This matching error

is used to detect optical flow discontinuities. Indeed, when

SADn is higher than some user-defined threshold, SA is

enlarged progressively until finding the true displacement.

In order to improve the accuracy and robustness of this

efficient block-matching algorithm with respect to image de-

formation, we have integrated the inertial rate data (rotations)

into the matching process. Therefore, the shape of the patch

is adapted by modifying equation (2).
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SAD(X1, d) =
ν∑

i=−ν

ν∑

j=−ν

|I1(x1 + i, y1 + j, t) − I2((x1, y1) (4)

+ ϕ(x1+i, y1+j)
T
−ϕ(x1, y1)

T

︸ ︷︷ ︸

adaptive term

+(dx, dy), t + δt)|

with ϕ(i, j) is a transformation given by (see eq. (14))

ϕ(i, j) =
[

βij −( 1
β

+ βi2) j

( 1
β

+ βj2) −βij −i

]

[

Ωx

Ωy

Ωz

]

(5)

2) Step 2: Sub-pixel OF computation using a Differential

Algorithm (DA): We know that the BMA is not accurate

enough since the measured displacement dn is a signed inte-

ger. Then, in order to improve the accuracy of our algorithm,

we use a complementary DA that computes the sub-pixel

component ds (floating part) of image displacement.

Differential methods are based on the assumption that the

observed brightness I of any object point is constant over

time. This assumption is mathematically stated as

I1(x, y, t) = I2(x + δx, y + δy, t + δt) (6)

with (δx, δy) is the image displacement during the inter-

frame time δt. By applying Taylor’s series about (x, y, t),

we obtain the standard OF equation: ∇I.( δx
δt

, δy
δt

) + It = 0,

with ∇I = (Ix, Iy) are the intensity spatial derivatives and

It is the temporal derivative.

The validity of the later equation requires small image

displacements, in general lower than the pixel. This is

the main limitation of differential methods since they can

not compute large image displacements. To overcome this

problem, we have modified (6) by translating the image I2

using the previously computed displacement dn. In fact, the

vector movement could be decomposed into nominal and

small displacements, δx = dnx
+ dsx

and δy = dny
+ dsy

.

Thus, we write

I1(x, y, t) = I2(x + dnx
+ dsx

, y + dny
+ dsy

, t + δt) (7)

At this stage, the only unknown variables in equation (7) are

(dsx
, dsy

). Then, translating I2 by subtracting dn, we obtain

the new translated image I ′2 and we write

I1(x, y, t) = I ′2(x + dsx
, y + dsy

, t + δt) (8)

Now, the remaining displacement ds is very small and by

expanding the right side term as Taylor’s series, we obtain

Ix.
dsx

δt
+ Iy.

dsy

δt
+ It = 0 (9)

For our algorithm, we have used the Lucas-Kanade technique

[9] which assumes that in a small image region all the pixels

have the same displacement ds. Then, the two components

of ds are estimated by minimizing the following equation in

a small spatial neighborhood S:
∑

(x,y)∈S

W 2(x, y)[∇I(x, y, t).ds + It(x, y, t)]2 (10)

where W (x, y) is a weighting diagonal matrix that gives

more influence to constraints at the center of S. The solution
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Fig. 4. Imaging model: central projection

of (10) is obtained in closed form using a weighted least-

squares.

ds = [AT W 2A]−1AT W 2b (11)

where, for n points (x, y) ∈ S at a single time, we have:

A = [∇I(x1, y1), ...,∇I(xn, yn)]T , b = −[It(x1, y1), ..., It(xn, yn)].

The total measured displacement dm ∈ R
2 is then obtained

by summing the nominal part dn ∈ Z
2 and the small sub-

pixel ds ∈ R
2 (i.e., dm = dn + ds).

As showed in Figure 2, a Kalman Filter (KF) is used

for optical flow estimation. The benefits of this KF are first

its prediction characteristic that has permitted to reduce the

search area. Another interesting advantage of the KF is that

it filters the measurement dm from noise.

The state vector of our KF is denoted by X = (dx, dy)T ∈

R
2 which dynamics can be modelled by a brownian process.

Xk+1 = AXk + αk, Yk = dm = CXk + βk (12)

where αk is the state noise vector, i.e. the prediction error

with covariance matrix Qα. Yk ∈ R
2 is the measurement vec-

tor and βk is the measurement noise vector with covariance

matrix Qβ . A ∈ R
2×2 and C ∈ R

2×2 are identity matrices.

Based upon this very basic state-space representation for

the motion, KF equations can be easily implemented.

III. ROTORCRAFT’S 3D MOTION ESTIMATION AND

OBSTACLES DETECTION USING OPTICAL FLOW

The problem of Structure From Motion (SFM) concerns

the estimation of the camera ego-motion and the recon-

struction of the 3D structure of a scene from its projection

onto a moving two-dimensional surface (image sequences).

The paper [10] provided a critical study of existing SFM

techniques.

The computational framework that we use for recursive

estimation of UAV motion and structure is the Extended

Kalman Filter (EKF), which has been the subject of much

work on image sequences. For formalizing the SFM problem,

we have used the differential version of the representation

given in [11]. However, we have integrated some system

dynamics, resulting in a reduction of scale ambiguity. We

have also developed an effective procedure for fusing vision

data with inertial measurements, thereby overcoming the

translation-rotation ambiguity.

A. Imaging model

The perspective-central camera model maps the projection

of Pi to the focal plane through the following geometrical

transformation [11], (see Figure 4):
[

xi

yi

]

=
1

1 + βZi

[

Xi

Yi

]

(13)
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with xi and yi are the coordinates of pi which is the projec-

tion of Pi on the focal plane as shown in Figure 4. Equation

(13) is a model for central projection where β = 1
f

is the

inverse focal length. This model is geometrically identical to

the usual model, with two representational changes. First, the

camera coordinate system origin is fixed at the image plane

rather than the center of projection (COP). Second, inverse

focal length β is used as the model parameter.

By differentiating (13) and after geometrical transforma-

tions, we find that the optical flow can be expressed in terms

of image coordinates (xi, yi), the aircraft body-axis velocities

and rates (Vx, Vy, Vz, Ωx, Ωy, Ωz), and the depth Zi [11].

[

ẋi

ẏi

]

=

[

−1

1+βZi
0

βxi
1+βZi

βxiyi −( 1
β

+ βx2
i ) yi

0 −1

1+βZi

βyi
1+βZi

( 1
β

+ βy2
i ) −βxiyi −xi

]









Vx

Vy

Vz

Ωx

Ωy

Ωz









(14)B. Fusion of OF and inertial data

Ambiguities in 3D motion recovery from noisy flow fields

have been reported by many researchers [12], [13]. One

dominant ambiguity arises from the similarity between the

flow fields generated by Vx (Vy) and Ωy (Ωx). In robotics

applications, the common way to circumvent this problem is

the integration of both OF and inertial data in the estimation

process. The fusion strategy that we have proposed aims

at simplifying the SFM problem with improvements in

accuracy and robustness. Our main idea is to divide the

SFM estimation process into two steps: In the first step, we

integrate the inertial data and estimated OF in a KF in order

to estimate the translational component of the optical flow

(OFtrans) as well as the rotorcraft angular velocity Ω. In

fact, at this stage, we aim at subtracting or cancelling the

rotational component of the optical flow using a KF that

handles measurements noise.

In the second step, the reduced SFM problem is formulated

to recover translational motion and structure parameters

using the translational OF estimated in the previous step.

Thus, our fusion strategy is formulated as an estimation

problem with the state vector

Xr = (Ωx,Ωy, Ωz, ẋ1trans
, ẏ1trans

, ..., ẋNtrans
, ẏNtrans

)T ,

with N is the number of the computed OF vectors. The dy-

namics model in the KF can be chosen trivially as an identity

transform plus noise, unless additional prior information on

dynamics is available. By recalling (14), the measurement

equation can be written as follows

Y r
k = HrXr

k + nr
k, nr

k˜N (0, Σr
n) (15)

with Y r = (ẋ1, ẏ1, ..., ẋN , ẏN , Ωx,Ωy, Ωz)
T ∈ R

2N+3 is the

measurement vector and the matrix H ∈ R
(2N+3)×(2N+3)

can be deduced from (14). The measurement noise nr
k is

assumed to have a Gaussian distribution with zero mean and

covariance matrix Σr
n.

Then, the KF implementation is straightforward. So, fur-

ther implementation details will not be repeated here.

C. EKF-based algorithm for motion and structure estimation

Using the framework discussed thus far, the initial SFM

problem is reduced to estimate translational velocity and

structure parameters, considering the previously estimated

translational OF as the measurement vector. So, our com-

posite state vector consists of 3 parameters for camera/UAV

translational motion, and N variables for structure:

Xc = (Vx, Vy, Vz, Z1, ..., ZN )T .

Computing OF in N locations introduces N unknowns

and gives 2N equations or measurements. Consequently, the

system is completely determined for N ≥ 3. For more

accuracy and stability, we have chosen N = 9. We have

observed in different experiments that 9 OF vectors are

sufficient for estimating robustly and efficiently the camera

ego-motion and the scene structure. However, these 9 OF

vectors should be computed robustly at well-chosen image

regions. The selective strategy of these regions is defined

to meet some criteria namely: 1) covering a large field

of view, 2) increasing the sensibility to vertical velocity

Vz in order to obtain a significant divergent OF, and 3)

reducing the ambiguity issued from translation and rotation.

In order to meet these criteria, we have divided the image

into 9 equivalent regions which are symmetrical to the image

center. Therefore, the OF, computed in these 9 regions, is rich

(translational OF, divergent OF, rotational OF) and exhibits

sufficient parallax.

Dynamics model: The equations of motion for an UAV

subject to body force F ∈ R and torque τ ∈ R
3, applied

to the center of mass and specified with respect to the body

coordinate frame, are given by the following Newton-Euler

equations: V̇ = RF, and JΩ̇ = τ −Ω× JΩ, with R is the

rotational matrix and J is the inertial matrix of the rotorcraft

body. At this stage, we are only interested by translational

motion dynamics. Since the aircraft orientation is measured

by an IMU, then we can consider U = RF as the new

control force that will be used in the estimation process.

The dynamics of structure parameters can be approximated

by the simple following equation: Żi(t)=−Vz, i = 1, ..., N .

Therefore, the evolution of the state vector Xc is governed

by the following discrete dynamical system

Xc
k+1 = AcXc

k + BcUk + κk, κk˜N (0,Σκ) (16)

Ac =













1 0 0 01 02 ... 0N

0 1 0 01 02 ... 0N

0 0 1 01 02 ... 0N

0 0 −δt 1 02 ... 0N

0 0 −δt 01 1 ... 0N

.

.
0 0 −δt 01 02 ... 1













, Bc =











δt 0 0
0 δt 0
0 0 δt
01 01 01

.

.
0N 0N 0N











(17)

The model noise κk accounts for modeling errors, and

˜ N (0, Σκ) indicates that the vector κ has a Gaussian

distribution with zero mean and covariance matrix Σκ.

Observation/Measurement model: A subset of outputs of

the previous KF is considered as measurements for this third

EKF. In fact, after fusing inertial data and OF, we obtain a

pure translational OF (OFtrans) which is related to rotorcraft

translational velocity V . From (14), the observation discrete

model can be written in the following form

Y c
k = gc(Xc

k) + nk, nk˜N (0, Σn) (18)
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with Y c is the measurement vector in R
2N containing the

estimated translational OF, and the nonlinear function gc is

expressed as

gc(Xc) =













−1

1+βZ1
Vx +

βx1
1+βZ1

Vz

−1

1+βZ1
Vy +

βy1
1+βZ1

Vz

.

.
−1

1+βZN
Vx +

βxN
1+βZN

Vz

−1

1+βZN
Vy +

βyN
1+βZN

Vz













(19)

The EKF Implementation: Once the system and measure-

ment/observation models have been specified, then the EKF

implementation is straightforward.

• State vector prediction: Xc
pred = AcXc

est + BcUk ,

• Prediction error: P c
pred = AcP c

estA
cT

+ Σκ

• Compute the Jacobian matrix Cc: Cc =
[

∂gc

∂Xc (Xc
pred)

]

• Compute the Kalman gain: Kc = P c
predCcT

(CcP c
predCcT

+Σn)−1

• Measurement vector Y c computation (KF-based fusion algorithm)

• Update the state vector estimate with the measurement:

Xc
est = Xc

pred + Kc(Y c − gc(Xc
pred))

• Update the error covariance matrix of the motion:

P c
est = (I12 − KcCc)P c

pred(I12 − KcCc)T + KcΣnKcT

where I12 is the identity matrix.

IV. SYNTHETIC AND REAL-TIME EXPERIMENTS

In this section, we present the results of applying the

3NKF-based algorithm for estimating the flow field and SFM

parameters.

A. Synthetic images

The synthetic image sequence we used is a sinusoid which

is created by superposing two sinusoidal plane waves with

spatial wavelengths of 11 pixels.

The configuration of the simulation is as follows: The

virtual camera has a focal length f = 1230 pixels and an

image size of 640 × 480 pixels. The considered structure

is composed of nine objects, each one has a different

depth according to the camera ((Z1, Z2, Z3..., Z8, Z9) =
(50, 60, 70, ..., 120, 130)[cm]).

In this experiment, we have conducted comparisons be-

tween our 3NKF-based algorithm and two well-known SFM

algorithms, including those by Azarbayejani and Pentland

(A-P algorithm) [11], and Qian and Chellappa (Q-C al-

gorithm) [13]. In the A-P algorithm, the EKF uses only

the feature correspondences as measurements while the Q-C

algorithm uses inertial data as additional measurements to

feature correspondences. Zero mean noise with STD of 0.3

pixels/frame (9 pixels/s) is added to each coordinate of the

computed OF. Also, inertial rate data are corrupted by white

noise with zero mean and STD of 0.01 rad/s.

Figure 5 shows the motion estimation results obtained by

the three algorithms. It can be seen that under this noise level,

the performance of the A-P algorithm deteriorates much

faster (translation-rotation ambiguity) than with the other two

algorithms. We can also see that the 3NKF-based algorithm
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Fig. 6. Structure estimation with added noise and the estimation errors

performs better than the Q-C algorithm. Figure 6(a) shows

the obtained results for structure estimation. It can also be

seen that our algorithm results in best performance compared

to the two other algorithms. The table in Figure 6(b) confirms

these observations and demonstrates quantitatively the good

performance of the 3NKF-based algorithm.

These results show the effectiveness of inertial data for

achieving robust and accurate SFM estimation. It can also

be observed that the 3NKF-based algorithm outperforms the

Q-C algorithm which indicates that the strategy or manner

of fusing visual and inertial data plays also an important role

in improving the performance of SFM estimation.

B. Real images obtained from a vehicle-mounted camera

In this section, we present results from applying our

3NKF-based algorithm in real-time experiments. The used

camera is a Basler 601f with an image size of 640 ×

480 pixels, rate frame of 60 fps and a focal length of

1230 pixels. The camera is connected to a PC via the

adapter card IEEE1394 FireWire Notebook Adapter. All the

parts of the 3NKF-based algorithm, presented in this paper,

are implemented in C++. The experiments were performed

with the platform STRADA, which is equipped with an

onboard computer, a GPS, two laser telemeters, an Inertial

Measurement Unit, ABS (4 wheels) and many other sensors.

The four ABS sensors are used to provide ground-truth

on translational velocity, due to their increased accuracy

compared to GPS.

To demonstrate the robustness of the algorithm with re-

spect to natural environments with poor texture, we have

performed the first test by a vehicle moving on a straight

road parallel to a flat terrain. The Basler camera was fixed

on the roof of the vehicle, and oriented laterally towards

ground with an angle α = 0.1 rad.

Figure 7(a) shows the two components of the computed

optical flow at 9 image locations, the estimated translational

and rotational velocities, and the recovered 9 depths. Firstly,

we can notice that the algorithm computes robustly large
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Fig. 7. Vehicle-mounted camera: (a) translational motion and lateral-downward-looking camera. (b) translational + rotational motions

optical flows (until 28 pixels/frame), and the estimated

angular velocities are less noisy than the IMU measurements.

Secondly, the estimated velocity Vx is almost identical to

the velocity computed by wheels-mounted sensors. Concern-

ing the structure recovery, the results are also satisfactory.

The estimated depths, shown in Figure 7(a), correspond to

the ground-truth values (9.8,9.8,9.8,13,13,13, 20, 20, 20 m).

In the second experiment, the vehicle moves on a road

with performing steering manoeuvres (yaw rotations). In

this experiment, the camera is looking sideways (i.e., the

camera optical axis Zc is parallel to the vehicle Yb axis)

and the observed scene is a line of trees (which form a

kind of green flat surface) located at about 6 meters from

the camera (i.e., Z1(0) = Z2(0) = ... = Z9(0) = 6 m).

During the experiment, the translational velocity, the angular

velocity and steering angle (yaw angle) of the vehicle were

recorded. By performing transformations on this data and

using a kinematic model of the vehicle, the 3D motion of the

camera and the depths of observed points are reconstructed

to give ground-truth.

Figure 7(b) shows the computed OF and the recovered

motion and structure. Colored lines correspond to the vision

estimates, while solid black lines represent the ground-

truth trajectories, which are reconstructed from the vehi-

cle’s sensors data. We observe that the obtained results

are satisfactory and very promising. However, small errors

remain, which are mainly due to the errors in the optical

flow computation. The observed errors can also be related to

uncertainties on sensors used to provide ground-truth.

The obtained results in outdoor natural environments with

poor texture are very promising. These results confirm the

robustness of the 3NKF-based algorithm and its effectiveness

and practicability in real world applications. Furthermore, the

program runs in real-time at a frequency of 30 Hz.

V. CONCLUSION AND FUTURE WORK

The 3NKF-based algorithm appears to perform well, both

in simulation and in real-time experiments. Efficiency (30

Hz), accuracy and robustness are the benefits of the proposed

algorithm, and make it suitable for small aerial vehicles

navigation.

Future efforts will focus on applying the proposed al-

gorithm for flight control (autonomous vertical landing) in

complex and cluttered environments.
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