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Abstract— Calibration is an essential issue to use a robot to
accomplish some tasks with high accuracy requirements. An
important part of calibration process is measuring the actual
pose of some parts of the robot. Many sensors have been used
for measuring, for some of them, extra objects need installing on
the robot, so it’s possible to implement extra accuracy problems.
While choosing coordinate measure machine as the measure
equipment, a new pose measure method is proposed. The major
advantage of this method is neither extra objects nor definite
points are needed, so it’s more feasible to realize the coordinate
measure machine’s strength. The planes for calibration can be
directly machined on the end-effector, so the assembly errors
are avoided completely. An experiment to calibrate a parallel
robot’s geometrical parameters is carried out and the results
are provided.

I. INTRODUCTION

In recent decade, it’s reported that a fatal problem in
many robotics application is programming[1], and the ab-
solute accuracy is an essential issue with respect to off-
line programming[2]. Although almost all robots are man-
ufactured and assembled with care, there are some small
deviations between the nominal and actual values of param-
eters. In addition to some other factors, e.g. deformation,
those errors affect the final accuracy performance. As a
result, calibration is essential for robot’s application with
high accuracy requirement.

Theoretically, calibration is performed by analyzing the
conflicting information gained by the mathematic model and
actual measurements[2], to find out the model parameters
which fit the actual measurements best[3]. A complete cali-
bration process consists of following stages:
• To build the robot’s mathematical model;
• To determine the parameters which can be measured

physically and corrsponding measure method;
• Based on the relationship between measurements and

model parameters, to identify the parameters’ actual
values;

• To substitute the identificaion results into the model and
verify the effect.

During calibration, there are three questions should be an-
swered:
• To choose a suitable mathematic model;
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• Considering the precision and ease to measure, to
choose the parameters to be measured and correspond-
ing measure method;

• To choose the identification algorithm.

In different models, different types of parameters, tax-
onomically geometrical and non-geometrical, are involved.
The former includes links’ lengths, linear and angular offsets
etc., while the latter includes deformation, gear clearance,
dynamic effect etc.[1]. In this article, the non-geometrial
parameters are not calibrated. Meanwhile, the non-linear
least square method(LSM) is adopted as the identification
algorithm. The work focuses on the identification of geomet-
rical parameters, i.e. the corresponding measure equipment
and method.

Although calibration’s final destination is to improve
the end-effector’s position and orientation accuracy with
respect to the environment, in practice, the goal is of-
ten the relative pose between baseplate and end-effector,
i.e. the coordinate frames defined to be fixed with them,
respectively. The baseplate’s pose in the environment is
assumed known. Different sensors have been used to mea-
sure the pose: laser tracking system[2,4], mirrors and laser
spot sensors[3], interferometers[5], cameras[6,7], ball bar
system[8], articulated measure arm[9], coordinate measure
machine(CMM)[10], inclinometers[11] etc. To use some
sensors, extra objects need installing onto the end-effector
or the moving platform, for instance, laser reflectors for
laser tracking system or the mirrors for interferometers.
Those objects’ positions in the moving platform coordinate
frame can be either guaranteed by manufacture and assembly
accuracy, which can not be improved by calibration, or
estimated during calibration too, in the sequel, the algorithm
becomes more complicated or even unconverged. Those
cases motivate us to develop a new measure method, which
decreases the influence of the pose accuracy between the
calibration points and the end-effector. In this article, CMM
is adopted and a new method named as ’Three Planes
Method’ is derived.

The rest of this article is organized as follow. Next
section introduces the principle of the proposed ‘Three
Planes Method’. In section III the mathematic model of a
parallel manipulator with parallel tracks is derived, which
is chosen to verify the calibration method. In section IV the
measuring and calibration results using the proposed method
are provided. Finally, the conclusion is given.
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II. THE THREE PLANES METHOD BASED CALIBRATION
METHOD

A. Coordinate Frames and Homogeneous Transformation
Matrices

Fig. 1. The three planes and corresponding coordinate frame.

CMM can measure either an isolated point’s position or
the equation of a plane, both defined in its own measurement
coordinate frame {OmXm Ym Zm}, which is defined by
the manufacturer of CMM. To do calibration, another two
coordinate frames, which are fixed with the baseplate and
the moving platform and denoted by {ObXb Yb Zb} and
{OpXp Yp Zp}, respectively, are needed. The homogeneous
transformation matrices between them are denoted by pTb,
mTp and mTb, respectively. As both the robot’s baseplate
and the CMM don’t move, mTb is a constant matrix and for
any pose of the moving platform, it’s satisfied:

mTb =m Tp · pTb (1)

The moving platform coordinate frame is defined as fol-
low. Firstly, three planes α, β and γ, any two of which cross
with each other, are built on the moving platform, see Fig.1.
The origin Op coincides with the three plane’s common
point, the axis Xp coincides with the common line of planes
α and β, the axis Yp locates inside the plane α, finally the
axis Zp is determined by right hand rule. It’s unnecessary
to keep the planes be perpendicular with each other. In the
CMM coordinate frame, the plane equations are:

aα (x− xα) + bα (y − yα) + cα (z − zα) = 0 (2)

aβ (x− xβ) + bβ (y − yβ) + cβ (z − zβ) = 0 (3)

aγ (x− xγ) + bγ (y − yγ) + cγ (z − zγ) = 0 (4)

Where, [aα, bα, cα] is the unit normal vector of the plane
α, and theoretically [xα, yα, zα] can be the coordinates of
arbitrary point on the plane. and the parameters in eqn.(3-
4) have similar meanings. Let the CMM’s probe touching
at least three points locate on the plane α but not on same
line, the plane equation, i.e. those 6 parameters in eqn.(2),
will be obtained. Similarly, the parameters in eqn.(3-4) can
be obtained.

The axes’ equations have following format:

x− xp

lx
=
y − yp

mx
=
z − zp

nx

x− xp

ly
=
y − yp

my
=
z − zp

ny

x− xp

lz
=
y − yp

mz
=
z − zp

nz

Where, [lx,mx, nx] is the direction vector of the axis Xp

and [xp, yp, zp] is the coordinates of the origin Op.
Given the parameters in eqn.(2-4), the coordinates of the

origin Op can be got as: xp

yp

zp

 = R−1 ·

 x0

y0
z0


where,

R =

 aα bα cα
aβ bβ cβ
aγ bγ cγ


and

x0 = aα xα + bα yα + cα zα

y0 = aβ xβ + bβ yβ + cβ zβ

z0 = aγ xγ + bγ yγ + cγ zγ

Because of the definition of unit normal vector, the matrix
R must be inversable. And the direction of axes can be got
by fork multiply operation of normal vectors of two planes:

lx = bβ · cα − cβ · bα
mx = cβ · aα − aβ · cα
nx = aβ · bα − bβ · aα

ly = bα · nx − cα ·mx

my = cα · lx − aα · nx

ny = aα ·mx − bα · lx
lz = aα

mz = bα

nz = cα

According to the definition of homegenerous transformation
matrix, the matrix mTp can be written as:

mTp =


lx
rx

ly
ry

lz
rz

xp
mx

rx

my

ry

mz

rz
yp

nx

rx

ny

ry

nz

rz
zp

0 0 0 1

 (5)

where,

rx =
√
lx

2 +mx
2 + nx

2

ry =
√
ly

2 +my
2 + ny

2

rz =
√
lz

2 +mz
2 + nz

2

to normalize the members of the rotary submatrix to 1.
The base coordinate frame is fixed with the robot’s

baseplate and doesn’t move at all. For simplicity, in this
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article it’s defined that, after initialization, the base and
moving platform coordinate frames coincide with each other.
The nominal values of the robot’s geometry parameters are
calculated accordingly.

Theoretically, the coordinates of the origin Op can be
directly measured by the CMM. And the axes equations can
be easily calculated by measuring other points on them, if
they are perpendicular with each other. The advantages of the
proposed ‘Three Plane Method’ is the points on the planes
almost can be chosen freely, the operator doesn’t need to take
care the coincideness of the probe and special object point.
And only the planarity of planes should be guaranteed, it’s
even unnecessary to make them crossing physically.

B. The Calibration Process

The calibration is executed by following sequence:
• The robot is initialized, while the homogeneous trans-

formation matrix between the base and moving platform
frames pTb(0) is an identify matrix with dimension of
4×4;

• Let the CMM’s probe touching three points on each of
the three planes, then the corresponding plane parame-
ters will be given by the CMM;

• Using eqn.(5) to calculate the current mTp matrix de-
noted by mTp(0);

• Driving the robot to a new pose, recording the displace-
ments of all actuators;

• By the CMM, the current mTp can be got. From eqn.(1),
it satisfies

mTp(0) · pTb(0) =m Tp(1) · pTb(1)

so,
bTp(1) =b Tp(0) · pTm(0) · mTp(1) (6)

• Above two stages are repeated for 20 times;
• Substatuting the actuator displacements and measured

poses into the robot’s model, using LSM to estimate
the parameters;

• Finally, verifying the calibration effect.

III. THE 6 DOFS PARALLEL MANIPULATOR

Usually, a parallel robot is expected to have better re-
peatability and absolute accuracy than a serial robot, both
consist of parts of same manufacture precision. So a parallel
manipulator is chosen to verify the proposed calibration
method.

A. The Structure

The robot consists of a moving platform, 6 links of same
length and 6 parallel tracks as its baseplate, see Fig.2. Each
link connects the moving platform and corresponding track
at its both ends via gemels, denoted by Bi and Pi, i =
1, · · · , 6, respectively. Driven by individual motor, the link
can move along corresponding track. Via the upper gemels,
the moving platform and links can rotate passively relative
to each other. In the sequel, by coordinately driving the 6
motors, the moving platform can realize movement with 6
DOFs.

Fig. 2. The schematics diagram of the robot with parallel tracks.

B. The Geometry Model

Defining [Pix, Piy, Piz] as the coordinates of the gemel
Pi in the moving platform frame, on the other hand,
[Bix, Biy, Biz] as the coordinates of the gemel Bi in base
frame. The ith link’s length is denoted by li, the ith motor’s
displacement during current iteration is denoted by hi, and
the corresponding track’s direction in the base frame is
denoted by unit vector [ai, bi, ci]. For a unit direction vector,
it satisfies:

ai
2 + bi

2 + ci
2 = 1 (7)

For altogether 6 linkages, there are 60 parameters. Except
hi, all rest are constants and will be calibrated.

Given current matrix bTp, the coordinates of the gemel Pi

in the base frame is:
Pixb

Piyb

Pizb

1

 =b Tp ·


Pix

Piy

Piz

1

 (8)

For each link, its length should be equal to the distance
between the centers of two gemels, eqn.(9) (see the top of
next page) is satisfied and will be used several times later as
the robot’s geometical model.

IV. THE ESTIMATION AND VERIFICATION METHODS

A. The Least Square Method based Estimation Algorithm

For each link, eqn.(9) are written 20 times with corre-
sponding measure data, where only the displacement hi is
known, and all the other variables will be estimated by non-
linear LSM to minimize the sum of all equations’ right
side[12]. So for any link, 9 parameters are directly estimated
by the LSM algorithm, due to the redundancy, ci is got by
eqn.(7).

B. Verification Method

For verification, the Roll-Pitch-Yaw angles [ϕ, θ, ψ] are
adopted to describe rotation[13], the corresponding rotary
transformation matrix bRp has following format: CϕCθ CϕSθSψ − SϕCψ CϕSθCψ − SϕSψ

SϕCθ SϕSθSψ + CϕCψ SϕSθCψ + CϕSψ
−Sθ CθSψ CθCψ


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(Pixb − hi ai −Bix)2 + (Piyb − hi bi −Biy)2 + (Pizb − hi ci −Biz)
2 − li

2 = 0 i = 1...6 (9)

where, Cϕ is cos(ϕ) for short, other members are written in
the same way for simplicity. So the vector [xp, yp, zp, ϕ, θ, ψ]
represents the full pose, the matrix bTp can be rewriten as:

bTp =

 bRp

xp

yp

zp

0 0 0 1

 (10)

To verify the calibration effect, the robot is driven to
archieve a seires of poses. The verification process consists
of following stages:
• Given the desired pose vector, the homegeneous trans-

formation matrix bTp is calculated by eqn.(10);
• By eqn.(8), the gemels’ position in base coordinate

frames are calculated, while the estimated parameters
are used;

• For each link, estimated parameters are substituted into
the eqn.(9), while the motor displacement hi is the only
unknown variable will be solved;

• The 6 motors are driven to move corresponding dis-
placements;

• The three planes’ equations is measured by the CMM,
and using eqn.(6) and (10), the current pose parameters
are calculated;

• Finally, the desired and above gained pose variables are
compared.

V. THE EXPERIMENTAL RESULTS

The experimental setup is shown in Fig.3.

Fig. 3. The experimental setup to do the kinematics calibration.

Take the 4th link for an instance, the result is shown below
in Table.I. For other links, the deviations between nominal
and estimated parameters have similar values.

Before and after calibration, the deviations between the
desired and measured pose parameters are drawn in Fig.4
- Fig.7, respectively. Before and after calibration, the pose
errors’ root-mean-square is shown in Table.II. As instances,
the errors along the X, Y axes and about angle ϕ are

TABLE I
THE ESTIMATION RESULT ABOUT THE 4th LINK’S KINEMATICS

PARAMETERS, UNIT: MICROMETERS.

Parameter Nominal value Identification Result
P4x -99.00 -97.6465
P4y 58.50 59.0159
P4z -50.00 -49.8955
B4x -99.00 -97.6668
B4y 58.50 60.3413
B4z -101.97 -103.0962
a4 0 -0.0015
b4 0 0.0061
c4 1 1.0000
l4 60.00 60.4401

TABLE II
THE POSE ERRORS’ ROOT-MEAN-SQUARE, UNIT: MICROMETERS,

ANGULAR MINUTES.

Pose variable Pre-calibration Post-calibration
x 259.6405 13.6574
y 485.8856 30.3208
z 212.8507 7.2969
φ 4.2513 0.3950
θ 7.6119 0.4403
ψ 4.8517 0.4514

shown in Fig.8, Fig.9 and Fig.10. After calibration, the
errors are obviouslly decreased. Compared the position errors
along different axes, it’s observed that both before and after
calibration, the error along Y axis is much bigger than X and
Z axes. One possible reason is that, during the experiment
the robot is installed as in Fig.3, i.e. the Yb axis points
upwards vertically, along which the influence of gravity is
much more than other axes. This reminds us that, to achieve
better accuracy, for instance similar with X or Z axes, some
non-geometrical parameters should be involved, i.e. only
calibrate the geometrical parameters is not adequate. For
angular errors, there is not an obvious winner or loser.

VI. CONCLUSION

A new pose measure method - ‘Three Planes Method’
is proposed in this article, which can be used in conjuction
with non-linear LSM to calibrate parallel robot’s geometrical
model. The experimental results show that, after calibration
the pose errors is obviously decreased. This method is also
valid for other kinds of parallel or serial robots. As pose
measure method, the ‘Three Planes Method’ also can be used
with other estimation algorithms together, e.g. Kalman filter,
non-linear optimization method etc.

It’s already mentioned that, the final goal of calibration is
to improve the end-effectors position and orientation accu-
racy with respect to the environment. Although during the
experiment, an extra object with planar surface is installed
on the robot, the best way to implement this method is to
directly manufacture the three planes on the end-effector.
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Fig. 4. The deviation between nominal and measured positions along axes
before calibration.

Fig. 5. The deviation between nominal and measured positions along axes
after calibration.

So it’s more easy to guarantee the accuracy by manufacture
process and the assembly error is avoided at all. In addition,
because no special point is definitely needed, there are more
flexibilities to place the planes. One possible weakness is
that due to the end-effector’s dimension, the planes’ area is
restricted, in the sequel, it’s feasible to decrease the CMM’s
measure accuracy.

After calibration, the deviation between the desired and
obtained pose parameters are still much bigger than the
robot’s repeatability. By analyzing the errors along different
axes, we realized that at least for a parallel manipulator with
this structure, using same measure equipment, i.e. CMM
and ‘Three Planes Method’, to achieve better accuracy, non-
geometrical parameters should be calibrated too.
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