
Free Space Mapping and Motion Planning in
Configuration Space for Mobile Manipulators

James Ward and Jayantha Katupitiya
ARC Centre of Excellence for Autonomous Systems

School of Mechanical and Manufacturing Engineering
The University of New South Wales, Australia

james.ward@student.unsw.edu.au, j.katupitiya@unsw.edu.au

Abstract— A new method for calculating the collision free
areas of a manipulator’s configuration space (C-space) is
demonstrated in this paper. Rather than mapping a point
obstacle to an n-dimensional surface in the C-space, the dual
problem is considered. That is, regions of the C-space that
are guaranteed to be collision free are determined. Whilst
some configurations that are collision free are not captured
by this method, its speed and low memory usage make it
ideal for motion planning in the C-space. It is especially useful
for mobile manipulators such as wall climbing robots, where
the surrounding terrain changes with each step the robot
takes. Being able to compute the mapping of Cartesian to
C-space representations of objects in real time is essential,
as the workspace for these robots is not static and therefore
cannot be precalculated. Once the free areas of C-space have
been determined, more conventional path planning techniques
which have been developed for point robots moving around
forbidden areas can be used for the generation of a motion
plan. This means that motion planning can be guaranteed
to have an exhaustive search through all possible paths and
return the lowest cost path - something that has previously been
difficult to achieve with other manipulator motion planning
techniques. The technique is demonstrated for a 2-degree of
freedom planar manipulator, and will be extended in the future
to apply to higher dimensional C-spaces. Further developments
are suggested for further optimisation of the technique, most
notably the idea of partitioning the C-space.

I. INTRODUCTION

Motion planning for robotic manipulators is made difficult
by the combination of the facts that the robot changes shape
in different configurations, and that all points of the robot’s
structure must avoid the terrain, not just the end effector.
Because of this, traditional planning techniques used for non-
deformable robots cannot be readily applied to manipulators.

The configuration space (C-space) of an n-degree of free-
dom robot represents every combination of actuator positions
as a point in an n-dimensional space. If obstacles can be
represented in the C-space, then motion planning can be
performed in the C-space, which is far simpler because the
robot is represented by a single point at any given time. This
approach was initially described in [1] and further developed
in [2]. A method for 6-degree of freedom manipulators
was described by [3] but was not implemented for a real
or simulated system, so no information about calculation
times are available. The focus of subsequent work was

on completely mapping the obstacle into the C-space. [4]
presents a geometric method for mapping.

All of the previously mentioned methods do not include
information about the computational requirements. However,
this work was built upon by others who were able to create
practical implementations of C-space obstacle mapping. A
method for describing the obstacles within the C-space
analytically was developed in [5]. Techniques for bitmap
representation of obstacles are demonstrated in [6]–[8].

Further developments were made by [9] where they
demonstrated a method to reduce the memory requirements
of these types of techniques by storing C-space data using
octrees. Even then, typical applications of the technique
require around 10 hours of processing time and 125Mb of
memory.

All of these techniques have long preprocessing times
and large memory requirements. This may not be as critical
when the manipulator is operating in an essentially static
environment. However, more and more manipulators operate
in dynamic environments or are themselves mobile. The field
of wall climbing robots is a good example of the type of
application where the ability to motion plan in real time
when operating in a changing environment is key. Fig 1.
shows a prototype wall climbing robot being developed by
the authors.

In this paper we present an approach to the problem that
can be run in real time with little memory overhead. The
dual problem of determining guaranteed free areas within
the C-space is tackled, rather than trying to map the C-
space obstacle directly. This leads to significant advantages
for real world applications. It also lends itself to further work
about how these freespaces and forbidden areas partition
the C-space, making some areas inaccessible and therefore
necessary to include in the motion plan search algorithm
leading to further time savings. These key differences in
approach have led to very promising results.

II. C-SPACE OBSTACLES

In order to perform motion planning in the configuration
space, rather than in Cartesian space, it is necessary to
represent all obstacles in the configuration space. Each point
in the Cartesian space will map to a set of points in the

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrE12.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4981

(a) Suction cup testing

θ
2

θ
1

θ
5

θ
6

θ
4

θ
3

2(R)

4(R)

1(R)

5(R)

3(R)

6(R)

(b) Kinematic configuration

Fig. 1. Prototype 6-degree of freedom wall climbing robot

C-space. These points become the forbidden areas of the C-
space. Only when all obstacles have been mapped can motion
planning begin.

Several techniques have been developed to tackle this
problem. For 2-degree of freedom planar manipulators, a
solution to finding the C-space obstacles is given by [10].
They state that their solution is complete and efficient for low
dimension C-spaces, but is unlikely to scale well for higher
dimension C-spaces. [5] also describes an analytical solution
to the problem. For each point obstacle in the Cartesian
space, a set of parametrised equations is developed for
each link of the robot. The parameter describes the position
along the robot for which a collision with the obstacle is
calculated, using the inverse kinematics equations for the
robot. To determine whether a point in the C-space represents
a collision with the obstacles, each one of these equations
must be checked. For an n-degrees of freedom robot moving
among m point obstacles, this will require nm checks for
each point in the C-space.

The technique described in [9] relies on extensive pre-
processing to create a comprehensive lookup table for the
relationship between points in C-space and Cartesian space.
The Cartesian space is discretised and every configuration
which results in some part of the robot intersecting a cell is
calculated, and repeated for every cell in the Cartesian space.
Once the robot is operating, real obstacles can be located in
Cartesian space and the lookup table used to determine C-
space values that would result in a collision with this obstacle.
This is repeated for all obstacles so that all of the forbidden
regions are determined.

A. Computational Considerations

As we are trying to develop a method for online motion
planning for use with mobile manipulators, there are some
important computational considerations.

The first consideration is storage space. Once the forbidden
C-space areas are determined they need to be stored so
that the motion planner can access this information and
avoid these areas. For an n-degree of freedom robot, the
C-space will be n dimensional. Any point in the C-space
will generally require an n-tuple to completely specify it.
For a 5-degree of freedom robot with a configuration space
discretised into 1 degree cells, this will result in 3605 =
6.0×1012 cells. If each cell requires 1 byte to specify it this

means 5.5Tb of memory would be required to represent the
entire C-space. Even if only the obstacles were mapped and
they made up 0.1% of the C-space, 5.5Gb of memory would
still be needed, and would have to be searched to calculate
motion plans. This is clearly infeasible. It should be noted
that more efficient storage schemes can be designed (indeed
[9] uses octrees for this very reason), but the fact remains
that representing obstacles in the C-space in this way is very
memory intensive. Storage schemes which can reduce the
memory required do so at the expense of increased search
time because the computer must decompress the relevant data
as it is searching it.

Computation time is the second important issue to con-
sider. Mobile manipulators operate in constantly changing
workspaces. This can be because they are moving relative
to the obstacles, or because previously unknown obstacles
become known as new sensor information arrives. Any C-
space mapping technique must be able to build and update
maps in real time so that the robot can continue its mission
uninterrupted by delays for navigational computations.

Both of these problems are caused because the C-space
obstacle is being mapped (and therefore stored) in the discre-
tised C-space representation. As the number of dimensions
and fineness of the discretisation of the C-space increase,
so too do the computation and storage requirements. The
technique presented in Section III avoids this problem.

III. FREE SPACE MAPPING

If we map an obstacle from the Cartesian space to the C-
space we must make sure that every point in the C-space that
would result in a collision is stored in our representation. If
we miss a single point, the motion planner may develop a
motion plan that results in a collision. Therefore we expend
large amounts of computation time and memory to ensure
that our mapping is complete.

We can overcome this problem by addressing the dual
problem. That is, rather than determining the areas of the C-
space that result in a collision with the object, we determine
the C-space areas that are guaranteed to be clear of a
collision. We call these areas freespaces and they are far
faster to calculate, store and work with. In doing this our
motion planner will lose access to some C-space points
which are collision free but not included in the calculated
freespaces, but the advantages in time and memory more
than make up for this.

A. Method

Freespace mapping relies on identifying boundary condi-
tions for the obstacle in C-space and using those bound-
ary values to establish guaranteed collision free regions
(freespaces). The determination of boundary conditions can
be specified in any number of ways. Each method will
have a certain cost in terms of calculation time and storage
memory required, but will generate different amounts of
usable freespace for a given obstacle. As more and more
freespace boundary conditions are defined, the freespace

FrE12.4

4982

l1

l2

q1

q2

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

P1

P2

P1

P2

P1

P2

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

P1

P2

P1

P2

P1

P2

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

P1

P2

P1

P2

P1

P2

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

P1

P2

P1

P2

P1

P2

Fig. 2. Planar manipulator and obstacles in Cartesian space

mapping technique approaches the C-space obstacle mapping
technique. That is, the entire C-space obstacle is completely
defined and the amount of uncaptured freespace tends to zero,
at the expense of memory and computation time.

An example is given for a 2-degree of freedom planar
manipulator. This was chosen for the ease of demonstration.
Obviously further work is needed to extend this to higher
degree of freedom manipulators, culminating in a motion
planning solution for the 5-degree of freedom wall climbing
robot.

1) Individual Obstacles: The first step in freespace map-
ping is to determine the freespace of each individual point
object. The freespace of a point obstacle is generated from
the union of freespace primitives. These primitives are n
dimensional prisms, where n is the number of degrees of
freedom of the manipulator. This means that each freespace
primitive is completely defined by specifying the coordinates
of two diagonally opposite corners. Furthermore, a point in
the C-space can be tested to see whether it lies inside the
primitive by checking that each of its ordinates lie between
the diagonally opposite vertices of the primitive.

The following notation is used to define an n-dimensional
freespace primitive.

F = F{(1qmin, 1qmax), (2qmin, 2qmax), ..., (nqmin, nqmax)}
(1)

A configuration, q = {q1, q2, ..., qn}, lies inside the
freespace primitive if

iqmin < qi < iqmax, i = 1, 2, ..., n (2)

Consider the two points, P1 and P2 in Fig. 2. In keeping
with the nomenclature introduced by [5] we will refer to

(a) Obstacle P1

(b) Obstacle P2

Fig. 3. C-space obstacles and associated freespaces. Freespace primitives
must take account of the width of the links, hence there is space between
the primitives and the curve representing the centre of each link colliding
with the obstacle.

freespaces of obstacles inside the reach of the first link as
type-1 freespaces, and freespaces of obstacles that can only
be reached by the second link as type-2 freespaces.

a) Type-1 Freespaces: The obstacle P1(x, y) lies within
the workspace of the first link of the manipulator, so it is
possible for both the first and second links of the manipulator
to make contact with it.

The distance from the origin to the point P1 is defined by:

r =
√

x2 + y2 (3)

We determine the value of q1 that will cause a collision
between the obstacle and the first link. This is called the
q1 offset angle, and is referred to as q̄1.

tan(q̄1) =
y

x
(4)

We then determine the values of q1 which put the obstacle
outside of the reach of the second link. This means that in
this range of q1 values, any value of q2 will not result in a
collision.

FrE12.4

4983

q̂1 = cos−1

(
l21 + r2 − l22

2rl1

)
(5)

The first pair of freespace primitives is therefore given by:

F1A =

{
F{(−180◦ + ε, q̄1 − q̂1), (−180◦ − ε, 180◦ + ε)}
F{(q̄1 + q̂1, 180◦ + ε), (−180◦ − ε, 180◦ + ε)}

(6)
As with all freespace primitives, additional tests must be

made to see if the values of q̄1 ± q̂1 lie outside of the range
[−180, 180] and suitable adjustments made if so. We use the
value 180◦ + ε, where ε is some small value, rather than
180◦ for parameters that have no bounds because the test
for whether a configuration lies within a freespace primitive
uses the < operator. In these cases a value of 180◦ does lie
within the freespace, and the test performed in (2) needs to
use boundary values which reflect this fact.

As can be seen from the C-space obstacle shown in Fig.
3(a), the values of q2 which cause the second link to collide
with the obstacle have two stationary points (ie a maximum
and a minimum). Beyond these values of q2 the configuration
is collision free, as long as the first link does not collide with
the object. By differentiating the expression for q2 to find the
stationary points and denoting the values at the stationary
points as q̂2:

q̂2 = tan−1

(
r√

l21 − r2

)
(7)

At these values we must also take account of the width of
the second link:

q̃2 = tan−1

(
w1

2
√

l21 − r2

)
(8)

The offset angle gives the value of q1 for which the middle
of the first link would hit the obstacle. The width of the link
must also be taken into consideration. The angle subtended
at the first joint by the link at the point of contact is given
by:

q̃1 = tan−1
(w1

2r

)
(9)

As all values of q1 within the range (q̄1 − q̃1, q̄1 + q̃1)
result in a collision with the obstacle, regardless of the value
of q2. Therefore no freespace primitives can be defined in this
region. With the q2 values found in (7) and (8) the second
pair of freespace primitives can be defined:

F1B =

{
F{(q̄1 − q̂1, q̄1 − q̃1), (−180◦ − ε, 180◦ − q̂2 − q̃2)}
F{(q̄1 + q̃1, q̄1 + q̂1), (−180◦ + q̂2 + q̃2, 180◦ + ε)}

(10)
The union of these pairs of freespace primitives [(6), (10)]

forms the type-1 freespace for obstacle P1 shown in Fig. 3(a).
As noted previously, it would be possible to define more

freespace primitives by performing more calculations (and
using more memory and processor time), but the two pairs
of primitives defined in this section capture the majority of
the true freespace and therefore make a good compromise.

b) Type-2 Freespaces: As P2(x, y) lies outside of the
range of the first link of the robot, it will generate a type-2
freespace. As was the case with the type-1 freespace, we first
determine the q1 offset angle q̄1.

tan(q̄1) =
y

x
Now we calculate the values of q1 which put the obstacle

outside of the reach of the second link, just as for the type-1
freespace. As before in (5):

q̂1 = cos−1

(
l21 + r2 − l22

2rl1

)
This results in a pair of freespace primitives:

F2A =

{
F{(−180◦ − ε, q̄1 − q̂1), (−180◦ − ε, 180◦ + ε)}
F{(q̄1 + q̂1, 180◦ + ε), (−180◦ − ε, 180◦ + ε)}

(11)
Within the range of q1 values that were not included as

part of the previous primitives, it is possible to find more
freespace primitives. There is a range of values of q2 for
which the maximum reach of the manipulator is less than
the distance from the origin to the obstacle. In this case, the
manipulator cannot collide with the obstacle. We will now
determine these values.

q̂2 = cos−1

(
l21 + r2 − l22

2l1l2

)
(12)

The corresponding freespace primitives are:

F2B =

{
F{(q̄1 − q̂1, q̄1 + q̂1), (−180◦ − ε,−q̂2)}
F{(q̄1 − q̂1, q̄1 + q̂1), (q̂2, 180◦ + ε)}

(13)

These two pairs of primitives leave a large square area in
the center of the C-space as being unavailable. It is clear
from the C-space obstacle curve that some of this area is
available. We can add two more freespace primitives which
represent the cases when the second joint is bending away
from the obstacle, ie q2 > 0, q1 > q̄1 and q2 < 0, q1 < q̄1.
Because the links of a real manipulator have width, this must
also be taken into account. The angle subtended by the link
at the second joint is given by:

q̃2 = cos−1

(
w1

2(r − l1)

)
(14)

This final pair of freespaces is defined by:

F2C =

{
F{(q̄1 − q̂1, q̄1), (−q̂2,−q̃2)}
F{(q̄1,q̄1 + q̂1), (q̃2, q̂2)}

(15)

The union of these three pairs of freespace primitives
[(11), (13), (15)] forms the type-2 freespace and is shown
for obstacle P2 in Fig. 3(b).

FrE12.4

4984

2) Multiple Obstacles: Once the freespaces for the in-
dividual obstacles has been determined, it is necessary to
combine them to form the complete freespace for the robot’s
environment.

In order to intersect two freespace primitives F1 and F2

to form F ′ = F1 ∩ F2:

F1 ∩ F2 =F
{(

max(F1 : 1qmin, F2 : 1qmin),

min(F1 : 1qmax, F2 : 1qmax)
)
,

...,

(max(F1 : nqmin, F2 : nqmin),
min(F1 : nqmax, F2 : nqmax))}

(16)

If any pair of limits in F ′ is such that nqmin ≥ nqmax we
discard the new primitive as there is no intersection.

The process for finding the intersection of two freespaces
is to iterate over all of the freespace primitives in the
first freespace and intersect them with all of the freespace
primitives in the second freespace. If the freespace S1 =
∪n

i=1
1Fi and S2 = ∪m

j=1
2Fj , then the freespace representing

the intersection S′ = S1 ∩ S2 is defined as:

S1 ∩ S2 = ∪n
i=1 ∪m

j=1 (1Fi ∩ 2Fj) (17)

When more than two obstacles are involved, each freespace
is successively intersected with the previous intersection.
That is,

S′ =S1 ∩ S2 ∩ S3 ∩ ... ∩ Sn

=((((S1 ∩ S2) ∩ S3) ∩ ...) ∩ Sn)
(18)

Fig. 4. shows the complete freespace for a 2-degree of
freedom planar manipulator moving among several point
obstacles. The freespace comprises 94 freespace primitives
to represent the effect of the 18 point obstacles. As each
primitive can be represented by pairs of floating point num-
bers, this is a memory use of 1.5kB assuming 4B for each
float. Generating the freespace primitives took 19ms on an
Athlon64 3500+.

IV. MOTION PLANNING

Once the freespace for the surrounding terrain has been
calculated a wide variety of techniques can be used to
generate the motion plan. Because this motion planning is
occurring in the configuration space and the configuration
of the robot at any time is represented by a single point in
this space, many of the path planning techniques that have
been developed for mobile robots can be used. The motion
plan shown in Fig 4(b) was generated in approximately 1
second by using the A* search algorithm [11], using a cost
function that minimises total actuator movement. Different
cost functions will result in different shaped paths through
the C-space. The ability to use these well studied algorithms
is one of the great attractions of C-space obstacle mapping.

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

−200

−150

−100

−50

 0

 50

 100

 150

 200

−200 −150 −100 −50 0 50 100 150 200

y
 (

m
m

)

x (mm)

(a) Robot and obstacles. The dashed lines are the intermedi-
ate configurations between the solid initial and goal positions.

-150

-100

-50

 0

 50

 100

 150

-150 -100 -50 0 50 100 150

q
2
 (

d
e
g
)

q1 (deg)

(b) Freespace and motion plan

Fig. 4. Entire freespace

Such algorithms are guaranteed to find the lowest cost
motion plan if one exists. The cost function can be defined
as desired - for a wall climbing robot it might select be
the lowest total actuator movement, lowest time to execute
the plan or the plan that has the lowest moment about the
attached foot in order to decrease the likelihood of the robot
detaching from the wall. Cost functions like these cannot
be incorporated into the more prevalent probablistic motion
planners such as rapidly-exploring random trees [12], random
walks [13] and probablistic roadmap planners [14]. These
planners must also perform all of their collision checking in
the Cartesian space, which is computationally burdensome.
Efficient techniques have been developed to do this [15], but
they still cannot compete with motion planning in the C-
space. Their advantage is that they require no preprocessing
and can therefore be used in complex and dynamic environ-
ments, where previous C-space mapping schemes could not.

It should be noted that previous attempts have been ex-
tremely memory intensive because they have to discretise
the C-space with the resolution that is required by the search
algorithm to be run. Freespace mapping neatly avoids this

FrE12.4

4985

situation because it defines free regions of C-space. The
discretisation of the C-space only occurs when the algorithm
is running, and cells of C-space are only allocated memory as
they are needed. In this way we are making use of the main
strength of path planners such as A*, namely that they do not
exhaustively search the entire space to find the lowest cost
path. As much of the C-space does not need to be searched,
it does not need to have memory allocated to it and entire
process is very processor and memory efficient.

There is great scope for varying the search algorithms used
after freespace mapping is complete, because the mapping
process and calculated freespace are entirely independent
of the technique used to find the motion plan within the
freespace. It would be possible to run the search algorithm
several times at different resolutions in order to determine if
a viable motion plan exists and then to refine it as the robot
is spending time executing the initial coarse plan. This type
of hierarchical search is described in [16], but could not be
applied to manipulator arms until now.

If freespace mapping is to be used in an application such
as a wall climbing robot where the sensors are continually
updating the terrain data (ie adding more obstacles to the map
and requiring changes to the calculated freespace), a search
algorithm such as D* [17] which is designed for dynamic
environments would be more appropriate.

The initial configuration can also be used to make the
motion planning process more efficient. A given freespace
is composed of many freespace primitives. To find a path
from inside one primitive to another, the two primitives must
overlap or be joined by a series of overlapping primitives.
Any primitives that are not joined to the primitive containing
the initial configuration in this way cannot be reached from
the initial configuration. Accordingly, these primitives do not
need to be in the list of primitives to be tested when a new
neighboring node is generated and tested to see whether it is
inside one of the freespace primitives. Reducing the number
of primitives to test against will reduce the computation time
required for the motion planning process. This process of
partitioning the freespace will become more useful as the
number of dimensions of the C-space increases, and requires
further investigation.

V. CONCLUSION

Freespace mapping provides a very fast and effective first
step for manipulator motion planning within the configuration
space. In the future it will applied to higher degrees of
freedom. As the degrees of freedom increase there will also
be a need to optimise the technique to provide the pre-
ferred trade off between processing speed and completeness
of freespace determination. Freespace mapping provides a
step forward in terms of the processing time and memory
required to represent obstacles within the robot’s C-space, but
further work is required to generalise to higher dimensional
problems.

There are further optimisations to this technique that
could be investigated, including freespace partitioning and

different methods for search algorithm application to the
freespace. The most efficient method for representing non-
point obstacles should also be investigated, as it may not be
necessary to map every point on the obstacle if certain key
points can be used to map the entire freespace of the obstacle.

ACKNOWLEDGEMENTS

This work is supported in part by the ARC Centre of
Excellence programme, funded by the Australian Research
Council (ARC) and the New South Wales State Government.

REFERENCES

[1] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
Computers, IEEE Transactions on, vol. C-32, no. 2, pp. 108–120, 1983.

[2] T. Lozano-Perez, “A simple motion-planning algorithm for general
robot manipulators,” Robotics and Automation, IEEE Journal of
[legacy, pre - 1988], vol. 3, no. 3, pp. 224–238, 1987.

[3] B. R. Donald, “A search algorithm for motion planning with six
degrees of freedom,” Artificial Intelligence, vol. 31, pp. 295–353, Mar.
1987.

[4] R. Brost, “Computing metric and topological properties of
configuration-space obstacles,” in Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on, vol. 1, pp. 170–
176, 1989.

[5] C. Zhao, M. Farooq, and M. Bayoumi, “Analytical solution for config-
uration space obstacle computation and representation,” in Industrial
Electronics, Control, and Instrumentation, 1995., Proceedings of the
1995 IEEE IECON 21st International Conference on, vol. 2, pp. 1278–
1283, 1995.

[6] L. Kavraki, “Computation of configuration-space obstacles using the
fast fouriertransform,” Robotics and Automation, IEEE Transactions
on, vol. 11, no. 3, pp. 408–413, 1995.

[7] B. Curto, V. Moreno, and F. Blanco, “A general method for c-
space evaluation and its application toarticulated robots,” Robotics and
Automation, IEEE Transactions on, vol. 18, no. 1, pp. 24–31, 2002.

[8] B. Curto and V. Moreno, “Mathematical formalism for the fast
evaluation of the configuration,” in Computational Intelligence in
Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE
International Symposium on, pp. 194–199, 1997.

[9] X. Wu, Q. Li, and K. Heng, “A new algorithm for construction of
discretized configuration space obstacle and collision detection of
manipulators,” in Advanced Robotics, 2005. ICAR ’05. Proceedings.,
12th International Conference on, pp. 90–95, 2005.

[10] A. Maciejewski and J. Fox, “Path planning and the topology of
configuration space,” Robotics and Automation, IEEE Transactions on,
vol. 9, no. 4, pp. 444–456, 1993.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[12] J. Kuffner, J.J. and S. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA ’00. IEEE International Conference on, vol. 2,
pp. 995–1001, 2000.

[13] S. Carpin and G. Pillonetto, “Robot motion planning using adaptive
random walks,” in Robotics and Automation, 2003. Proceedings. ICRA
’03. IEEE International Conference on, vol. 3, pp. 3809–3814, 2003.

[14] R. Geraerts and M. H. Overmars, “Sampling and node adding in
probabilistic roadmap planners,” Robotics and Autonomous Systems,
vol. 54, pp. 165–173, Feb. 2006.

[15] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive dynamic col-
lision checking for single and multiple articulated robots in complex
environments,” Robotics, IEEE Transactions on [see also Robotics and
Automation, IEEE Transactions on], vol. 21, no. 3, pp. 338–353, 2005.

[16] A. Autere, “Hierarchical A* based path planning – a case study,”
Knowledge-Based Systems, vol. 15, pp. 53–66, Jan. 2002.

[17] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
Artificial Intelligence, 1995. Proceedings., 1995 International Joint
Conference on, pp. 1652–1659, August 1995.

FrE12.4

4986

