
Control of Harmonic Drive Motor Actuated Flexible Linkages

J.-P. Hauschild and G. R. Heppler

Abstract—Friction models and compensation methods are
applied to harmonic drive motors used with flexible robotic
linkages. In the absence of output torque measurements and
output shaft encoder data nearly complete friction compensa-
tion is achieved allowing the application of a passivity based
controller. Simulation and experimental results are given.

I. INTRODUCTION
Because of the absence of backlash and high gear ratios

servo-actuators with harmonic drive gearing are commonly
used for space manipulators. One of their major drawbacks
is the high level of internal friction in the transmission and
the difficulties this gives rise to with regard to controller
design and implementation. In addition to the friction caused
by the DC-motor brushes and the bearings, the harmonic
drive gearing in the actuators causes a major part of the total
friction due to the flex-spline and the large gear tooth area.
The friction is nonlinear and is dependent on the state of the
motor and its environment. In the sequel we investigate the
friction behavior of harmonic drive (HD) actuators, present
friction compensation methods that reduce the level of ap-
parent friction and illustrate how the friction compensation
allows application of a passivity based controller to a HD
actuated flexible link robotic linkage.

II. FRICTION MODELS
A wide range of friction models have been thoroughly

reviewed by Armstrong-Hélouvry et al.[1] and Olsson et
al.[2]. The Coulomb friction model and its extensions have
difficulties when the velocity is near zero because of the
jump discontinuity in that region. A more general model of
friction is

F =






F(v) if v != 0
Fe if v= 0 and |Fe| < FS
FS sgn(Fe) otherwise

(1)

where F(v) is an arbitrary function often chosen to be

F(v) =
(
α0+α1 exp

(
−(v/vS)δ

))
sgn(v)+α2v (2)

It covers Coulomb, viscous, static and Stribeck [3] friction
and is characterized by the parameters: α0 = FC (Coulomb
friction), α1 = FS −FC (additional stiction force), α2 = Fv
(viscous friction coefficient), vS (Stribeck velocity), and the
form factor δ , with different parameters used for opposite
directions. A disadvantage of model (1) is the problem of
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detecting when the velocity is zero. Model (1) and (2) will
be referred to as the exponential friction model.
The Lund-Grenoble (LuGre) model [4] combines stiction

and the Dahl effect [5] with steady state friction characteris-
tics like Coulomb friction, viscous friction and the Stribeck
effect. It uses an internal state variable z governed by

ż= v− (σ0/g(v))|v|z (3)

where v is the relative velocity between the two surfaces, and
σ0 is the stiffness parameter. The function g(v) is positive
and depends on factors like lubrication, material properties,
and temperature. To recover the Stribeck effect it decreases
monotonically as v increases. It is proposed [4] that

g(v) = α0+α1 exp
(
(−v/vS)2

)
(4)

The corresponding friction force is described by

F = σ0z+σ1ż+α2v (5)

where the first two terms denote the force generated by
surface interactions and the last term is the viscous friction.

III. FRICTION COMPENSATION
Friction compensation methods to be discussed here are

restricted to those applicable to HD actuators without output
torque measurements or output shaft encoders. The simplest
way to compensate friction in servo drives is a feed-forward
element as shown in Fig. 1 (with the feedback part removed).
A friction torque τ f (τ) is added to the input torque τ as an
offset to the input signal for the motor depending on the sign
of the input. In the ideal case, this offset should be exactly
the friction torque but in practice the offset should always
under compensate the real friction to avoid instabilities.
Feed-forward compensation is limited to the reduction of
the Coulomb friction. It cannot compensate stiction effects
nor viscous friction, does not provide back drivability to
the motor, would not prevent large steady state errors and
it would increase the non-linearities of the motor [6].
Compensation based on Coulomb friction based models

has an infinite slope for a zero input which can cause
an undesirable chattering when the friction compensation
is used in a direct feedback loop. A remedy would be a
decreased slope at zero input [7], but the steady-state error of
the system can still increase due to the under compensation
of the friction at low velocities.
An extension of the feed-forward friction compensation is

shown in Fig. 1 where there is now an additional feedback
element which provides a compensation for viscous friction
and can include the Stribeck effect. A compensation of the
stiction force is theoretically possible, but in practice not

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrA10.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3451



Actuator

.

Compensator
Friction
Feed-forward

Compensator
Feed-back Friction

Fig. 1. Combination of feed-forward and feedback friction compensation.

applicable because an infinite slope of both compensators
for zero velocity would cause chattering. Reducing this
slope would result in a zero velocity reading and therefore
prevent any feedback compensation. This type of friction
compensation introduces an increased nonlinearity as in the
pure feed-forward case. Many friction compensators use
velocity feedback similar to that shown in Fig. 1 (but without
the feed-forward element) to estimate a friction torque and
add it to the input signal. This configuration has one major
drawback: the starting of the motor from rest needs an input
torque which is higher than the stiction torque of the motor.
This torque should be provided by the friction model, but the
friction model will not be in effect until the motor is moving.
This behavior is especially of interest for actuators with
harmonic drive gearing because the ratio between the stiction
torque and rated output torque is quite high (about 1/5 for
the HD actuators used here). For control purposes, the actual
working torques are often far below the rated output torques
and get close to zero when reaching the control objective.
For these reasons, a modification to the friction compensation
scheme is required.
A modified velocity feedback scheme, or modified friction

compensation, that mitigates the drawbacks of pure velocity
feedback is shown in Fig. 2. Velocity feedback is preserved,
but the velocity signal is modified, based on the current input
signal, near zero.
Cross-fading between the velocity and the input signal is

used to allow inclusion of the current motor speed with the
input signal to estimate the friction torque for velocities near
zero (Fig. 2). The modified signal ˜̇θ is then used for the

Fig. 2. Modified velocity feedback scheme.

friction compensation. The saturation of the input signal τ ∈
[−δ ,δ ] guarantees that the modified velocity ˜̇θ never causes
a friction model output τ f larger than the real friction torque.
The mixing ratio γ is generated by an amplified and saturated
velocity θ̇ as per:

γ =
{

kγ |θ̇ | for kγ |θ̇ | < 1
1 for kγ |θ̇ | ≥ 1

(6)

The speed at which the friction model is fully based on the
real velocity is set with the factor kγ ; the gain kτ takes care
of the conversion from input torque to pseudo-speed θ̇τ . The
mixing of the two signals is linear as shown. The modified
friction compensation is capable of covering all the friction
phenomena that the pure velocity feedback configuration
does and it is also able to compensate for input signals with
smaller magnitude than the stiction force.

IV. EXPERIMENTS AND RESULTS
The experiments reported here were conducted on a HD

Systems RFS-32-6030 motor rated at 50 Nm output torque
with a 50 : 1 HD gear box, a mass of 11.8 kg and moment
of inertia J = 3.41 kgm2. Similar experiments, with similar
results, were also conducted on an HD Systems RFS-25-6018
motor (30 Nm output torque, 50 : 1 gearing) [6].
The joint angle was measured with an optical encoder that

had a physical resolution of 1024 pulses per revolution, a
quadrature decoder that gave a resolution multiple of four,
and a gear ratio multiple of 50. The overall resolution was
204800 pulses per revolution.
The friction was qualitatively observed to depend on the

absolute motor angle and temperature. The friction compen-
sated motor was to behave like an ideal motor (including
back drivability) with a transfer function G(s) = 1/(Js2) so
that: model based linear controllers could be used, it could
handle small input signals (the desired output torque might be
smaller than the break-out torque), there was no chattering,
and it would be possible to apply the friction compensation
to different control algorithms without changes. To fulfill
these requirements the LuGre model was chosen from several
different friction models and compensation schemes [6], [8].

A. Friction Compensation with the LuGre Model
A HD-motor with friction was modelled using (3)–(5) and

Jθ̈ = τ− τ f (7)

where θ is the angular position of the motor, θ̇ = v from (3)
is the angular velocity, τ f = F from (5) is the friction torque
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Fig. 3. Static friction–velocity map (•; measurement; –:parameterization).

and τ is the torque of the ideal motor. The static parameters
of the LuGre model α0, α1, α2, and vS from (4) can be
estimated by constructing a friction–velocity map measured
during constant velocity rotation. The friction torque was
measured in a closed loop experiment under velocity PI
control[6]. The dynamic parameters σ0 and σ1 were then
determined using the static parameter values and open-loop
experiments that included zero crossings of the velocity were
performed. The recorded data was used to search for a
σ̂ = [σ̂0, σ̂1] that minimized the error cost function

E{θ ,θm; σ̂} =
N

∑
k=0

[θ(k,σ)−θm(k, σ̂)]2 (8)

where θ(k,σ) is the kth sampled actuator angle and θm(k, σ̂)
is the kth-value of the model output position.
Because of the temperature dependency of the harmonic

drive, the experiment scanned the speed range 0.0004 rad/s to
0.61 rad/s in one test[6]. Each desired speed was allowed to
settle into steady-state motion and then averages of all input
torque and output speed values were calculated. The resulting
static friction–velocity map is shown as dots in Fig. 3. The
higher density of data points at low speeds is evident in this
figure. Only the positive direction is shown here but similar
results were obtained for the negative direction. Different
parameter sets for each direction were determined for the
steady-state friction torque by using a non-linear optimiza-
tion multi-variable simplex search. Results are shown with a
dashed line in Fig. 3. The resulting steady-state parameters
are given in Table I.
To find values for the two dynamic parameters σ0 and σ1

open-loop experiments that included zero velocity crossings
TABLE I

PARAMETERS OF THE LUGRE MODEL.
Parameter Value for positive part Value for negative part

α0 7.9707 Nm 7.7538 Nm
α1 1.4476 Nm 0.8626 Nm
α2 4.9349 Nms/rad 4.3267 Nms/rad
vS 0.0363 rad/s 0.0221 rad/s
σ0 259 Nm/rad 259 Nm/rad
σ1 10 Nms/rad 10 Nms/rad

Fig. 4. Dynamic parameter estimation: real and simulated angle.

were performed. It was found that the values given in Table
I gave good agreement between the simulated and the real
actuator response as shown in Fig. 4. The validation of the
LuGre friction model with the determined parameters was
performed under friction compensation. If friction can be
exactly predicted the actuator under friction compensation
would behave like an ideal motor with no energy dissipation.
In a P-controlled closed loop experiment, an ideal system
would behave as an oscillator without friction. Therefore,
small imprecisions in the friction model would lead either to
decay if friction is under estimated or to an unstable behavior
if friction is over estimated.
The experimental setup was implemented according to

the modified friction compensation configuration (Fig. 2)
with the following parameters: kγ = 100 s, kτ = 1 rad/Nms,
δ = ±0.5 s−1. The controller for the validation setup had a
P-gain of 5 Nm, and the step input at 1 s had a magnitude of
1 rad. The step response of the friction compensated system
is shown in Fig. 5 as a solid line; additionally a dashed line
shows the simulated step response. The damping of the mea-

Fig. 5. LuGre model: −·−:desired angle; –:real motor; - -:ideal motor.
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Fig. 6. Exponential friction compensation map.

sured signal indicates the desired small under compensation
of joint friction but the flattening of the response curve at its
extrema shows that the motor is sticking at velocity reversals.
This occurs because of an over estimate of the contribution
of the dynamic friction contribution to the model[6]. The
discrete nature of the system limits the range of possible
dynamic parameters[6] and it was necessary to adopt the
exponential friction model for use in the compensator.

B. Friction Compensation with the Exponential Model

The exponential friction compensation was chosen because
the static parameters of the LuGre model had more influence
on the estimated friction than the dynamic parameters and
this friction compensation method is equivalent to the static
part of the LuGre model, i.e. the static parameters of the
LuGre model can be used for the exponential model.
A modification had to be made to the friction–velocity

map: Since the map had an infinite slope at zero velocity, it
was very sensitive to the smallest deformations of the motor
and measurement noise. Therefore, the slope was decreased
by multiplying each side of the map by

1− exp
(
−

∣∣θ̇
∣∣kS

)
(9)

where kS is a factor used to adjust the slope (see Fig.
6). Decreasing the slope reduces the modelled stiction and
therefore the performance of the friction compensation. A
compromise between friction compensation performance and
suppression of chattering was made to determine that kS =
300 was the best choice. This model was validated in the
same way as the LuGre model with the same P-gain value
and 1 radian step input. The parameters for the modified
friction compensation scheme were changed to kγ = 100 s,
kτ = 1 rad/Nms and δ = ±0.01 s−1. The step response is
shown in Fig. 7 as a solid line; the dashed line denotes
an ideal model. Very good agreement between the friction
compensated actuator and an ideal motor model is given
with this friction compensation. There is the desired under
damping and no chattering or ripples.
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Fig. 7. Exponential friction compensation: − ·− :desired angle; –:real
motor; - -:ideal motor.

To demonstrate the back drivability experimentally, a
torque was applied to the motor shaft and the ensuing shaft
motion was measured. The applied torque and shaft speed are
plotted together in Fig. 8. As expected for an ideal system,
a torque pulse leads to a change in velocity; if no torque is
applied, the velocity stays constant. With the property that
it is independent from the surrounding control algorithm, it
fulfills all requirements of friction compensation.

V. PASSIVITY BASED CONTROL OF THE
FLEXIBLE MANIPULATOR

The control of flexible robots is more complex than the
control of rigid robots. The control objective in both cases
is usually the positioning of the end-effector with respect to
the base frame of the robot. This should be done as precisely
as possible and often as fast as possible.
In the rigid case, a simple position or velocity control

of the actuators satisfies the control objective, because it is
assumed that there are no significant dynamics between the
motor shaft and the behavior of the attached linkage.
In the flexible case, each arm is a part of the manipulator

with very complex dynamics. It can experience several
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Fig. 8. Back drivability: -:angular velocity; - -:applied torque.
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modes of oscillation and has solid friction components.
The actuators themselves have joint flexibility due to their
construction and, in the case of HD actuators, significant
friction. To meet the control objective, these additional
dynamic effects have to be taken into account.
A passivity based controller is often used for applications

where no plant model exists or the model is inaccurate.
It is based on the idea of extracting the kinetic energy
from the system to stabilize it. The viewpoint moves away
from the idea of a system with internal states to a device
that interacts with its environment by transforming inputs
to outputs. Input/output pairs are called passive when the
system between them dissipates energy, i.e. it could be
modelled analog to an electrical system containing only
resistors, inductors, and capacitors. If such an input/output
pair can be found for the system, the passivity theory says
that any passive controller in a negative feed-back loop can
stabilize the closed-loop system.
Damaren [9] has proven the passivity for a two link

flexible manipulator using the passive input/output pair:
actuator torques/cartesian endpoint rates. Based on this find-
ing, a passive controller can stabilize the manipulator with
simultaneous vibration suppression.
A PD-control law proposed by Damaren [9] to stabilize a

flexible two link manipulator is

τ =−JTθ [Kd ρ̇µ +Kp(ρµ −ρd)] (10)

where τ is the vector of actuator torques, ρµ is the position
vector of the end-effector in cartesian coordinates (ρ̇µ is its
time derivative), ρd is the desired position in cartesian coor-
dinates, Jθ is the Jacobian of the rigid two link manipulator,
and Kp,Kd are the PD-gain matrices. The closed loop system
can be expected to be stable for Kp = KT

p , det(KT
p ) > 0

and Kd = KT
d , det(KT

d ) > 0. The endpoint position ρµ is
generated by

ρµ = (1−µ)ρr +µρ f (11)

where ρr is the cartesian position assuming pure rigid links
and ρ f is the real end-effector position. The factor 0< µ < 1
assures that the elastic coordinates stay observable – it should
be chosen close but not equal to one.
The end-effector position ρ f is determined by approximat-

ing the beam shape with a nth order polynomial w(x). Link

mm

Motor
Shoulder

mm

Elbow
Motor

End
Effector

Fig. 9. Dimensions and variables of the manipulator (in mm).

1 is equipped with three strain gage bridges; together with
the the boundary conditions w(0) = 0 and w′(0) = 0 the five
coefficients of a fourth order polynomial can be determined.
Link 2 was approximated by a third order polynomial,
because it has only two strain measurement locations.
Links i= 1 and i= 2 are approximated by

wi(xi) = bi0+bi1xi+bi2x2i +bi3x3i +bi4x4i (12)

The two boundary conditions lead to bi0 = bi1 = 0, i∈ {1,2}.
The strain at position xi is approximated as

ε(xi) =−t1w′′i (xi)/2=−t1
(
bi2+3bi3xi+6bi4x2i

)
(13)

where ti denotes the thickness of link i. The coefficients can
be determined by an on-line solution of




bi2
bi3
bi4



 =−2
ti




2 6xiA 12x2iA
2 6xiB 12x2iB
2 6xiC 12x2iC




−1


εA
εB
εC



 . (14)

With the coefficients calculated, the deflection vi and the
angle αi of the end of the link is given by

vi = b2L2i +b3L3i +b4L4i αi = v′i(xi)
∣∣
xi=L1

(15)

where Li denotes the length of the flexible part of Link i.
Flexible forward kinematics were determined to map

joint angles, link deflections, and link angles to cartesian
coordinates. They were derived geometrically. Since the
deformations were small compared to the length of the links,
it was assumed that the length of each link from the root to
the end stays constant.

ρµ =
[
x f y f

]T (16)
x f = (l1a+ l1b)cosθ1− v1 sinθ1+ l1c cos(θ1+α1)

+(l2a+ l2b)cos(θ1+α1+θ2)− v2 sin(θ1+α1+θ2)
+l2c cos(θ1+α1+θ2+α2) (17)

y f = (l1a+ l1b)sinθ1+ v1 cosθ1+ l1c sin(θ1+α1)
+(l2a+ l2b)sin(θ1+α1+θ2)+ v2 cos(θ1+α1+θ2)
+l2c sin(θ1+α1+θ2+α2) (18)
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Fig. 10. Following x-trajectory: −·−:desired position; –:flexible feed-back;
- -:rigid feed-back.
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lik denote the lengths shown in Fig. 9.
The control law (10) was implemented with the parameters

µ = 0.6 Kp =
[
500 0
0 500

]
Kd =

[
200 0
0 200

]
.

To get reasonable derivatives the measured signals were
filtered by a second order digital Butterworth filter: the
angle filter had a cutoff frequency of 10Hz, and the strain
measurements filter had a cutoff frequency of 50Hz.
The desired end-effector trajectory was designed to move

the manipulator from rest to rest with the trajectory con-
straints xi(0) = 0, x′i(0) = 0, xi(T ) = e, x′i(T ) = 0, the
trajectory for each coordinate xi was a third order polynomial

xi(t) = ci0+ci1t+ci2t2+ ci3t3 (19)

ci0 = 0 ci1 = 0 ci2 =
3ei
T 2

ci3 =−2ei
T 3

(20)

where ei is the end-position of the trajectory and the duration
T = 3s was chosen for a movement from [x = 1.1m,y =
0.4m] to [0.5m,0.9m]. The results in cartesian coordinates are
shown in Fig. 10 and 11. Two cases are shown in each figure:
(1) The controller is using the flexible feed-back µ = 0.6, (2)
The controller is using the rigid feed-back µ = 0.
A second experiment emphasizes the disturbance rejection

of the controller (Fig. 12) where a force pulse was applied
to the end-effector.
The controller is able to move the end-effector along a

desired trajectory with only small oscillations. But when
the end-effector is approaching the desired position, the
controller introduces a fast oscillation with small magnitude.
This oscillation likely arises from the delay caused by the
derivation and by the filtering of the signals. The comparison
to the rigid feed-back case shows, that this oscillation is
introduced by the flexible feed-back signal. Since the motor
torques are chattering with the frequency of the oscillation,
this behavior is not desirable, and the oscillation should be
reduced in further approaches. The reason for the tracking
delay is the pure position control (ρ̇d = 0), i.e. providing the
velocity trajectory in addition to the position trajectory will
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Fig. 11. Following y-trajectory: −·−:desired position; –:flexible feed-back;
- -:rigid feedback.

reduce this lag. The damping of disturbances is, as Fig. 12
shows, quite fast.

VI. SUMMARY
Experiments on HD actuators showed that static, compared

to dynamic, friction effects are dominant and a static model
was ultimately chosen for friction compensation. Because of
the high static internal friction of the actuators, the modified
friction compensation scheme was developed. The applica-
tion of this simple effective friction compensation to the HD
actuators removed the non-linear behavior almost completely
and allows the successful application of a controller designed
for use with more linear direct drive actuators.
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