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Abstract— The paper deals with motion planning for rolling-
based systems with limited contact area. In a simplified
formulation, the driving principle for such systems is based
on controlling the position of the center of mass of the
object, exploiting non-holonomic rolling constraint to propel
the hemisphere. Two geometric algorithms for motion planning
are formulated, analyzed, and tested under simulation. The
simulation results show the possibility of moving the system to
the desired configurations by steering the contact point on the
hemisphere by generalized figure eights represented by circles
and Viviani’s curves.

I. INTRODUCTION

In recent years there appears an interest to robotic systems
where non-holonomic rolling constraints are used not only
for manipulation but also for locomotion. In such systems
self-propelled movements are usually generated by creating
imbalance and changing the system inertia. An example of
such systems is a spherical mobile robot [1], [2]. Similar
robotic systems were considered in [3] and [4]. Also of
interest is the study on legless locomotion [5], [6], showing
practical applications in situations where a walking machine,
having a spherical body, becomes limited in the ability to use
its legs.

Our interest to rolling-based locomotion is motivated by
highly skillful movements observed in human beings and
animals (see Figure 1). To imitate this type of movements,
one can place a robotic mechanism on a spherical object.
This system, however, would be extremely complex for an
initial study, and it could be reasonable to resort to simplifi-
cations shown in Figure 1. In the simplified formulation we
deal with a hemisphere and replace the robot by its center of
masses projected on the main hemisphere plane. The driving
principle is then based on controlling the position of the
center of mass of the robot, exploiting non-holonomic rolling
constraint to propel the object.

One of the key problems in the control of non-holonomic
systems with rolling constraints, such as a ball-plate system,
is the construction of motion planning algorithms. The
problem is challenging because even though the ball-plate
system is controllable [7], it cannot be represented in chained
form, is not differentially flat, and is not nilpotent [8]. One
can divide the existing approaches to motion planning for
the ball-plate system into two directions. The first one is
based on a proper control parameterization [9]–[11], while
the second deals with the geometric phases [7], [12]. In the
geometric phase approaches a closed path of the control
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Fig. 1. Motivating example and simplification of the control problem.

inputs results in a change of the contact coordinates. For
the ball-plate system it was first outlined in [7] and revisited
in [13]. Motion planning for a general surface in contact
with a plane was proposed in [14], [15] and later on was
generalized to the case of polyhedra [16].

Our study was inspired initially by the research on rolling-
based manipulation introduced in [17], where the motion
planning was based on the construction of a set of multiple
spherical triangles on the object surface. Also relevant to
our research are the studies reported in [18] and [19],
where planning algorithms utilizing geodesic quadrilaterals
were proposed. These algorithms produce piecewise smooth
trajectories, but the motion of the system needs to be
stopped at the vertexes of the spherical polygons. To increase
the smoothness of the planned trajectories, a circle-based
planning technique was introduced in [20]. This technique,
in turn, can be generalized further to produce even smoother
trajectories, and this constitutes the main goal of our paper.

This paper is organized as follows. In Section II we sketch
a model of the ball-plate system and fix the notation. A
simplified formulation of the motion planning problem is
addressed in Section III. There, we first review the circle-
based planning technique [20] and then show that the con-
tinuous trajectories in the time domain can be constructed
only up to given order of the highest continuous derivative.
To be able to generate C∞ trajectories, we then propose an
algorithm based on tracing the generalized Viviani curves and
test it under simulation. Finally, conclusions are summarized
in Section IV.

II. MATHEMATICAL MODEL

To describe the system under consideration, we introduce
the following coordinate frames (see Figure 2): Σb is an
inertial frame fixed at the base, Σo is a frame fixed at the
geometric center of the object (hemisphere), Σa is a frame
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Fig. 2. System formalization.

fixed at the contact plane. In addition, at the contact point
we introduce the contact frame of the object Σco, and the
contact frame of the plane, Σca.

The contact coordinates are given by the vectors uco =
[uo, vo]T, expressing the contact point on the hemisphere
surface, uca = [ua, va]T, expressing the contact point on the
plane, and by the contact angle ψ which is defined as the
angle between the x-axis of Σco and Σca. The orientation
of the x- and y-axes of Σco relative to the x- and y-axes of
Σca is defined by the matrix

Rψ =
[− cosψ sinψ

sinψ cosψ

]
. (1)

The position of a point on the sphere is parameterized as

c(uo, vo) = R

⎡
⎣− sinuo cos vo

sin vo
− cosuo cos vo

⎤
⎦ . (2)

In this parameterization the origin is placed at the south pole
of the sphere. The lower hemisphere is selected by imposing
−π/2 < uo < π/2 and −π/2 < vo < π/2.

Under the assumption of pure rolling, the contact kine-
matic equations can be represented as [12], [21]

u̇a = −R cosψ cos vo u̇o +R sinψ v̇o, (3)

v̇a = R sinψ cos vo u̇o +R cosψ v̇o, (4)

ψ̇ = sin vo u̇o. (5)

III. MOTION PLANNING

In this section we deal with the motion planning problem
in a simplified formulation. Namely, we assume that at the
start and end configurations the initial and final values of
uco are zero. The assumption restricts the generality1 but is
natural for the systems of our interest.

1However, the algorithms proposed in section can constitute a kernel part
of a more general three stage manipulation strategy, similar to that outlined
in [7] and [13], if they are accompanied by two trivial maneuvers.

A. Trajectory planning using circles
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Fig. 3. Circular movement on the sphere (left) and on the plane (right).

1) Basic considerations and algorithm [20]: Draw a
circle of the radius a on the sphere as shown in Figure 3. The
trajectory of the contact point on the plane, corresponding
to the circle on the sphere, is a circular arc of the radius

r(a) =
a√

1 − (a/R)2
, (6)

with the central angle

ζ(a) = 2π
√

1 − (a/R)2. (7)

The displacement of the contact point h is defined as

h(a) = 2r(a) sin(ζ(a)/2), (8)

the change of the relative angle is

δψ(a) = 2π
(
1 −

√
1 − (a/R)2

)
. (9)

A combination of two circles of radii a and b, taken with
opposite direction of rotation, is called a movement step.
The two circles have a common tangent line. The total linear
displacement of the contact point for one movement step and
the change of the relative angle are given by

h(a, b)=

√
h2(a)+h2(b)+2h(a)h(b) cos(

ζ(a)−ζ(b)
2

), (10)

η(a, b) = δψ(a) − δψ(b) = ζ(b) − ζ(a). (11)

Assume that the motion from the initial to the final
configuration is composed of n movement steps as shown
Figure 4. Then,

η(a, b) = ψdes/n, (12)

where ψdes is the desired orientation. The total displacement
is defined as

d =
n−1∑
k=0

−−→
PkP k+1. (13)

To calculate the traveling distance |d|, introduce local frames
associated with each movement steps as shown in Figure 4.
The projection of the vector d in the axes of Σa and in the
axes of the frame associated with the initial movement step
are denoted as, respectively, d(a) and d(0). They are related
as

d(a) = Rz(θ)d(0), (14)
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Fig. 4. n-step movement and initial orientation.

where

Rz(θ) �
[
cos θ − sin θ
sin θ cos θ

]
, (15)

and θ is the angle defining the orientation of the initial
tangent line, which is unknown at the moment. It is adjusted
later on from the requirement that the vector of the resulting
displacement should point to the desired destination.

The mutual orientation of the two adjacent local frames is
defined by the angle η(a, b). Expressing (13) in the axes of
the initial local frame, one obtains

d(0) =
n−1∑
k=0

Rkz (η(a, b))
−−→
P0P

(0)
1 � R(n, η)

−−→
P0P

(0)
1 , (16)

where

R(n, η)=

⎡
⎢⎢⎢⎣

1+
cos nη2 sin (n−1)η

2

sin η
2

−sin nη
2 sin (n−1)η

2

sin η
2

sin nη
2 sin (n−1)η

2

sin η
2

1+
cos nη2 sin (n−1)η

2

sin η
2

⎤
⎥⎥⎥⎦ .

(17)
Taking into account that |−−→P0P

(0)
1 | = h(a, b) and RTR =

I sin2(n η/2)/sin2(η/2), where I is the identity matrix,
from the condition |d(0)| = hdes one obtains

h(a, b) =
sin(ψdes/2n)
sin(ψdes/2)

hdes. (18)

Now, given hdes, ψcdes
, and the number of movement steps,

n, one can obtain a and b from solving (12) and (18). Finally,
having established a and b, one can define the orientation of
the starting tangent line. By setting in (14) d(a) = ddes and
calculating d(0)(a, b), the angle θ between d(0) and ddes is
obtained as

θ = arccos
d(0) · ddes
h2
des

. (19)

2) Simulation example: In the simulation, the initial
contact point coordinates are uco = [0, 0]T(rad), uca =
[0, 0]T(m), and the initial relative angle ψ is 0 rad. The de-
sired contact point coordinates are set as uco = [0, 0]T(rad),
uca = [0.2, 0.3]T(m), and the desired relative angle ψ is
π/6 rad. The radius of the hemisphere is 0.2m. Here we set
n = 4 and obtain a = 0.0846m, b = 0.0751m from solving
equations (12,18). The turning angle θ = −1.6410(rad) is
obtained from (19). The evolution of the contact point on the
contact plane and on the hemisphere in shown in Figure 5.
Note that the whole maneuver is executed by generating only
two circles on the hemisphere.
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Fig. 5. Trajectory of the contact point on the plane (left) and on the sphere
(right); 1st half-step is shown in red, while 2nd in blue color.

3) Trajectory formation in the time domain: Let us con-
sider now the construction of motion trajectories in the time
domain. For this purpose the position of the contact point in
the contact plane can be parameterized by the arc angle ϕ.
For the first half-step, where ϕ ∈ [0, ζ(a)], we have

u
(0)
ca,k = R(k−1, η)

−−→
P0P

(0)
1 +Rz((k−1)η)r(a)

[
sinϕ

1−cosϕ

]
,

(20)
and for the second half-step, where we set ϕ ∈ [ζ(b), 0],

u
(0)
ca,k = R(k, η)

−−→
P0P

(0)
1 −Rz(kη)r(b)

[
sinϕ

1−cosϕ

]
. (21)

In practical implementation the angle ϕ can be specified, for
instance, by polynomials of time. The trajectory planning in
the time domain is then reduced to a spline interpolation.
To do so, we have to specify the boundary conditions for
the angle ϕ and its derivatives at the interior points, which
are the points of connection of the half-steps of the circular
movements.

Differentiating (20,21), one obtains the velocities

u̇
(0)
ca,k =

⎧⎪⎪⎨
⎪⎪⎩
Rz((k−1)η)r(a)

[
cosϕ
sinϕ

]
ϕ̇, ϕ ∈ [0, ζ(a)],

−Rz(kη)r(b)
[
cosφ
sinφ

]
ϕ̇, ϕ ∈ [ζ(b), 0],

(22)
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and the accelerations of the contact point

ü
(0)
ca,k =

⎧⎪⎪⎨
⎪⎪⎩
Rz((k−1)η)r(a)

([
cosϕ
sinϕ

]
ϕ̈+

[− sinϕ
cosϕ

]
ϕ̇2

)

−Rz(kη)r(b)
([

cosϕ
sinϕ

]
ϕ̈+

[− sinϕ
cosϕ

]
ϕ̇2

) .

(23)
Similar expressions can be obtained for the higher deriva-
tives. It is easy to show that in order to guarantee the
continuity of the velocities at the points of connections
between the first and second half-steps one needs to impose
the following condition

r(a)ϕ̇a + r(b)ϕ̇b = 0. (24)

The conditions for the continuity of the accelerations are
defined as

r(a)ϕ̈a + r(b)ϕ̈b = 0, (25)

r(a)ϕ̇2
a + r(b)ϕ̇2

b = 0. (26)

Thus, the continuity of the accelerations requires zero instan-
taneous velocity at the connection point.

The discussion can be easily extended to the analysis of
the higher derivatives. In particular, it can be shown that the
continuity of the jerks reduces to the following conditions

r(a)(˙̇ϕ̇a − ϕ̇3
a) + r(b)(˙̇ϕ̇b − ϕ̇3

b) = 0, (27)

3r(a)ϕ̇aϕ̈a + 3r(b)ϕ̇bϕ̈b = 0. (28)

Providing that the velocities and accelerations are continu-
ous, these conditions are further reduced to

r(a)˙̇ϕ̇a + r(b)˙̇ϕ̇b = 0. (29)

Similarly, the continuity of the snaps requires

r(a)(˙̇ ˙̇ϕa−6ϕ̇aϕ̈) + r(b)(˙̇ ˙̇ϕb−6ϕ̇ϕ̈) = 0, (30)

r(a)(4ϕ̇a ˙̇ϕ̇a+3ϕ̈2
a−ϕ̇4

a) + r(b)(4ϕ̇a ˙̇ϕ̇a+3ϕ̈2
a−ϕ̇4

a) = 0. (31)

Providing that the velocities, accelerations and jerks are
continuous, these conditions are reduced to

r(a)˙̇ ˙̇ϕa + r(b)˙̇ ˙̇ϕb = 0. (32)

The generalization of this discussion is straight-forward.
In particular, it is clear that it is impossible to construct C∞

trajectories in the time domain. However, we can construct
the continuous trajectories up to a given order of the highest
continuous derivative.

Consider first the specification of ϕ(t) by 3rd order poly-
nomials. Here, in addition to the two matching conditions
ϕa(tc) = ζ(a) and ϕb(tc) = ζ(b), two more conditions need
to be specified at the interior points. The trivial choice of
ϕ̇a(tc) = ϕ̇a(tc) = 0 leads to the conventional minimum
acceleration type of parameterization. Instead of that one
can impose the conditions (24,25). The circle connection
points will then be passed with non-zero velocities but the
accelerations will not be continuous because the condition
(26) is not satisfied. Physically, the radial component of the
acceleration of the contact point will change the sign to the
opposite at the connection moment tc.
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Fig. 6. Velocity of the contact point on the contact plane as functions of
time under parameterization by 3rd (left) and 5th (right) order polynomials.
Solid lines correspond to ua(t) while dotted lines do to va(t). Red color
correspond to the 1st half-step, while blue to the 2nd.

Consider next the specification of ϕ(t) by 5th order poly-
nomials. Here, in addition to the two matching conditions
ϕa(tc) = ζ(a) and ϕb(tc) = ζ(b), four more conditions
need to be specified at the interior points. The trivial choice
of ϕ̇a(tc) = ϕ̇a(tc) = 0 and ϕ̈a(tc) = ϕ̈a(tc) = 0 leads
to the conventional minimum jerk type of parameterization.
Instead of that one can impose the conditions (24,25) and
(29,32). The circle connection points will then be passed
with zero instantaneous velocities but non-zero accelerations.
Interestingly, in this method the derivatives of the contact
point up to the 4th order will be continuous functions of time.
Simulation results for the example considered in Section III-
A.2 are illustrated in Figure 6.

B. Trajectory planning using generalized Viviani’s curve

The simulation results in Section III-A.2 hint at the idea
that the steering of the system under consideration can be
implemented in a hula hoop manner. In this connection the
motion planning problem can be reformulated in the follow-
ing way. Given a smooth figure eight on the hemisphere, find
the sizes of its two ovals that brings the system to the desired
configuration.

1) Basic considerations: As a candidate for the figure
eight one can use Viviani’s curve. This is the curve of
intersection of the surfaces of a sphere of radius R and a
circular cylinder of radius R−d tangent to the inner surface
of the sphere. A parameterization of this curve suitable for
our problem (setting the tangent plane of the cylinder and
the sphere to be the contact plane) can be defined as

c(ϕ) =

⎡
⎣2

√
d(R− d) sin(ϕ/2)
(d−R) sinϕ

−d+ (d−R) cosϕ

⎤
⎦ , (33)

where ϕ ∈ [0, 4π]. The classical Viviani curve is defined for
d = R/2. The orthogonal projection of this curve on the
contact plane defines the lemniscate of Gerono, while the
stereographic projection defines the lemniscate of Bernoulli.
This curve is periodic. Since this curve and its derivatives
are well defined for any ϕ, there will be no problem in
constructing C∞ parameterization in the time domain.

Note that the curve (33) is symmetric which is not suitable
for our steering strategy. To make (33) asymmetric, we define

d = a− b sin(ϕ/2). (34)
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projections on the coordinate planes.

The symmetric and asymmetric Viviani curves are shown in
Fig. 7. The constraints on the parameter a and b are defined
from the condition R/2 < d < R, which translates to the
following inequalities

1/2 <
a

R
< 1,

∣∣∣∣ bR
∣∣∣∣ < 1 − a

R
,

∣∣∣∣ bR
∣∣∣∣ < a

R
− 1

2
. (35)

In general, however, it is not enough to impose these con-
ditions to produce well-defined figure eights. It is possible
to show that a well-defined parameterization is obtained if
we restrict the parameters in such a way so that the vector
of the second derivatives of (33) at the “east” (ϕ = 3π) and
“west” (ϕ = π) points is directed to the center (ϕ = 0).
These conditions translate to the following inequalities

3
b

R
+ 2

a

R
− 4

b2

R2
− 6

ab

R2
− 2

a2

R2
> 0, (36)

3
b

R
− 2

a

R
+ 4

b2

R2
− 6

ab

R2
+ 2

a2

R2
< 0, (37)

which define hyperbolic lines in the parameter plane a, b.
The construction of the admissible area for the parameters a
and b is shown in Fig. 8.
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-0.4

-0.2

0.2

0.4

b�R

Fig. 8. Admissible area for the parameters a and b. Light green lines
correspond to (35), and dark green lines correspond to (36,37).

2) Algorithm: The construction of the motion planning
algorithm based on the Viviani curves is conceptually similar
to the circle-based planning. Namely, we need to solve equa-
tions (12,18) and define the parameters a and b. However,
now the closed form expressions for h(a, b) and η(a, b) are

not available and need to be established numerically. Taking
into account that

u̇o =
1

R2 cos2 vo
cT
ucϕϕ̇, (38)

v̇o =
1
R2

cT
vcϕϕ̇, (39)

we obtain from (3-5)

∂ua/∂ϕ = − cosψ
R cos vo

cT
ucϕ +

sinψ
R

cT
vcϕ, (40)

∂va/∂ϕ =
sinψ
R cos vo

cT
ucϕ +

cosψ
R

cT
vcϕ, (41)

∂ψ/∂ϕ =
sin vo

R2 cos2 vo
cT
ucϕ. (42)

Here, cu = ∂c/∂uo and cv = ∂c/∂vo are defined from
(2), and cϕ = ∂c/∂ϕ is defined from (33). Integrating
(40-42) for one step of movement (ϕ ∈ [0, 4π]) with zero
initial conditions, we define h(a, b) �

√
u2
a(4π) + v2

a(4π)
and η(a, b) � ψ(4π).
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Fig. 9. Normalized non-holonomic shift h(a, b)/R (top left) and phase
change η(a, b) (top right) as functions of a/R and b/R. Contour lines of
h(a, b)/R (blue) and η(a, b) (red) are shown in the bottom part.

It can be deduced from geometric considerations that
the non-holonomic shift is symmetric with respect to the
parameter b, h(a, b) = h(a,−b), while the phase change
is asymmetric, η(a, b) = −η(a,−b). The functions h(a, b)
and η(a, b) are shown in Fig. 9. Providing that ψdes/n and
hdes sin(ψdes/2n)/ sin(ψdes/2) are in the proper range, the
solution for a and b is established uniquely. This conclusion
can be easily established from Fig. 9 (a level line for the
surface h(a, b) cross that for η(a, b) at exactly one point).

3) Simulation example: Let us revisit the simulation ex-
ample considered in Section III-A.2 and apply the Viviani-
curve-based algorithm. For n = 4 we obtain a = 0.1495m,
b = 0.0072m and θ = −0.1491(rad). The evolution of the
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Fig. 10. Trajectory of the contact point on the plane (left) and on the
sphere (right); 1st half-step is shown in red, while 2nd in blue color.

contact point on the contact plane and on the hemisphere
is shown in Figure 10. The whole maneuver is executed by
tracing four times one Viviani’s curve on the hemisphere.

In practical calculations the definition of a and b may
seem to be involved but in our opinion it is computationally
feasible. With a good guess on the initial values of these
parameters (that can be obtained from Fig. 9) in our soft-
ware implementation2 the solution is obtained relatively fast,
within a few seconds.

IV. CONCLUSIONS

Motion planning for the rolling-based systems with limited
contact area has been discussed in this paper. In particular,
we have posed a hybrid parallel parking problem and an-
alyzed two motion planning algorithms based on tracing,
respectively, circles and the generalized Viviani curves. In
these algorithms, given the initial and final position of the
object, the trajectory of the contact point is obtained in sev-
eral steps. The feasibility of the proposed motion-planning
algorithms has been verified under simulation. The circle-
based algorithm is very simple but cannot be used when
generating C∞ trajectories in the time domain is required.
The Viviani curves-based algorithm does not suffer from this
disadvantage but comes with a price of heavier (but still
feasible) computations.

The future research should address the issue of controlling
the system along the planned trajectories, taking into con-
sideration dynamic effects. In our current formulation the
construction of nominal trajectories in the contact coordi-
nates is a purely geometric problem. It should be noted that
the extension of the proposed motion planning algorithms
to dynamic domain is a very challenging problem. In this
connection, the insight gained in the kinematic analysis can
be helpful for attacking the motion planning problem in the
dynamic formulation.
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