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Abstract— In this paper, a nonlinear model predictive 
tracking (NMPT) controller for mobile robots is presented. The 
basic idea is to use a motion model for the vehicle and compute 
in real-time an optimal M-step-ahead control sequence, which 
minimizes the total M+1 step tracking error of the projected 
motion. In the presence of obstacles, the controller deviates 
from the reference trajectory by incorporating into the 
optimization obstacle-distance information from range sensors 
(e.g., laser scanner, ultrasound). Numerous simulations were 
performed and the NMPT consistently converged to the desired 
trajectories and followed them accurately, despite large initial 
errors and discontinuities in the desired velocities and 
orientations. The controller’s performance depended strongly 
on parameters such as the optimization horizon M, and the 
cost-weights assigned to the various tracking errors. The 
optimization horizon regulates a trade-off between timely 
obstacle avoidance and tracking quality (large M) vs. 
consistently fast convergence (small M). The cost-weights affect 
tracking quality and also the shape of the path, by regulating 
trade-offs among position, orientation, and velocity errors. 
Overall, NMPT seems to offer a promising approach for 
advanced precision guidance applications, and deserves further 
investigation. 

I. INTRODUCTION 

High precision motion tracking is desirable in many 

mobile robot applications, as well as in tractor auto-steering 
for precision farming. The desired path may be defined by a 
number of waypoints and orientations, or by analytical 
expressions. In some cases the desired vehicle speed is 
either constant, or it is free to take any values within a 
certain operational range. The goal is that the average and 
maximum deviation between the vehicle’s traveled path and 
the desired path are minimized. This problem is called path 
tracking and the path tracking error is defined as the shortest 
distance between the tractor’s control point and the desired 
path. Various approaches have been proposed for path 
tracking, such as pure-pursuit [1], sliding-mode control [2], 
[3], nonlinear proportional control [4], and vector pursuit 
[5]. In some applications the desired path is accompanied by 
a desired velocity, or even acceleration profile. This problem 
is referred to as trajectory tracking and a desired trajectory 
point must be available to the robot digital controller at 
every sample. 
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The tracking error is defined at each controller sample 
as the difference between the desired and actual trajectory 
points. Various trajectory tracking controllers have been 
developed for industrial robots, with PID control being the 
most widely used technique. However, linear controllers 
cannot offer good tracking performance for non-holonomic 
robot complex maneuvers, such as sharp turns and reverse 
motions. This is a well known theoretical result [6] for 
under-actuated non holonomic systems, such as wheeled 
vehicles under the no-slip constraint. Various control 
techniques have been proposed for trajectory tracking for 
car-like robots. In [7] a time-varying LQR controller is 
computed for the non holonomic system linearized about its 
path. One problem with this approach is that the LQR gains 
are path-dependent and hence the controller requires 
extensive tuning for each type of path.  In [8] iterative model 
predictive control was used. This approach is similar to non 
linear model predictive control, but does not consider 
optimization or constraints explicitly; instead it uses a 
gradient based algorithm to reduce the predicted state error 
after a fixed number of trajectory points. The look-ahead 
point in this approach must be carefully selected; a distant 
point may result in corner-cutting and increased tracking 
error, just like in pure pursuit. 

In addition to small tracking errors, real-world 
applications require robust navigation in the presence of 
obstacles. Collision-free motion trajectories are typically 
computed by some motion planning algorithm based on a 
map of the environment. During the actual motion execution 
it is possible that obstacles appear in the vehicle’s path, 
which had not been present in the planning phase (e.g., 
animals, humans, machines). This may also happen because 
of imprecision in the field map, or vehicle localization 
errors. The on-line alteration of a vehicle’s path in situations 
like these – while respecting the motion constraints - has 
been addressed by various researchers. A common approach 
is to modify the entire pre-planned path based on current 
range-sensor data [9], [10]. 

In this paper, a reactive trajectory tracking controller 
based on nonlinear model predictive control is presented, 
along with an iterative algorithm for its real-time 
implementation. Given a desired trajectory, the controller 
minimizes the total tracking error along an entire future 
motion segment, based on the vehicle’s motion equations. 
Pure pursuit [1] and path deformation [10] are special cases 
of the proposed controller when an appropriate cost function 
or optimizing horizon is used, respectively. In the presence 
of obstacles, the controller deviates from the reference 
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trajectory by incorporating into the optimization obstacle-
distance information from range sensors. Simulations were 
performed to test the algorithm’s performance for different 
motions and real-time computing scenarios. 

Section II gives a brief review of non linear model 
predictive control. Section III describes the development of 
a high-level path tracking controller based on non linear 
model predictive control. Next, section IV describes in detail 
the numerical optimization procedure. In section V sensor 
range data are incorporated into the numerical optimization 
resulting in reactive tracking behavior. Section VI presents 
experimental simulation results and finally, section VII 
concludes the paper and suggests possible directions for 
future work.  

II. NON LINEAR MODEL PREDICTIVE CONTROL 
A brief description of the non linear model predictive 

control methodology is given next [11]. Let a system’s 
discrete state equation be of the form: 
 
  (1) 1 ( , ) , 0 k k k k+ =x f x u ≥

k k≤ ≤   ≤ ≤x x x u u u

N

k

 
where  and .  The state and control vectors 
are subject to constraints of the form:  
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Let be a desired state trajectory 
and  be the error between the actual and the 
desired trajectories. The basic idea behind nonlinear model 
predictive control is to solve at every time step k a finite-
horizon optimal control problem. Given the actual state , 
an optimal M-step-ahead control sequence 

 , = 0,1,...d
k kx

d
k k= −e x x

kx
*

,k Mu  is 
computed, which minimizes a cost function J: 

 
 

1

* * * *
, 1

, ,...,
[   ... ] arg min

k k k M
k M k k k M J

+ +

+ += =
u u u

u u u u  (3) 

 

The cost function has the following form:   
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where the tracking error of the last state of the finite horizon 
is penalized by a function θ which typically has a quadratic 
form: 

  (5) 1 1( ) T T
k M k M e k M+ + + + + +=e e Q eθ

 

At each step, the state, tracking error and control effort 
along the optimizing horizon can be penalized also by a 
quadratic form: 

 ( , ) T T T T
j j j x j j e j j u= + +x u x Q x e Q e u Q uψ j  (6) 

 
At sample k+1 the system will have moved to a new state 

1k +x which differs from the predicted state due to 
disturbances and model errors. The optimization problem is 
solved again, until the system reaches its goal state . 
Given that an optimal feasible open-loop control and 
trajectory for the problem exists, and that all the cost 
matrices Q are positive-definite, the stability of the closed-
loop non linear model predictive controller can be proved 
[12]. 

d
Nx

III. PATH TRACKING 
In this work we consider the motion of a non-holonomic 

car-like robot in the plane (Fig. 1). The x and y coordinates 
give the position of the car’s rear wheel axle midpoint 

[  ]Tx y=P . The unit vector v has its origin at P and lies 
along the direction of motion. The robot’s orientation is 
given by θ, the angle between the positive x-axis and v. The 
vehicle’s wheelbase is L.  

 

 
Fig. 1 Car-like robot model 

 
A simple kinematical model for this front-wheel steered 
robot in the plane is the following: 
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x v
y v
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=
=

=

θ
θ
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 (7) 

 
The proposed approach to path tracking is to use non linear 
model predictive control as a high-level tracking controller 
(NMPT), which uses a simple kinematical model to predict 
vehicle motion, and a dynamic model for steering and speed 
control (Fig. 2). The control variables are v and φ, i.e., the 
desired linear velocity and steering angle. This approach 
avoids the complexities of full dynamic modeling, while 
retaining the required accuracy for low working-speeds. 
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Fig. 2 High level NMPT controller  

 
Of course, complex dynamic models could be used for the 
NMPT, but still, unknown model parameters (e.g., related to 
tire-soil interaction) need to be identified. At a lower-level, a 
steering controller model can be used to create an 
“abstraction” of the steering system dynamics [15]; the same 
holds for speed controllers. In this paper, the combination of 
the steering controller and steering linkage is modeled as a 
1st order system with time-lag τφ; an analogous abstraction is 
used for speed control.  
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This means that the NMPT provides a desired steering angle 
uφ to the steering controller and the actual wheels’ steering 
angle follows the command with first order dynamics. 
Similarly, velocity commands uv are issued by the NMPT to 
the speed controller. Of course, different models (e.g. 
second order, time-delay) could be used, as long as their 
parameters can be identified. From the NMPT point of view 
the vehicle is described by (7), (8) the system state is 

T[     ]x y vθ φ=x  and the control is . The tracking 
error is defined as the difference between the desired and 
actual trajectory points at each controller sample. The cost 
function is defined by (4), (5), and (6). Note that if the cost 
ψ is everywhere zero, NMPT is equivalent to pure-pursuit 
[1], whereas if M is big enough to include the final state, the 
NMPT will compute a deformation for the entire future path 
[10]. Also, if only position and orientation errors are 
penalized, NMPT is equivalent to geometrical path tracking. 
Next, a numerical procedure for solving the NMPT will be 
presented.  

T[ ]vu  u=u φ

IV. NUMERICAL SOLUTION 
 In the general case, non linear model predictive control 
optimization can only be solved numerically. The system 
equations must be discretized so that they can be expressed 
in the form of (1) and solved. In this paper the indirect 
approach was used, which uses gradient descent in order to 
minimize the problem’s Hamiltonian [13].  
 The Hamiltonian of the optimal control problem is 
 
  (9) 1( , ) ( , )T

k k k k kH += +x u λ f x uψ
 

here λk is the costate sequence. It can be shown [13], [14] 
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The main idea behind a gradient descent solution algorithm 
is the following: if we start from a nominal solution *

,k Mu  
which is close to the optimum, in order to minimize  
variation 

J, a
*

,k Mδ u  of this control must be computed, such that 
the variat J should be always negative. This can be 
achieved by moving the control in the opposite direction of 
the Hamiltonian’s control gradient (steepest descent).  
 

ion δ

 1 , ,...i i
j j i

j

HK j k k M+ ∂
= −  = +

∂
u u

u
 (15) 

 
here the gain K is a sufficiently small positive number.  

an

w
The algorithm proceeds as follows: at each step k, given 
 initial *

,k Mu  the gradient descent iteration index i is 
initialized t ro and (7),(8) are used to compute the open-
loop trajectory

o ze
* * * *

, 1 1[   ... ]k M k k k M+ + +=x x x x . Next, i
jλ and 

/ j∂Η u are compu d (14) respec ely, 

ed controls 1i

ted using (11), (12) an

and the updat

tiv

j
+u are computed by (15). Finally, 

i is incremented and  iterations continue, until a 
convergence termination criterion is satisfied. 

the
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V. REACTIVE TRACKING IN THE PRESENCE OF OBSTACLES 

 Typically, the desired motion trajectory is computed by 
some motion planning algorithm based on a map of the 
environment and is assumed to be collision-free. During the 
actual motion execution it is possible that obstacles appear 
in the vehicle’s path, which had not been present in the 
planning phase (e.g., animals, humans, machines). This may 
also happen because of imprecision in the field map, or 
vehicle localization errors.  If the robot is equipped with 
range sensors, e.g., a laser scanner, then at any time the 
distances of a number of obstacle points, which had not been 
present in the original environment map from the respective 
sensor are known.  These distances can be incorporated in 
the cost function, so that the computed control tracks the 
desired trajectory, while staying away from the obstacles. 
 Let Tsr be the fixed transformation matrix of the rth 
sensor frame with respect to the vehicle frame, and T(x) be 
the transformation matrix of the vehicle’s frame with respect 
to the fixed navigation frame. Let be the mth range 
measurement of the rth sensor in the sensor frame, at robot 
state x. The corresponding obstacle-point position expressed 
in the navigation frame is and is 
independent of the robot state. The rth sensor’s frame origin 
expressed in the navigation frame is , 

where . Hence, their relative distance vector, 
expressed in the navigation frame is: 

( )rS
mr x

( ) ( )r

r

S
rm s mT T=p x r x

s( ) ( ) r

r

S
r T T=s x x s

[0 01]rS T=   s

  (16) ( ) ( )rm rm r= −a x p s x

and the scalar distance is . The obstacle 
points which do not correspond to obstacles in the map 
contribute to the cost functions θ and ψ with a term which 
penalizes states which result in proximity with the obstacles: 

1/ 2( ) ( )T
rm rm rmD =x a a
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where R is the number of range sensors, Mr is the number of 
readings of the rth sensor, ε is a small positive real number, 
C>0 and ρ>1. In order to solve the system of (11), (12) the 
terms /  , /j∂ ∂ ∂ ∂x jxψ θ  are needed. Thus, we need to 
compute , which can be shown to be /rm jdV dx

 1 ,
( ( ) )

rm rm

j rm j
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+x x
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Using (16) and noticing that the obstacle-point is 
independent of the robot state, the term is found 

to be equal to

rmp
/rm jd da x

/r jd d− s x .  

VI. SIMULATION RESULTS 
 The NMPT was implemented in C++ and numerous 
simulations were performed. The vehicle’s wheelbase L was 
taken equal to 2 m, with φmax=60ο and vmax= 1 m/s and the 
sampling period dt=100 ms. The steering system time-lag 
was set equal to 0.15φτ = s, and the velocity time-lag to 

1vτ = s.  All the elements of all cost matrices were set to 
zero, except for qe(1,1)= qe(2,2)=500 (distance error costs) 
and qe(3,3)=100 (orientation error cost). The velocity errors 
were penalized less, with qe(5,5)=50, because path accuracy 
was considered more important. The NMPT gradient 
descent algorithm was allowed to execute for 1000 
iterations; larger iteration-limits did not improve the 
solutions.  
 In a first experiment, the tracking controller’s step 
response was tested on a 300-point square path with sharp 
90o orientation discontinuities. An initial horizontal position 
error of 0.25 m was introduced in the robot’s position. At 
the corners, the robot’s desired orientation switches from π/2 
to 0 and then to 3π/2. The nominal velocity was equal to 0.5 
m/s. The response of the NMPT was compared against that 
of a Pure Pursuit Control (PPC) type tracking algorithm, 
appropriately modified for non-holonomic vehicles. The 
PPC was assumed again to be a high-level controller, issuing 
desired velocity and steering angle commands to the low-
level controllers. If the position errors between the current 
tractor position and the look-ahead point expressed in the 
tractor frame are ex and ey, the orientation error eθ, and the 
velocity error ev the pure-pursuit controller is given by: 
 

 1 (
sgn( ) tan

v v v x x

y y
v

u K e K e
)K e K e L

u u
v

−

= +

+⎛
= ⎜ ⎟

⎝ ⎠

θ θ
φ

⎞  (20) 

 
The term v vK e in uv is for velocity tracking and the term 

x xK e makes sure that the look-ahead point will be reached 
even if the desired velocity at that point is zero. The term 

y yK e K eθ θ + is a desired rotational velocity term dθ  and the 
desired steering angle is solved for it from (7). The error ey is 
contained in the desired rotational velocity because non-
holonomic vehicles have to turn in order to move laterally. 
The term sgn(  corrects the steering during reverse 
motion. Finally, the K parameters are the gains of the 
controller. The PPC was assumed to be executing at the 
same sampling rate as the NMPT and the look-ahead 
distance it used was optimal.  

)vu

In order to select the optimal PPC look-ahead point for 
this path, different values for the number of look-ahead 
points (M) on the path were tried for the PPC-based motion 
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simulations. The minimum path tracking error was achieved 
at a distance of 1.25m (M=25). This result can be explained 
by the minimum turning radius, which is 1.15 m, and which 
translates to 23 path points, at a moving speed of about 
0.5m/s. Hence, distances significantly different from 1.15m 
would result in large overshoots, or corner-cutting. The PPC 
gains were selected to minimize overshoot, via trial and 
error. The PPC gains were tuned to provide critical damping 
with a look-ahead distance of 1.25m (M=25).  

The PPC simulation resulted in average and maximum 
path tracking errors of 4.62cm and 34.94cm respectively. 
The total area between the desired and executed paths was 
approximately 0.73m2. The NMPT simulation was executed 
with the optimization horizon parameter M ranging from 10 
to 80 points. The paths for M=20 and 60 points are shown in 
Fig. 3.  

 

 
Fig. 3 NMPT tracking of a square 
path (M=20 and M=60 points) 

 
Fig. 4 Tracking with pure-pursuit 
and NMPT controllers (M=60) 

 
Each NMPT computation required 0.07s on a Pentium 2.6 

GHz single-CPU system. When NMPT was executed with 
M=25 it performed worse than the PPC. The reason was that 
NMPT didn’t turn well in advance before the sharp turns. 
This is expected, since NMPT minimizes the tracking error 
over its entire horizon, whereas PPC turns M points in 
advance. However, when M was increased to M=60 (5 
meters), NMPT  performed much better (Fig. 4), with 
average and maximum tracking errors equal to 4.2cm and 
19.78cm respectively. The total error-area was 
approximately 0.65m2. The NMPT accomplished this by 
performing an anticipatory turning motion which increased 
the instantaneous tracking error, but lead to smaller total 
error. Such motions cannot be performed by PID-type 
controllers. The NMPT convergence time increased to 0.4s, 
but speed-problems could be overcome with dedicated 
hardware. It should be mentioned that part of the tracking 
errors for both tracking controllers are due to the first order 
approximation for the steering and velocity systems. A pure 
kinematics model would result in smaller errors. 
 In a second simulation experiment the robot followed a 
key-hole shaped path at a constant speed of 0.5 m/s. The 
desired and executed paths for two different starting 
positions are shown in Fig. 5. Both starting positions 
contained a ±0.5 m horizontal initial error, whereas the 
second position had also a 20o orientation error. Both 
trajectories converged to the desired one despite the 

relatively large initial errors. The average and maximum 
trajectory tracking errors after convergence were 0.96cm 
and 1.36cm respectively, i.e., the NMPT followed the 
trajectory very closely. The average and maximum velocity 
tracking errors after convergence were 0.48% and 2.02% 
respectively. Each new control computation required 13.1ms 
on a Pentium 2.6 GHz single-CPU system, which is 
adequate for real-time implementation.  
 Next, a rectangular obstacle was introduced in a 
position which prohibited exact path following and the 
simulation was executed again. As it is shown in Fig. 6, the 
NMPT deviated from the desired trajectory in order to safely 
avoid the obstacle. The vehicle passed from the right side of 
the obstacle because of its limited turning radius; passing it 
from the left would have required a turning angle of more 
that 60ο. 
 

 
Fig. 5 Key-hole maneuver 

 
Fig. 6 Deformation due to obstacle 

  
 In a third simulation experiment a fish-tail maneuver 
was executed, which contained large discontinuities in both 
orientation and velocity. Fig. 7 shows three different 
executed paths for two different starting positions. The first 
path resulted from an initial horizontal position error of +0.5 
m. The second and third paths resulted from an initial error 
of -0.5m and an orientation error of 20o. The second path 
converged more slowly to the desired path than the third 
path, because the orientation penalty term in the Qe matrix 
was qe(3,3)=1500, whereas for the third path a smaller value 
of qe(3,3)=100 was used. Hence, a position vs. orientation 
error trade-off existed. In Fig. 8 the deviation of the NMPT 
from the desired trajectory is shown in the presence of an 
unexpected obstacle.  
 

 
Fig. 7 Fish-tail maneuver 

 
Fig. 8 Deformation due to obstacle 

 

VII. CONCLUSIONS AND FUTURE WORK 
 The NMPT consistently converged to the desired 
trajectories and followed them accurately, despite large 
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initial errors and discontinuities in the desired velocity and 
orientation.  
 Overall, the computational cost does not seem to be 
prohibitive for real-time control. The optimization horizon 
M is an important parameter, which regulates a trade-off 
between timely obstacle avoidance and tracking quality 
(large M) vs. fast solution time (small M). Also, in the 
presence of obstacles the convergence rate of the gradient 
descent numerical procedure varied along the path.  
 The delayed computation of “fresh” NMPT controls, 
even if it happens intermittently, can create problems during 
real-time control. If the NMPT solution time is λ times 
longer than dt, then at the next λ steps the optimal control 
computed at step k must be used. This is equivalent to open-
loop control and the tracker’s stability for large λ needs to 
be investigated further. A partial solution to the speed 
problem could be the use of more advanced numerical 
techniques for the NMPT optimization. For example, a 
direct approach, such as direct transcription could be used, 
which casts the optimal control problem into a constrained 
Nonlinear Programming Problem (NLP). Such problems can 
be solved very efficiently using sparse Sequential Quadratic 
Programming [16]. 
 Another issue is the choice of the cost matrix elements. 
From our simulations it was clear that they affect tracking 
quality as well as the shape of the path. This is due to trade-
offs among position, orientation, and velocity errors, and 
appropriate values for different types of motions and 
missions need to be found.  

 A characteristic of trajectory tracking, which came up 
during simulations is that obstacle avoidance may lead to 
significantly longer paths. Given that the desired trajectory 
is defined by N points and that the NMPT sampling interval 
dt is fixed, longer paths can be traversed with the same N 
and dt parameters, only if the vehicle’s velocity is increased; 
this may lead to increased velocity tracking errors. More 
importantly, if the path is too long (e.g., Np points, with 
Np>>N), the maximum velocity cannot be exceeded and the 
executed trajectory will not terminate at the goal. A solution 
to this problem could be the asynchronous advancement of 
the executed and desired trajectory indices, so that at the end 
of the motion (after Np points) the vehicle’s state 
is . Overall, in theory, NMPT offers tracking 

capabilities for wheeled vehicles, which linear controllers 
cannot match [4]. Hence, it seems to offer a promising 
approach for mobile robot path tracking applications, and it 
deserves further investigation. 

p

d
N =x xN
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