

Reactive Trajectory Tracking for Mobile Robots based on
Non Linear Model Predictive Control

Stavros G. Vougioukas, Member, IEEE

Abstract— In this paper, a nonlinear model predictive
tracking (NMPT) controller for mobile robots is presented. The
basic idea is to use a motion model for the vehicle and compute
in real-time an optimal M-step-ahead control sequence, which
minimizes the total M+1 step tracking error of the projected
motion. In the presence of obstacles, the controller deviates
from the reference trajectory by incorporating into the
optimization obstacle-distance information from range sensors
(e.g., laser scanner, ultrasound). Numerous simulations were
performed and the NMPT consistently converged to the desired
trajectories and followed them accurately, despite large initial
errors and discontinuities in the desired velocities and
orientations. The controller’s performance depended strongly
on parameters such as the optimization horizon M, and the
cost-weights assigned to the various tracking errors. The
optimization horizon regulates a trade-off between timely
obstacle avoidance and tracking quality (large M) vs.
consistently fast convergence (small M). The cost-weights affect
tracking quality and also the shape of the path, by regulating
trade-offs among position, orientation, and velocity errors.
Overall, NMPT seems to offer a promising approach for
advanced precision guidance applications, and deserves further
investigation.

I. INTRODUCTION

High precision motion tracking is desirable in many

mobile robot applications, as well as in tractor auto-steering
for precision farming. The desired path may be defined by a
number of waypoints and orientations, or by analytical
expressions. In some cases the desired vehicle speed is
either constant, or it is free to take any values within a
certain operational range. The goal is that the average and
maximum deviation between the vehicle’s traveled path and
the desired path are minimized. This problem is called path
tracking and the path tracking error is defined as the shortest
distance between the tractor’s control point and the desired
path. Various approaches have been proposed for path
tracking, such as pure-pursuit [1], sliding-mode control [2],
[3], nonlinear proportional control [4], and vector pursuit
[5]. In some applications the desired path is accompanied by
a desired velocity, or even acceleration profile. This problem
is referred to as trajectory tracking and a desired trajectory
point must be available to the robot digital controller at
every sample.

Manuscript received January 31, 2007.
S. G. Vougioukas is with the Agricultural Engineering Department,

Aristotle University, 54124 Thessaloniki, GREECE, (e-mail:
bougis@auth.gr).

The tracking error is defined at each controller sample
as the difference between the desired and actual trajectory
points. Various trajectory tracking controllers have been
developed for industrial robots, with PID control being the
most widely used technique. However, linear controllers
cannot offer good tracking performance for non-holonomic
robot complex maneuvers, such as sharp turns and reverse
motions. This is a well known theoretical result [6] for
under-actuated non holonomic systems, such as wheeled
vehicles under the no-slip constraint. Various control
techniques have been proposed for trajectory tracking for
car-like robots. In [7] a time-varying LQR controller is
computed for the non holonomic system linearized about its
path. One problem with this approach is that the LQR gains
are path-dependent and hence the controller requires
extensive tuning for each type of path. In [8] iterative model
predictive control was used. This approach is similar to non
linear model predictive control, but does not consider
optimization or constraints explicitly; instead it uses a
gradient based algorithm to reduce the predicted state error
after a fixed number of trajectory points. The look-ahead
point in this approach must be carefully selected; a distant
point may result in corner-cutting and increased tracking
error, just like in pure pursuit.

In addition to small tracking errors, real-world
applications require robust navigation in the presence of
obstacles. Collision-free motion trajectories are typically
computed by some motion planning algorithm based on a
map of the environment. During the actual motion execution
it is possible that obstacles appear in the vehicle’s path,
which had not been present in the planning phase (e.g.,
animals, humans, machines). This may also happen because
of imprecision in the field map, or vehicle localization
errors. The on-line alteration of a vehicle’s path in situations
like these – while respecting the motion constraints - has
been addressed by various researchers. A common approach
is to modify the entire pre-planned path based on current
range-sensor data [9], [10].

In this paper, a reactive trajectory tracking controller
based on nonlinear model predictive control is presented,
along with an iterative algorithm for its real-time
implementation. Given a desired trajectory, the controller
minimizes the total tracking error along an entire future
motion segment, based on the vehicle’s motion equations.
Pure pursuit [1] and path deformation [10] are special cases
of the proposed controller when an appropriate cost function
or optimizing horizon is used, respectively. In the presence
of obstacles, the controller deviates from the reference

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD10.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3074

trajectory by incorporating into the optimization obstacle-
distance information from range sensors. Simulations were
performed to test the algorithm’s performance for different
motions and real-time computing scenarios.

Section II gives a brief review of non linear model
predictive control. Section III describes the development of
a high-level path tracking controller based on non linear
model predictive control. Next, section IV describes in detail
the numerical optimization procedure. In section V sensor
range data are incorporated into the numerical optimization
resulting in reactive tracking behavior. Section VI presents
experimental simulation results and finally, section VII
concludes the paper and suggests possible directions for
future work.

II. NON LINEAR MODEL PREDICTIVE CONTROL
A brief description of the non linear model predictive

control methodology is given next [11]. Let a system’s
discrete state equation be of the form:

 (1) 1 (,) , 0 k k k k+ =x f x u ≥

k k≤ ≤ ≤ ≤x x x u u u

N

k

where and . The state and control vectors
are subject to constraints of the form:

n
k ∈x m

k ∈u

 . (2) min max min max,

Let be a desired state trajectory
and be the error between the actual and the
desired trajectories. The basic idea behind nonlinear model
predictive control is to solve at every time step k a finite-
horizon optimal control problem. Given the actual state ,
an optimal M-step-ahead control sequence

 , = 0,1,...d
k kx

d
k k= −e x x

kx
*

,k Mu is
computed, which minimizes a cost function J:

1

* * * *
, 1

, ,...,
[...] arg min

k k k M
k M k k k M J

+ +

+ += =
u u u

u u u u (3)

The cost function has the following form:

 (4)
min(,)

1 = () (,)
N k M

k M j j
j k

J
+

+ +
=

+ ∑eθ ψ x u

1

where the tracking error of the last state of the finite horizon
is penalized by a function θ which typically has a quadratic
form:

 (5) 1 1() T T
k M k M e k M+ + + + + +=e e Q eθ

At each step, the state, tracking error and control effort
along the optimizing horizon can be penalized also by a
quadratic form:

 (,) T T T T
j j j x j j e j j u= + +x u x Q x e Q e u Q uψ j (6)

At sample k+1 the system will have moved to a new state

1k +x which differs from the predicted state due to
disturbances and model errors. The optimization problem is
solved again, until the system reaches its goal state .
Given that an optimal feasible open-loop control and
trajectory for the problem exists, and that all the cost
matrices Q are positive-definite, the stability of the closed-
loop non linear model predictive controller can be proved
[12].

d
Nx

III. PATH TRACKING
In this work we consider the motion of a non-holonomic

car-like robot in the plane (Fig. 1). The x and y coordinates
give the position of the car’s rear wheel axle midpoint

[]Tx y=P . The unit vector v has its origin at P and lies
along the direction of motion. The robot’s orientation is
given by θ, the angle between the positive x-axis and v. The
vehicle’s wheelbase is L.

Fig. 1 Car-like robot model

A simple kinematical model for this front-wheel steered
robot in the plane is the following:

cos
sin
tan

x v
y v

v
L

=
=

=

θ
θ
φθ

 (7)

The proposed approach to path tracking is to use non linear
model predictive control as a high-level tracking controller
(NMPT), which uses a simple kinematical model to predict
vehicle motion, and a dynamic model for steering and speed
control (Fig. 2). The control variables are v and φ, i.e., the
desired linear velocity and steering angle. This approach
avoids the complexities of full dynamic modeling, while
retaining the required accuracy for low working-speeds.

ThD10.3

3075

Fig. 2 High level NMPT controller

Of course, complex dynamic models could be used for the
NMPT, but still, unknown model parameters (e.g., related to
tire-soil interaction) need to be identified. At a lower-level, a
steering controller model can be used to create an
“abstraction” of the steering system dynamics [15]; the same
holds for speed controllers. In this paper, the combination of
the steering controller and steering linkage is modeled as a
1st order system with time-lag τφ; an analogous abstraction is
used for speed control.

1 1

1 1
v

v v

u

v v

= − +

= − + u

φ
φ φ

φ φ
τ τ

τ τ

 (8)

This means that the NMPT provides a desired steering angle
uφ to the steering controller and the actual wheels’ steering
angle follows the command with first order dynamics.
Similarly, velocity commands uv are issued by the NMPT to
the speed controller. Of course, different models (e.g.
second order, time-delay) could be used, as long as their
parameters can be identified. From the NMPT point of view
the vehicle is described by (7), (8) the system state is

T[]x y vθ φ=x and the control is . The tracking
error is defined as the difference between the desired and
actual trajectory points at each controller sample. The cost
function is defined by (4), (5), and (6). Note that if the cost
ψ is everywhere zero, NMPT is equivalent to pure-pursuit
[1], whereas if M is big enough to include the final state, the
NMPT will compute a deformation for the entire future path
[10]. Also, if only position and orientation errors are
penalized, NMPT is equivalent to geometrical path tracking.
Next, a numerical procedure for solving the NMPT will be
presented.

T[]vu u=u φ

IV. NUMERICAL SOLUTION
 In the general case, non linear model predictive control
optimization can only be solved numerically. The system
equations must be discretized so that they can be expressed
in the form of (1) and solved. In this paper the indirect
approach was used, which uses gradient descent in order to
minimize the problem’s Hamiltonian [13].
 The Hamiltonian of the optimal control problem is

 (9) 1(,) (,)T

k k k k kH += +x u λ f x uψ

here λk is the costate sequence. It can be shown [13], [14]

w
that for fixed initial state, the first-order variation of the cost
function is given by:

0
.

N N

T TN

k k k
k k k

J

H H

θδ δ

δ

Ν

=

⎡ ⎤∂
= − +⎢ ⎥∂⎣ ⎦

δ
⎧ ⎫⎡ ⎤ ⎡ ⎤∂ ∂⎪ ⎪− +⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∑

λ x
x

λ x
x u

u
 (10)

 the costate sequence satisfies the equation If

 1 , ,..., 1
T

j j
j j j

H∂ j k k M+

∂ ∂
= = + = + −

∂ ∂
f

x x x
ψ (11)

ith terminal condition

λ λ

w

 k M
k M

θ
+

+

∂
=

∂
λ

x
 (12)

n becomes:

he cost variatiot

0

TN

k
k k

HJδ δ
=

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

∑ u
u

 (13)

here

w

1

T

j
j j j

H
+

∂ ∂ ∂
= +

∂ ∂ ∂
f λ

u u u
ψ (14)

The main idea behind a gradient descent solution algorithm
is the following: if we start from a nominal solution *

,k Mu
which is close to the optimum, in order to minimize
variation

J, a
*

,k Mδ u of this control must be computed, such that
the variat J should be always negative. This can be
achieved by moving the control in the opposite direction of
the Hamiltonian’s control gradient (steepest descent).

ion δ

 1 , ,...i i
j j i

j

HK j k k M+ ∂
= − = +

∂
u u

u
 (15)

here the gain K is a sufficiently small positive number.

an

w
The algorithm proceeds as follows: at each step k, given
 initial *

,k Mu the gradient descent iteration index i is
initialized t ro and (7),(8) are used to compute the open-
loop trajectory

o ze
* * * *

, 1 1[...]k M k k k M+ + +=x x x x . Next, i
jλ and

/ j∂Η u are compu d (14) respec ely,

ed controls 1i

ted using (11), (12) an

and the updat

tiv

j
+u are computed by (15). Finally,

i is incremented and iterations continue, until a
convergence termination criterion is satisfied.

the

ThD10.3

3076

V. REACTIVE TRACKING IN THE PRESENCE OF OBSTACLES

 Typically, the desired motion trajectory is computed by
some motion planning algorithm based on a map of the
environment and is assumed to be collision-free. During the
actual motion execution it is possible that obstacles appear
in the vehicle’s path, which had not been present in the
planning phase (e.g., animals, humans, machines). This may
also happen because of imprecision in the field map, or
vehicle localization errors. If the robot is equipped with
range sensors, e.g., a laser scanner, then at any time the
distances of a number of obstacle points, which had not been
present in the original environment map from the respective
sensor are known. These distances can be incorporated in
the cost function, so that the computed control tracks the
desired trajectory, while staying away from the obstacles.
 Let Tsr be the fixed transformation matrix of the rth
sensor frame with respect to the vehicle frame, and T(x) be
the transformation matrix of the vehicle’s frame with respect
to the fixed navigation frame. Let be the mth range
measurement of the rth sensor in the sensor frame, at robot
state x. The corresponding obstacle-point position expressed
in the navigation frame is and is
independent of the robot state. The rth sensor’s frame origin
expressed in the navigation frame is ,

where . Hence, their relative distance vector,
expressed in the navigation frame is:

()rS
mr x

() ()r

r

S
rm s mT T=p x r x

s() () r

r

S
r T T=s x x s

[0 01]rS T= s

 (16) () ()rm rm r= −a x p s x

and the scalar distance is . The obstacle
points which do not correspond to obstacles in the map
contribute to the cost functions θ and ψ with a term which
penalizes states which result in proximity with the obstacles:

1/ 2() ()T
rm rm rmD =x a a

1 1

()
()

rMR

r m rm

CV
D= =

⎛ ⎞
= ⎜ +⎝ ⎠

∑∑x
x ⎟

ρ

ε
 (17)

where R is the number of range sensors, Mr is the number of
readings of the rth sensor, ε is a small positive real number,
C>0 and ρ>1. In order to solve the system of (11), (12) the
terms / , /j∂ ∂ ∂ ∂x jxψ θ are needed. Thus, we need to
compute , which can be shown to be /rm jdV dx

 1 ,
(())

rm rm

j rm j

dV dDC
d D +

−
=

+x x

ρ

ρ

ρ
ε jdx

 (18)

where

 1rm rm rm rm
rm

j j rm rm j

dD d dD d
d d d D d

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

a a
a

x x a x
 (19)

Using (16) and noticing that the obstacle-point is
independent of the robot state, the term is found

to be equal to

rmp
/rm jd da x

/r jd d− s x .

VI. SIMULATION RESULTS
 The NMPT was implemented in C++ and numerous
simulations were performed. The vehicle’s wheelbase L was
taken equal to 2 m, with φmax=60ο and vmax= 1 m/s and the
sampling period dt=100 ms. The steering system time-lag
was set equal to 0.15φτ = s, and the velocity time-lag to

1vτ = s. All the elements of all cost matrices were set to
zero, except for qe(1,1)= qe(2,2)=500 (distance error costs)
and qe(3,3)=100 (orientation error cost). The velocity errors
were penalized less, with qe(5,5)=50, because path accuracy
was considered more important. The NMPT gradient
descent algorithm was allowed to execute for 1000
iterations; larger iteration-limits did not improve the
solutions.
 In a first experiment, the tracking controller’s step
response was tested on a 300-point square path with sharp
90o orientation discontinuities. An initial horizontal position
error of 0.25 m was introduced in the robot’s position. At
the corners, the robot’s desired orientation switches from π/2
to 0 and then to 3π/2. The nominal velocity was equal to 0.5
m/s. The response of the NMPT was compared against that
of a Pure Pursuit Control (PPC) type tracking algorithm,
appropriately modified for non-holonomic vehicles. The
PPC was assumed again to be a high-level controller, issuing
desired velocity and steering angle commands to the low-
level controllers. If the position errors between the current
tractor position and the look-ahead point expressed in the
tractor frame are ex and ey, the orientation error eθ, and the
velocity error ev the pure-pursuit controller is given by:

 1 (
sgn() tan

v v v x x

y y
v

u K e K e
)K e K e L

u u
v

−

= +

+⎛
= ⎜ ⎟

⎝ ⎠

θ θ
φ

⎞ (20)

The term v vK e in uv is for velocity tracking and the term

x xK e makes sure that the look-ahead point will be reached
even if the desired velocity at that point is zero. The term

y yK e K eθ θ + is a desired rotational velocity term dθ and the
desired steering angle is solved for it from (7). The error ey is
contained in the desired rotational velocity because non-
holonomic vehicles have to turn in order to move laterally.
The term sgn(corrects the steering during reverse
motion. Finally, the K parameters are the gains of the
controller. The PPC was assumed to be executing at the
same sampling rate as the NMPT and the look-ahead
distance it used was optimal.

)vu

In order to select the optimal PPC look-ahead point for
this path, different values for the number of look-ahead
points (M) on the path were tried for the PPC-based motion

ThD10.3

3077

simulations. The minimum path tracking error was achieved
at a distance of 1.25m (M=25). This result can be explained
by the minimum turning radius, which is 1.15 m, and which
translates to 23 path points, at a moving speed of about
0.5m/s. Hence, distances significantly different from 1.15m
would result in large overshoots, or corner-cutting. The PPC
gains were selected to minimize overshoot, via trial and
error. The PPC gains were tuned to provide critical damping
with a look-ahead distance of 1.25m (M=25).

The PPC simulation resulted in average and maximum
path tracking errors of 4.62cm and 34.94cm respectively.
The total area between the desired and executed paths was
approximately 0.73m2. The NMPT simulation was executed
with the optimization horizon parameter M ranging from 10
to 80 points. The paths for M=20 and 60 points are shown in
Fig. 3.

Fig. 3 NMPT tracking of a square
path (M=20 and M=60 points)

Fig. 4 Tracking with pure-pursuit
and NMPT controllers (M=60)

Each NMPT computation required 0.07s on a Pentium 2.6

GHz single-CPU system. When NMPT was executed with
M=25 it performed worse than the PPC. The reason was that
NMPT didn’t turn well in advance before the sharp turns.
This is expected, since NMPT minimizes the tracking error
over its entire horizon, whereas PPC turns M points in
advance. However, when M was increased to M=60 (5
meters), NMPT performed much better (Fig. 4), with
average and maximum tracking errors equal to 4.2cm and
19.78cm respectively. The total error-area was
approximately 0.65m2. The NMPT accomplished this by
performing an anticipatory turning motion which increased
the instantaneous tracking error, but lead to smaller total
error. Such motions cannot be performed by PID-type
controllers. The NMPT convergence time increased to 0.4s,
but speed-problems could be overcome with dedicated
hardware. It should be mentioned that part of the tracking
errors for both tracking controllers are due to the first order
approximation for the steering and velocity systems. A pure
kinematics model would result in smaller errors.
 In a second simulation experiment the robot followed a
key-hole shaped path at a constant speed of 0.5 m/s. The
desired and executed paths for two different starting
positions are shown in Fig. 5. Both starting positions
contained a ±0.5 m horizontal initial error, whereas the
second position had also a 20o orientation error. Both
trajectories converged to the desired one despite the

relatively large initial errors. The average and maximum
trajectory tracking errors after convergence were 0.96cm
and 1.36cm respectively, i.e., the NMPT followed the
trajectory very closely. The average and maximum velocity
tracking errors after convergence were 0.48% and 2.02%
respectively. Each new control computation required 13.1ms
on a Pentium 2.6 GHz single-CPU system, which is
adequate for real-time implementation.
 Next, a rectangular obstacle was introduced in a
position which prohibited exact path following and the
simulation was executed again. As it is shown in Fig. 6, the
NMPT deviated from the desired trajectory in order to safely
avoid the obstacle. The vehicle passed from the right side of
the obstacle because of its limited turning radius; passing it
from the left would have required a turning angle of more
that 60ο.

Fig. 5 Key-hole maneuver

Fig. 6 Deformation due to obstacle

 In a third simulation experiment a fish-tail maneuver
was executed, which contained large discontinuities in both
orientation and velocity. Fig. 7 shows three different
executed paths for two different starting positions. The first
path resulted from an initial horizontal position error of +0.5
m. The second and third paths resulted from an initial error
of -0.5m and an orientation error of 20o. The second path
converged more slowly to the desired path than the third
path, because the orientation penalty term in the Qe matrix
was qe(3,3)=1500, whereas for the third path a smaller value
of qe(3,3)=100 was used. Hence, a position vs. orientation
error trade-off existed. In Fig. 8 the deviation of the NMPT
from the desired trajectory is shown in the presence of an
unexpected obstacle.

Fig. 7 Fish-tail maneuver

Fig. 8 Deformation due to obstacle

VII. CONCLUSIONS AND FUTURE WORK
 The NMPT consistently converged to the desired
trajectories and followed them accurately, despite large

ThD10.3

3078

initial errors and discontinuities in the desired velocity and
orientation.
 Overall, the computational cost does not seem to be
prohibitive for real-time control. The optimization horizon
M is an important parameter, which regulates a trade-off
between timely obstacle avoidance and tracking quality
(large M) vs. fast solution time (small M). Also, in the
presence of obstacles the convergence rate of the gradient
descent numerical procedure varied along the path.
 The delayed computation of “fresh” NMPT controls,
even if it happens intermittently, can create problems during
real-time control. If the NMPT solution time is λ times
longer than dt, then at the next λ steps the optimal control
computed at step k must be used. This is equivalent to open-
loop control and the tracker’s stability for large λ needs to
be investigated further. A partial solution to the speed
problem could be the use of more advanced numerical
techniques for the NMPT optimization. For example, a
direct approach, such as direct transcription could be used,
which casts the optimal control problem into a constrained
Nonlinear Programming Problem (NLP). Such problems can
be solved very efficiently using sparse Sequential Quadratic
Programming [16].
 Another issue is the choice of the cost matrix elements.
From our simulations it was clear that they affect tracking
quality as well as the shape of the path. This is due to trade-
offs among position, orientation, and velocity errors, and
appropriate values for different types of motions and
missions need to be found.

 A characteristic of trajectory tracking, which came up
during simulations is that obstacle avoidance may lead to
significantly longer paths. Given that the desired trajectory
is defined by N points and that the NMPT sampling interval
dt is fixed, longer paths can be traversed with the same N
and dt parameters, only if the vehicle’s velocity is increased;
this may lead to increased velocity tracking errors. More
importantly, if the path is too long (e.g., Np points, with
Np>>N), the maximum velocity cannot be exceeded and the
executed trajectory will not terminate at the goal. A solution
to this problem could be the asynchronous advancement of
the executed and desired trajectory indices, so that at the end
of the motion (after Np points) the vehicle’s state
is . Overall, in theory, NMPT offers tracking

capabilities for wheeled vehicles, which linear controllers
cannot match [4]. Hence, it seems to offer a promising
approach for mobile robot path tracking applications, and it
deserves further investigation.

p

d
N =x xN

REFERENCES
[1] O. Amidi, “Integrated Mobile Robot Control”, M.S. thesis, Dept. of

Electrical and Computer Engineering, CMU, Pittsburgh, PA, 1990.
[2] A. Balluchi,, A. Bicchi,, A. Balestrino, and G. Casalino, “Path Tracking

Control for Dubin’s Car”, Proc. IEEE Int. Conf. Robot. & Autom.,
Minneapolis, MN, pp. 3123-3128, 1996.

[3] J.-M. Yang, I.-H. Choi, and J.-H. Kim, “Sliding Mode Control of a
Nonholonomic Wheeled Mobile Robot for Trajectory Tracking”, Proc.
IEEE Int. Conf. Robot. & Autom., Leuven, Belgium, pp. 2983-2988,
1998.

[4] Y. Zhang, S. Velinsky, and X. Feng, “On the Tracking Control of
Differentially Steered Wheeled Mobile Robots”, Journal of Dynamic
Systems, Measurement, and Control, pp. 455-466, 1997.

[5] J. Witt, C.D.III Crane, and D. Armstrong, “Autonomous Ground
Vehicle Path Tracking”, Journal of Robotic Systems, Vol.21, No. 8, pp.
439–449, 2004.

[6] R. Brockett, “Asymptotic stability and feedback stabilization”, In
Differential Geometric Control Theory, pp. 181-208, Birkhauser, 1983.

[7] A. Divelbiss, and J. Wen, “Trajectory Tracking Control of a Car-Trailer
System”, IEEE Transactions on Control Systems Technology, Vol.5,
No. 3, pp. 269-278, 1997.

[8] J. Wen, and J. Sooyong, “Nonlinear Model Predictive Control based on
Predicted State Error Convergence”, Proceeding of the 2004 American
Control Conference, Boston, MA, pp. 2227-2232.

[9] O. Brock and O. Khatib, “Elastic strips: Real-time path modification for
mobile manipulation”. Robotics Research, pp. 5–13, Springer- Verlag,
1998.

[10] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive Path
Deformation for Nonholonomic Mobile Robots”, IEEE Transactions on
Robotics, Vol.20, No.6, pp. 967-977, 2004.

[11] B. Kouvaritakis, and M. Cannon, Non-Linear Predictive Control:
Theory and Practice, IEE Publishing, London, 2001.

[12] H. Chen, and F. Allgoewer, “Nonlinear model predictive control
schemes with guaranteed stability”, Nonlinear Model Based Process
Control, R. Berber and C. Kravaris, Eds. Dodrecht: Kluwer Academic
Publishers, 1998, pp. 465–494.

[13] D.E. Kirk. Optimal Control Theory: An Introduction, Prentice Hall,
1970.

[14] A.P. Sage and C.C. White, III, “Optimum Systems Control”, 2nd ed.,
Prentice Hall, 1977.

[15] D. Wu, Q. Zhang, J. Reid, H. Qiu, and E. Benson, “Model Recognition
and Simulation of an E:H Steering Controller on Off-Road Equipment”,
Fluid Power Systems and Technology, S. Nair, S. Mistry, Eds. New
York: ASME, 1998, pp. 55–60.

[16] J. Betts, “Survey of Numerical Methods for Trajectory Optimization”,
Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, pp. 193-
207, 1998.

ThD10.3

3079

