
 
 

 

  

Abstract— A real-time SLAM (simultaneous localization and 
mapping) approach to harvester localization and tree map 
generation in forest environments is presented in this paper. 
The method combines 2D laser localization and mapping with 
GPS information to form global tree maps. Building an 
incremental map while also using it for localization is the only 
way a mobile robot can navigate in large outdoor 
environments. Until recently SLAM has only been confined to 
small-scale, mostly indoor, environments. We try to addresses 
the issues of scale for practical implementations of SLAM in 
extensive outdoor environments. Presented algorithms are 
tested in real outdoor environments using an all-terrain vehicle 
equipped with the navigation sensors and a DGPS receiver. 

I. INTRODUCTION 
UTONOMOUS localization and mapping capabilities 
are widely accepted to be one of the key features of 

outdoor mobile robots. For this reason robot navigation has 
been an ongoing research topic for several years. Navigation 
in outdoor environments is still an open problem. The 
presence of unstructured features leads to the need for more 
complex perception and modeling. This leads to a big 
variety of navigation algorithms and map representations, 
depending on the kind of environment, the degree of 
structuring and the target application. Many different 
outdoor SLAM algorithms have been studied in recent years 
(for a review see [4],[13] and the references therein). The 
two critical research subjects especially related to mapping 
of large environments are data association and controlling 
computational complexity. 

Data association is the problem of relating sensor 
measurements with the corresponding elements in the map. 
There are two basic approaches for solving the data 
association problem [7]. In the first one a set of potential 
vehicle location candidates are generated for computing the 
correlation match between sensor measurements and the 
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previous map [2]. In the second approach, discrete features 
are extracted from the sensor measurements to be matched 
with the similar features stored in the map. This approach is 
used in the feature based, Extended-Kalman-Filter (EKF) 
SLAM implementations [9],[16],[5]. When mapping large 
outdoor environments uncertainty in the vehicle location 
may increase to the extent that correct localization based on 
one-to-one feature correspondences is not possible [14]. A 
more robust data association method relies on joint 
compatibility of a set of geometric constraints computed 
among neighboring features [6],[7],[14]. In constructing a 
3D map of a cluttered forest environment exhausted search 
in the pose space for vehicle relocation has been 
demonstrated to yield good results [11]. However, the 
method becomes computationally heavy for a real-time 
implementation when the vehicle error increases too much 
between observation phases. In the method presented in this 
paper the data association problem is solved by considering 
a neighborhood of each tree for computing a set of relative 
geometric constraints among the trees in the current vehicle 
centered map and the global map. By checking the joint 
consistency among the constraint sets an observed tree can 
be reliably associated with a tree in the map despite the 
cluttered environment. 

The computational complexity of standard EKF-SLAM is 
proportional to the square of the number of landmarks in the 
map. Different approaches to augment the basic method to 
achieve real-time performance have been proposed. By 
working on a limited area of the global map at a time, the 
total computational cost of the method can be made 
proportional to the number of landmarks [5]. By applying a 
relative sub map framework the computational cost at the 
local sub map level will be independent of the size of the 
complete map. Moreover, the precision of the map can be 
increased due to the increased consistency when closing 
long loops [1]. 

Laser scanners have become one of the most attractive 
sensors for localization and map building purposes due to 
their accuracy and low cost. Most common lasers provide 
range and bearing information with sub degree resolution 
and accuracies of the order of 1-10 cm in 10-50 meter 
ranges [3], [9], [16]. 

The Forestrix project studies forest and tree trunk 
measurement technologies, signal processing methods and 
algorithms for semiautomatic control of forest harvesters. 
Advances in laser range finders and machine vision systems 
provide new opportunities for forest measurements. An 
accurate tree map can be formed and updated in real-time. In 
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thinning of a forest the tree map can support the harvester 
operator to select the right trees and to achieve optimal stand 
density. The stand density can be broadly defined as the 
quantitative measure of tree cover on an area, i.e. the amount 
of tree material per unit area or space [15]. The collected 
data improves the verifiability of forest operations. Later the 
data can be used for planning the subsequent forest 
operations [8], [10]. 

In the first phase of the project, measurement 
technologies and signal processing methods are tested on an 
all-terrain vehicle (ATV) which is a small 4-wheeled 
motorized buggy. The ATV is equipped with a mobile data 
collection system. It is used to collect real measurement data 
from various forest environments. The signal processing 
methods are then studied and developed based on the data in 
laboratory environment. Thereafter, the developed 
algorithms are tested on the ATV platform at which they 
should run in real-time. Also the first experiments with the 
control algorithms are done with the ATV platform. In the 
last phase, if the system works well enough, it will be moved 
to a commercial full-scale forest harvester for final testing. 

This paper consists of the following sections. First, the 
used methods and tools are discussed. Then the results 
including real-time SLAM with scan correlation, and feature 
based data association and global mapping are presented. 
Finally some conclusions about the applicability of the 
tested approach are given.  

II. METHODS AND TOOLS 

A. ATV Platform 
The ATV platform is shown in Fig. 1. 2D and 3D laser 

range finders, machine vision camera, differential GPS 
receiver and MEMS inertial measurement unit are connected 
to a computer to form the data collection system. 

The 2D laser range finger is used continuously while the 
3D laser range finder is used only for reference 
measurements while the platform is stationary. The 3D 
scanner is unsuitable for continuous measurements because 
it takes several minutes to make a 3D scan. The machine 
vision camera is synchronized to the 2D scanner. A custom 
hardware divider is used to transform the synchronization 
signal from the laser so that it can be used to trigger the 
camera which operates at a much lower frequency. 

The differential GPS is the same model that is commonly 
used in forest harvesters. It has much better gain than most 
consumer level receivers so that it can maintain better 
satellite fix even in demanding forest environments. MEMS 
inertial measurement unit is used to provide information of 
the pose of the platform.  

The box in the front acts as a stand for the different 
sensors while the box in the back contains a 24 V battery for 
system power. The ATV has a 24 V generator which 
charges the battery when the engine is running. An inverter 
is used to provide 250 VAC. Both laser range finders 

operate directly from the battery while other instruments use 
ordinary switched-mode power supplies to provide 5 V and 
12 V operating voltages. 

B. Positioning with scan correlation 
Unprocessed scan correlation is the process of aligning an 

observed set of points with a reference point set. Scan 
correlation may be defined as a function of the relative pose 
between the two data sets. The two point sets in this paper 
are two laser scans named the reference scan and the 
observation scan, where the fixed reference scan defines the 
base coordinate frame. Correlation involves finding the pose 
of the observation scan relative to this base coordinate 
frame. Scan correlation is used here to do short term sensor-
based dead reckoning, which is an alternative to odometry in 
rough terrains like forests. 

There are numerous different scan correlation (set of 
points correlation) methods available to be used for sensor-
based (laser-based) dead reckoning. In this chapter two 
methods are briefly introduced. The methods are Iterative 
Closest Point (ICP) and Sum of Gaussian (SoG). Different 
scan correlation methods are presented e.g. by Bailey [16]. 

C. Scan correlation methods 
1) Iterative Closest Point 

The Iterative Closest Point method is probably the most 
commonly used and widely known range-image registration 
technique. It is a non-probabilistic technique which 
popularity derives mainly from its simplicity and efficiency. 
The algorithm is initialized with an initial pose estimate and, 
until the estimated pose satisfies some convergence 
criterion, it is iteratively refined by a process of point-to-
point data association and least-squares transformation. 
Convergence of the algorithm occurs when the nearest 
neighbor for each point does not change between iterations. 
However, it might also be determined by a least-mean 
squared residual threshold, or simply a fixed number of 
iterations. 

There are three basic shortcomings to the ICP algorithm. 

 
Fig. 1 The Forestrix Project ATV Platform 
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First, it performs explicit point-to-point data association 
each iteration cycle, which introduces error since the points 
in each scan represent a surface and not a set of discrete 
locations. Second, ICP converges to local minima and so 
requires a good initial pose guess to find the global 
minimum. And third, the ICP result is a least-mean squares 
estimate where each association pair is equally weighted; 
there is no direct means to incorporate modeled sensor 
uncertainty or to obtain an estimate of pose uncertainty in 
the solution [8], [16]. 

2) Sum of Gaussian 
The Sum of Gaussian method is a probabilistic technique 

which yields superior results compared to the ICP method 
discussed above. Principally, the SoG method is the 
conversion of scans of range-bearing measurements swept in 
a 2-D plane to a Gaussian sum probability density function 
(PDF) and equations for the calculation of the cross-
correlation of two such PDFs to get the pose change 
between scans. In Fig. 2 Cartesian Gaussian sum probability 
densities are calculated for one measurement scan. This scan 
is from forest environment with 180° bearing and PDF 
calculation was restricted to range of 15 meters [8], [16]. 

D. Feature Based SLAM 
The overall structure of the feature based SLAM 

algorithm is shown in Fig. 3. The SLAM is based on the raw 
2D laser range finder data. The first step is the feature 
extraction. In this application, the features are the 
surrounding trees. The tree features identified from a single 
scan are called echoes due to their uncertain nature.  

In a clean forest with little or no underbrush it is relatively 
simple task to find the tree trunks from the raw laser scans. 
This is done in the second step. However, in more dense 
forests finding the trunks can be extremely difficult if not 
impossible. The dense vegetation also reduces the effective 
measurement range drastically. Even in relatively clean 
forests the blind areas behind the nearest trunks can be 
substantial. 

While it is straightforward to extract the echoes from the 
raw scans, it is very difficult to identify individual trees. 
This problem of matching features is usually referred as the 
association problem in the SLAM literature. Many SLAM 
applications get around of this problem by using beacons 
that can be unambiguously identified. However, this 
approach is not feasible in the proposed forest mapping 
application. A single tree trunk is difficult to identify 

because they all look the same for the laser range finder. 
Even the variation of trunk diameter can be very small in a 
well managed forest.  

Instead of trying to identify individual trees it is better to 
identify groups of trees. The tree groups are identified in the 
third step. The tree groups offer a variety of features that can 
be used for identification: distances and angles between 
adjacent trees and trunk diameters. One of the central 
challenges in this approach is that tree groups are not 
constant. Depending on current position, not all trees may be 
visible because of the blind areas. 

The matching of echoes to the tree map is done in the fourth 
step. The matching is done a group at a time. The tree map is 
stored as a graph structure which makes this a graph 
matching problem. However, there are some issues that will 
have to be taken into account. First, the echo graphs are 
usually incomplete because of the blind areas. Second, the 
tree graph is usually not complete, because it is 
incrementally built. The matching algorithm uses distances 
between adjacent tree trunks to match tree groups. Distances 
between trees are easy to work with because they are 
translation and rotation invariant. Relative angles are more 
difficult to work with because they need an additional 
reference point. If three trees are matched together in a 
triangular configuration, as shown in Fig. 4, the distance 
information alone describes the full geometry making the 
relative angles completely redundant. For this reason, the 
relative angles are not used for matching tree groups. 
Absolute angles (e.g. relative to magnetic North) could be 

useful for matching purposes, but the current measurement 

Fig. 2 Probability densities of Cartesian Gaussian sum [8] 
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Fig. 3 Information flow in feature based SLAM 

 
Fig. 4 Distances and relative angles contain the same information 
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platform does not have a reliable and accurate instrument for 
measuring absolute angles. 

fter the echoes have been matched to the trees, a simple 
algorithm is used to estimate the new pose. First, the 
“centers of gravities” of both set of points are calculated and 
the echo set is then translated so that the CoGs coincide. 
Second, the average angle between all echo-tree pairs is 
calculated and the echo set is then rotated by this angle. Care 
should be taken that all the angles are calculated on the 
correct cycle. This algorithm is based on the realistic 
assumption that the subsequent scans differ only by a 
translation and a rotation. 

In the final phases the echoes are projected to map 
coordinates. At this point they are classified either as new or 
old trees. New trees are added to the tree graph and diameter 
information for the old trees is updated. The closer the scan 
is taken, the better the diameter information usually is. New 
edges are also inserted into the tree graph and old edges are 
updated to reflect the new information. Only the distances 
between the trees are recorded. 

One of the problems of the presented algorithm is that it 
makes the optimistic assumption that all echoes really are 
trees. This helps the algorithm to acquire new trees and to 
keep going, but if echoes of branches are falsely interpreted 
as trees they will be added permanently to the tree map. To 
solve this problem another algorithm was added to remove 
false positives from the tree map. This algorithm is shown in 
Fig. 5 

The algorithm works by projecting laser scans to map 
coordinates and then using a collision detection algorithm to 
find intersections between the “rays” and the trees in the 
map. If there are more “rays” passing through a tree than 
there are valid measurements of that tree, the tree is removed 
from the map. This second algorithm was added as an 
afterthought and it reflects the inability of the first algorithm 
to record what is sometimes referred as negative 
information. Future improvements of the algorithm may use 
local occupancy grids to keep track of areas that are known 
to be free of trees.  

The tree graph is a hybrid data structure. The graph 
structure contains the nodes and the edges between them. 
Each edge has length and in future versions also direction. 
However, each node has also position in a Cartesian 
coordinate system. The possible mismatch between 
Cartesian positions and edge lengths can be used by a third 
algorithm to distribute the accumulated error evenly e.g. 
when a large loop is being closed. Currently this is done 
with a simple iterative algorithm that tries to minimize and 
distribute the tensions in the tree graph.  

E. Improved data association 
Data association is one of the most critical issues for 

SLAM implementations. Some new measurements must be 
associated with existing map features during SLAM 
procedure. Most common way to make data associations is 
to use statistical validation gating [17]. 

 Important advance is the concept of using multiple 
associations simultaneously by exploiting geometric 
relationship between landmarks. This is called batch gating 
which has two existing forms. First is the joint compatibility 
branch and bound (JCBB) method [6]. It is a tree-search 
method and similar adapted version is used in the Forest 
SLAM method. Second method is the combined constraint 
data association (CCDA) [16], which is a graph search. 

Data association algorithm used in Forest SLAM is based 
on batch gating. Only edges between nodes in graph are 
used to calculate compatibility. This is the only used 
geometric relationship between landmarks in the tree map 
and echo map graphs. Diameters of trees have also been 
tested to validate compatibility, but no added robustness was 
achieved. No pose information is needed but it can be used 
to narrow the search space. This association method is only 
used if more simple statistical validation fails. Failure is 

noticed if new pose differs too much from previous pose. 
Main idea of the method is to find best match of node and 

its two or more neighbors according to goodness of fit 
calculated from matching edges in the echo graph and the 
tree graph. The batch validation done is shown in Algorithm 
2.1. Nodes N can be all the nodes in the graph map or just a 
portion. So it can be used as a global data association 
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Fig. 5 Removal of false trees in feature based SLAM 

Algorithm 2.1: CalculateBestSubGraphFit(E, N) 
  

L = Ø 
for each echo Ee ∈  do 
 minError = LIMIT 
 W = Ø 
for each node Nn ∈  do 
// M is a list of common nearest  
// neighbors (me  mn) 
(M, error) = calcError(e, n);  
for each nearest neighbor Mm ∈  do 
//calculate combined error 
(M, err) = calcError(me, mn) 
error += err 
end for 
if (error < minError) 
  minError = error 
  W = ((e  n), M) // set best match 
end if 
end for 
L  W // update best fit 
end for 
return L 
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method or a more local one. As shown in Fig. 6 goodness of 
fit is calculated from edges combining chosen node and its 
closest neighbors. Only the best matched sub graphs are 
used in localization and tree mapping steps. 

The goodness of fit is calculated as a chi-square statistic sum 
of differences between distances (d) to neighboring nodes 
from observed (E, echoes from scan) and expected (N, 
nodes from graph map) outcome, each squared and divided 
by the expectation, equation 1. 
 

∑ −
=

N

NE

d
dd 2

2 )(χ
 (1) 

III.  RESULTS 

A. Combined SLAM 
Sum of Gaussian method is used to give the first estimate 

to feature based SLAM part of the algorithm. SoG-algorithm 
is implemented with C++. While the current version of the 
SLAM software is written in Java programming language 
there was no need to change SoG implementation because 
C++-code can be called from Java [8].  

Feature based SLAM uses laser-based odometry as a first 
pose estimation and then iterates the true pose according to 
the extracted and matched features (the dotted arrow in Fig. 
3). Laser-based odometry is only used to calculate 
movement between two laser measurements. Cumulative 

errors using solely odometry information grows too large in 
short time. 

In Fig. 7 there is a tree map produced by Forestrix SLAM. 
The DGPS path is marked with a narrow line and the SLAM 
path is drawn with a bold line. The measured tree positions 
are also shown. The same loop was driven twice. These 
positions and diameters have been compared to hand 
measured tree information provided by METLA (Finnish 
Forest Research Institute). At this time combined Forestrix 
SLAM works in well defined forests. 

B. Software 
The current version of the software is written in the Java 

programming language. Different parts of the user interface 
are shown in Fig 8. and in Fig 9. 

The software can read input data either from data files or 
from actual sensors. The data files are essential for testing 
the system in laboratory environment. The software can 
connect to the 2D laser range finder and the DGPS receiver. 
The SLAM path can be matched to the DGPS path. As a 
result the algorithm also gives the tree positions in absolute 
map coordinates. The resulting absolute accuracy is mostly 
limited by the DGPS receiver. The DGPS receiver has too 
much localization error to make this only a mapping 

 
Fig. 6 Scan graph and Tree Graph batch validation by using tree-
search algorithm 

 
Fig. 7 Tree map produced by Forestrix SLAM 

 
Fig 8. The GUI provides means to specify inputs and outputs and to 
select algorithms. 

 
Fig 9. The operator can see a visualization of the most recent laser 
scan, the forming of the tree map and the traversed path. In the figure 
the ATV has returned to the starting position 
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problem. So SLAM has to be performed and GPS data is 
used to calculate an estimate of the global tree positions. 
Global measurements can also be used to minimize the data 
association search done to the tree graph.  

Measurement of mapping accuracy of generated maps has 
been one of the problems in this project. Comparisons have 
been done against manually measured map which is not 
accurate enough for the position information of the trees. It 
has been mainly used for tree diameter information error 
calculations. Results depend on the scanner resolution used. 
With high resolution diameter error is small up to 15 meters, 
but with lower resolution diameter error grows even faster 
as the distance to measured tree grows. 

Comparison against a map generated from 3D laser 
scanner measurements is under construction. 3D Map 
generation is done using methods presented by Forsman 
[11]. This would be used as a ground truth. 

Measurement of localization accuracy of the generated 
harvester path is also a problem. Localization works fine in 
small areas. Comparison against GPS path is not feasible 
because it is far too inaccurate. Comparison against RTK-
GPS path was considered but it turned out that the RTK-
GPS used did not get a reliable fix when moving in a forest 
environment. Accumulated position error can also be 
estimated by measuring the jump the algorithm makes when 
closing a loop. Problem is that there may be a series of small 
jumps when previously measured tree groups are identified.  

IV. CONCLUSIONS 
The current algorithms implemented in the Java 

programming language run somewhat slower in modern 
laptop computers than what is required for real-time 
applications. Some parts of the presented SLAM algorithm 
can be easily tuned for better performance. Java is a safe 
language which makes it easy to program with but it is not 
the best programming language performance-wise. Also 
interfacing it with exotic hardware such as 2D laser range 
finders can be difficult. C++ implementation may have to be 
considered in later phases of the project. 

A forest environment is very tough for precision 
instruments. Luckily there are models of 2D laser range 
finders and DGPS receivers that are designed for outdoor 
environments. The forest terrain is in many cases quite 
rough, which adds additional challenge for the sensor 
system. It may be necessary to tilt the sensor package when 
the harvester is working in an inclined position while 
traversing steep slopes. 

More development work is needed to find better solutions 
to the association problem. The current system works well 
for small loops. However, the accumulation of errors may be 
a problem for larger loops. Identifying trees may also be a 
problem in more dense and cluttered forest environments. 

REFERENCES 
[1] C. Estrada, J. Neira, and J.D. Tardós, “Hierarchical SLAM: Real-time 

accurate mapping of large environments,” IEEE Transactions on 
Robotics, vol. 21, no. 4, pp. 588-596, August 2005. 

[2] C.F. Olson, “Probabilistic Self-Localization for Mobile Robots” IEEE 
Transactions on Robotics and Automation, Vol. 16, No. 1, February, 
2000, pp. 55-66. 

[3] C. Brenneke, O. Wulf, B. Wagner. “Using 3D Laser Range Data for 
SLAM in Outdoor Environments”. Proceedings of the 2003 IEEE/RSJ 
Intl. Conference on intelligent Robots and Systems. Las Vegas, 
Nevada, 2003. 

[4] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and 
Mapping (SLAM): Part I The Essential Algorithms,” Robotics and 
Automation Magazine, June, 2006. 

[5] J. Guivant and E. Nebot, “Optimization of the simultaneous 
localization and map building algorithm for real time 
implementation,” IEEE Transactions on Robotics, vol. 17, no. 3, pp. 
242-257, June 2001. 

[6] J. Neira, and J.D. Tardós, “Data Association in Stochastic Mapping 
Using the Joint Compatibility Test,” IEEE Transactions on Robotics 
and Automation,  vol. 17, no. 6, pp. 890-897, December 2001. 

[7] J. Neira, J.D. Tardós, and J.A. Castellanos “Linear Time Vehicle 
Relocation in SLAM,” Proceedings of the IEEE Int. Conf. on Robotics 
and Automation, Taiwan, Sep. 2003, pp. 427-433.  

[8] J. Jutila. “Laserskannerin käyttö paikannuksessa ja puiden 
mittauksessa osana metsäkoneen aistinjärjestelmää”. Master’s Thesis, 
Helsinki University of Technology, Department of Automation and 
Systems Technology, Automation Technology Laboratory, 2006 (in 
Finnish). 

[9] J. Guivant, E. Nebot, S. Baiker. “Autonomous Navigation and Map 
building Using Laser Range Sensors in Outdoor”. Journal of Robotic 
Systems, Vol 17, No 10, October 2000, pp 565-583 

[10] K. Kannas. “Tree Measurement with Machine Vision in a Perception 
System for Forestry Machines”. Master’s Thesis, Helsinki University 
of Technology, Department of Automation and Systems Technology, 
Automation Technology Laboratory, 2006 (in Finnish). 

[11] P. Forsman and A. Halme, “3-D Mapping of Natural Environments 
with Trees by Means of Mobile Perception”, IEEE Transactions on 
Robotics, vol. 21, no. 3, pp. 482-490, June 2005. 

[12] S. Thrun, W. Burgard, D. Fox. “Probabilistic Robotics”. The MIT 
press, Cambridge, Massachusetts, ISBN 0-262-20162-3. 2005. 

[13] T. Bailey and H. Durrant-Whyte, “Simultaneous Localisation and 
Mapping (SLAM): Part II State of the Art,” Robotics and Automation 
Magazine, September, 2006. 

[14] T. Bailey, E.M. Nebot, J.K. Rosenblatt, and H.F. Durrunt-Whyte, 
“Data Association for Mobile Robot Navigation: A Graph Theoretic 
Approach,” Proceedings of the IEEE Int. Conf. on Robotics and 
Automation, San Francisco, CA, 2000, pp. 2512-2517. 

[15] The Australian National University, Forest Measurement and 
Modeling, source http://sres.anu.edu.au/associated/mensuration, 
referenced 3.5.2006 

[16] T. Bailey. “Mobile Robot Localisation and Mapping in Extensive 
Outdoor Environments”. PhD thesis, University of Sydney, Australian 
Centre for Field Robotics, 2002. 

[17] Y. Bar-Shalom, X. Rong Li, T. Kirubarajan, Estimation with 
Applications to Tracking and Navigation, ISBN 0-471-41655-X, 2001 

WeB5.3

522


