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Abstract— In this paper, we define a mobile self-localization
(MSL) problem for sparse mobile sensor networks, and propose
an algorithm named Mobility Assisted MDS-MAP(P), based on
Multi-dimensional Scaling (MDS) for solving the problem. For
sparse sensor networks, all the existing localization algorithms
fail to work properly due to the lack of distance or connectivity
data to uniquely calculate the geo-locations. In MSL, we
use mobile sensors to add extra distance constraints to a
sparse network, by moving the mobile sensors in the area
of deployment and recording distances to neighbors at some
intermediate locations. MSL can also be used for localizing and
tracking mobile objects in a robotic or body sensor network.
Experiments and evaluations of the new algorithm are provided.

Index Terms— Sensor networks, MDS-MAP, Mobile self-
localization

I. INTRODUCTION

Recent advancements in wireless communication and
micro-electro-mechanical systems (MEMS) have made pos-
sible the deployment of wireless sensor networks for many
real world applications, such as environmental monitoring,
search and rescue, military surveillance, and intelligent trans-
portation, etc [1], [2], [3]. The ability of a sensor node
to determine its geographical location is of fundamental
importance in sensor networks.

Most of the localization algorithms are developed for
stationary sensor networks where the sensor nodes do not
move once they are deployed. Recent years have seen the
growing interest in mobile sensor networks [4] where all or
partial of the sensor nodes have motion capability endowed
by robotic platforms. Mobile actuated sensor networks have
more flexibility, adaptivity and even intelligence compared
with stationary sensor networks. Tracking and self-localizing
various types of moving objects become an important re-
search topic. Various work has been done on solving local-
ization, tracking and mapping problems for mobile robots in
robotics, which heavily relies on the sophisticated sensors
such as sonar, laser ranger finder, or camera onboard the
mobile platforms [5]. However, most of these mobile sensors
have very stringent constraints on the cost and complexity.
To the best of our knowledge, only very limited work has
been done on mobile sensor network self-localization. Tilak
et al. [6] developed dynamic localization protocols for mobile
sensor networks. However, their main interest is on how often
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the localization should be carried out in a mobile sensor
network and not on the localization method itself. Recently,
Hu and Evans [7] proposed sequential Monte Carlo (SMC)
localization method to solve the localization problem and
they found that the mobility of the sensors can be exploited
to improve the accuracy and precision of the localization.

Using mobile nodes to assist self-localization of a sparse
sensor network is a new research direction. Sparse sensor
networks are deployed due to environment constraints, e.g.,
range measurements are missing due to obstructions in a
room, or to reduce cost by minimizing the number of sensors.
In an extreme case, the static sensors do not have range
measurements between themselves since they are transmitters
or receivers only. For sparse sensor networks, all the existing
localization algorithms fail to work properly due to the lack
of distance or connectivity data to uniquely calculate the
geo-locations. Mobile-assisted localization [8] is to use one
or more mobile sensors to add extra distance constraints to
a sparse network, by moving the mobile sensors in the area
of deployment and recording distances to neighbors at these
intermediate locations. As long as the number of distance
measurements is greater than the degree of freedom of the
location coordinates, extra constraints are added to solve the
localization problem. Pathirana et. al [9] developed a method
based on Robust Extended Kalman Filter for a mobile node
in a disconnected sensor network to estimate locations for
sensor nodes it passes. For this purpose, one may use more
than one mobile nodes to add extra range measurements.
For example, Virtual Ruler [10] uses two nodes attached to
a mobile vehicle to achieve better localization results in an
indoor environment.

In this paper we develop a mobility assisted self localiza-
tion algorithm, MA-MDS-MAP(P), for the sensor networks
based on a distributed multidimensional scaling approach
[11], [12]. Due to page limit, we omitted some details. For a
detailed version of this paper, please refer to [13]. The rest of
this paper is organized as follows: In section II we define the
mobile self-localization problem and discuss its properties.
Section III introduces MDS based localization algorithms, in
particular, MDS-MAP(P). Section IV presents the MA-MDS-
MAP(P) for the mobile self-localization problem. Section V
provides detailed comparison of the performance between
MDS-MAP(P) for static networks and the proposed MA-
MDS-MAP(P) algorithm for mobile networks using four
different topologies. The influence of noise and the effect
of the number of virtual nodes and the number of mobile
nodes on the accuracy of localization are also discussed in
this section. Section VI concludes this paper.
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Fig. 1. Improvement on the distance estimate with node movement. (a) a
sparse network. (b) If we can insert a node at A′ and a node at E′, then
the graph becomes more rigid.

II. MOBILE SELF-LOCALIZATION (MSL) PROBLEM

The self-localization problem for sensor networks can
be formalized as follows. Given a distance graph G =
〈X, D, A〉 where X is the set of locations of N nodes in a s-
dimensional spaces (s is 2 or 3), D is a set of distance values
between the nodes: dij ∈ R, and A is a set of anchor nodes,
i.e., a subset of X , with cardinality m � N , whose elements
have known locations, find n = N − m unknown locations,
X = [x1x2...xn], where xi ∈ Rs denotes the location of
node i, such that |xi − xj | = dij . If A is empty or too few,
only relative geolocations among nodes can be recovered.

Since the range data may be noisy, this problem can
be formalized as a least squares problem, i.e., minimizing∑

wij(|xi − xj | − dij)2 where wij are weights related to
the noise levels of dij . The problem is difficult even for
centralized solutions, since there is a large degree of freedom
(s× n variables) when n is large. Furthermore, the solution
may not be unique if the distance graph is not rigid [14].
When the connectivity is sparse, none of the existing self-
localization algorithms would work well.

The mobility of the sensor nodes allows us to increase
the density of the network through virtual nodes. Here
a virtual node represents an instant location of a mobile
node during its movement. A mobile sensor node takes
distance measurements to a set of nearby sensor nodes at
its intermediate points along its trajectory. Each such point
adds a virtual node as well as a set of distance measurements.
If the number of measurements added by a virtual node is
greater than the degree of freedom of the location coordinate,
more constraints are added to the distance graph to make
the graph more rigid and have better localization results.
In general, mobile nodes can be used to localize the whole
network or turn a nonrigid network into a rigid network.

Therefore, the mobile self-localization (MSL) problem can
be defined as a self-localization problem in which X = Xr∪
Xv where Xr is a set of real node locations and Xv is a set
of virtual node locations. Following are two scenarios that
require mobile self localization:

• a partial mobile sensor network, where a subset of the
nodes are mobile nodes.

• a full mobile sensor network, where all nodes are
mobile.

In both scenarios, we may assume that a mobile sensor
can measure the distance between two consecutive points in

its trajectory, e.g., with an extra inertial sensor on board.
Without that assumption, one has one less distance mea-
surement added for each virtual node (e.g., AA′ in Fig.
1-(b)). Although application-wise these are two different
problems, technically they can be solved by the same type
of algorithms.

In this paper, we will evaluate the second scenario, full
mobile self-localization problem. The algorithms developed
can be directly applied to partial mobile sensor networks.

III. MDS BASED ALGORITHMS FOR SELF LOCALIZATION

Various self-localization algorithms have been developed
in the last few years, including using semi-definite pro-
gramming [15] and using multi-dimensional scaling [11],
[16], [17]. The difference between [11] and [16], [17] is
that the former uses shortest path distances to approximate
Euclidean distances between missing distance pairs and then
applies classical MDS to solve the problem on the complete
distance graph, while the later uses iterative methods on the
original graph. Although all localization algorithms can be
applied to solve mobile self-localization problems, MDS-
based methods have the advantage that it is robust for noisy
and sparse networks, with or without anchor nodes.

Our new algorithm is based on the localization algorithm
MDS-MAP (P) developed by Shang and Wheeler [11]. The
steps of MDS-MAP(P) are as follows [11]:

1) Set the range for local maps, Rlm. For each node,
neighbors within Rlm hops are involved in building its local
map.

2) Compute local maps. Each node does the following:
• Compute shortest paths between all pairs of nodes in

range Rlm. The shortest paths are used to construct the
distance matrix for MDS.

• Apply the classical MDS to the distance matrix and
retain the first 2 (or 3) largest eigenvalues and eigen-
vectors to construct a 2-D (or 3-D) local map.

• Refine the local map. Using the node coordinates in the
MDS solution as the initial point, a least squares min-
imization is performed to make the distances between
nearby nodes match the measured ones.

3) Merge local maps. Local maps can be merged either
sequentially or in parallel.

4) Given sufficient anchor nodes (3 or more for 2-D
networks, 4 or more for 3-D networks), transform the global
map to an absolute map based on the absolute positions of
the anchors.

One assumption of the MDS-based methods is that the
shortest path between two nodes is approximately propor-
tional to their Euclidean distance. While this may be true if
the network is dense and uniform. In the situation where
a dense network is not possible due to limited resources
or the network topology is not uniform, this assumption is
not necessarily true. For example, in Fig. 1-(a), while the
shortest path between some nodes, such as B � F , B � E,
are approximately proportional to the Euclidean distances,
the shortest paths between A and D, and D and E are,
however, significantly larger than their Euclidean distances.
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In this situation, the assumption of the MDS methods is not
valid anymore, which may lead to inaccurate localization.
Moreover, in this graph, node A actually can be anywhere
in the circle centered at B with radius equal to |AB|. This
is due to the fact that this graph is not rigid, which means
the existing constraints in the network are not enough to
unambiguously determine the position of the nodes in it.
In this situation, the traditional MDS-based method can’t
guarantee correct results.

In some type of networks, such as mobile sensor networks,
some or all nodes can move around within a certain range.
Therefore we can utilize the mobile capability of the nodes
to get additional information about the networks, thus im-
proving the accuracy of localization. An example is shown
in Fig. 1. With the improved shortest distance between nodes,
we expect the accuracy of the MDS-based localization will
get better. Moreover, under certain deployment, mobile nodes
can be used to localize the whole network or turn a nonrigid
network into rigid network. In this paper, we propose a
mobility assisted MDS-MAP(P) (MA-MDS-MAP(P)) algo-
rithm for mobile sensor networks based on multi-dimensional
scaling. During the movement of mobile nodes, virtual nodes
are added into the network for additional constraints. The
detailed and formal description of the proposed scheme is
discussed in the following section.

IV. MA-MDS-MAP(P) FOR MSL

A. The addition of virtual nodes

Following the notation in section II, let vi denote the node
whose identification number is i. We also use v to denote
a general node in the network. We assume the identification
number ranges from 1 to n, where n is the number of nodes
in the network, and each node has a unique identification
number (ID). In the network, each node vi keeps a local ad-
jacency table 〈i, j, dij〉, where i is the identification number
of vi, j is the identification number of vi’s neighbor, and dij

is the distance between v and its neighbor.
We assume that distance between sensors within commu-

nication range can be measured reliably and all nodes in the
network are mobile. During the localization process, a node
can be in two status: Moving or Rest. Before the localization
starts, all nodes are in Rest status. During the movement, a
node may send messages to its neighbor at several positions,
including the initial position, to add virtual nodes when
certain condition is met. Each step of the proposed scheme
is discussed as follows.

• A node in the network broadcasts Start-Localization
message to start the localization process. This node
can be any node in the network which discovers the
necessity to start a localization process.

• Upon receiving the Start-Localization message, each
node, denoted by vi, in the network starts moving in
the following way.

– At the initial position or any intermediate position
during the movement, vi broadcasts a message
AddVirtualNodes(vid) to all of its neighbors, where

vid is identification number of the virtual node to
be added at this position.

– When a neighbor, denoted by vj , receives a AddVir-
tualNodes(vid), it measures the distance dij be-
tween vj and vi and sends an message ACK(j, dij)
back to vi.

– When vi receives more than three ACK messages
from its neighbors, it broadcasts a ConfirmVirtu-
alNodes(vid) to all the neighbors and for each
ACK(j, dij) received, it adds an entry 〈vid, j, dij〉
in the local adjacency table to record the distance
between the virtual node and the neighbor. Oth-
erwise, it sends an AbortVirtualNodes(vid) to its
neighbors. Upon receiving a ConfirmVirtualNodes,
the neighbor, vj , that has sent an ACK message to
vi adds a new entry 〈j, vid, dij〉 into its adjacency
tables. If receiving an AbortVirtualNodes(vid), the
neighbors simply delete all message records rele-
vant to the potential virtual node vid.

– vi continues moving and repeats the above steps
until it finishes the movement. Then vi sends a
message MoveStoped(i) to its neighbors. Upon
receiving this message, its neighbors update the
distances to vi in their adjacency tables. vi also
updates the distances to its neighbors after sending
the MoveStoped(i) message. Finally, it changes its
status to Rest.

• Proceed the localization of the network in a revised
MDS-MAP(P) method, which will be discussed below.

If each node adds virtual nodes at s positions, then the total
messages sent during the movement is O(2 + d)ns, where
d is the average number of neighbors of a mobile node. At
the final stop, each node sends one MoveStoped message to
its neighbors. The number of message in this step is O(nd).
Since only a limited number of virtual nodes can be added
during the movement of a node, the total message complexity
is O(nd).

The above protocol addresses a general case, where every
node in the network is mobile. However, it can also be
applied to those networks where only a subset of nodes
are mobile. In these type of networks, the nodes which can
not move are always in Rest status. Let m be the number
of mobile nodes in these type of networks, the message
complexity is O(md). The anchor nodes can also participated
in the movement if they know their absolute positions during
the movement.

To ensure the uniqueness of the identification numbers,
the IDs of the virtual nodes added during the movement of
a node vi can be easily set as n ∗ s + i, where s indicates
index of the positions where vi adds virtual nodes. For the
first position, s is equal to 1; for the second position, s is
equal to 2, and so on.

B. The merging of local maps

After the movement of all nodes, there are two types of
nodes in the network: one type is real nodes, the other type
is virtual nodes added during the movement of nodes. The
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virtual nodes only exist in the adjacency tables of the real
nodes. There is no communication between a virtual node
and any other nodes. However, the distances kept in the ad-
jacency tables provide additional information of the network.
Based on these information, more precise localization can
be obtained through a revised MDS-MAP(P) method. The
details are discussed as follows:

• Step 1: Each node v sends requests to the nodes in
its two-hop neighborhood for the adjacency tables and
combines the adjacency tables of its neighbors into a
local table T . After removing the duplicated entries
(entries describing the same edge), node v constructs a
local graph by identifying its two-hop neighbors, shown
in Fig. 2-(a). Let the two hop neighbors be denoted by
Sv. v then constructs the distance matrix for nodes in Sv

using only edges between nodes in Sv . The elements in
the distance matrix are the shortest path between every
two nodes in Sv. Obviously, Sv contains all the real
nodes within two hop distance of v and some virtual
nodes.

• Step 2: v builds its local relative map using the classical
MDS method for nodes in Sv

• Step 3: v refines the location of nodes, including the
virtual nodes, in its local relative map via least squares
minimization using the distance information in T and
the coordinates from the step 2 as the initial point. Let
〈i, j, dij〉 denote the entries in T and pij denote the
Euclidean distance between vi and vj based on their
coordinates. The formulation of the minimization is

min
∑

i,j∈Sv

wij(dij − pij)2 for all 〈i, j, dij〉 in T (1)

where wij is the weight for the distance between vi and
vj . To compensate for the potential noise introduced in
the movement of nodes, higher weight can be assigned
to the distances between real nodes.

• Step 4: Merge the local maps until all the real nodes
are included in a core map, which is grown by merging
it with the local maps of neighboring real nodes. The
local map with the maximum number of common nodes,
including virtual nodes, with the core map is chosen to
be merged with the core map. The merging can be done
sequentially [11] or in a distributed way [12].

• Step 5: Transform the core map into an absolute map
based on the absolute positions of anchors. Obviously,
in this step, we only have to transform the coordinates
of the real nodes.

Let k be the average number of nodes, including virtual
nodes, in a local map. The overall complexity for computing
each local map is O(k3). The total complexity for step
2 and 3 is O(k3n). Similar to the discussion in [11],
the complexity of step 4 is O(k3n). For r anchors, the
complexity of step 5 is O(r3 + n). So the total complexity
of this revised MDS-MAP(P) method is also O(n). The total
number of messages in the localization using centralized
merging, where each node sends its local map to a center
node, is O(nd) + O(nlogn) = O(nlogn), where O(nlogn)

O

A

B

O

C

D

E

D’

E’

F

(a) (b)

Fig. 2. (a) Only the real nodes and the virtual nodes, shown as non-filled
circles, within two hops from the center node O are kept in the local map
of O. The virtual nodes shown in gray spheres are not included because
they are more than two hops away from O. (b) Node D and E move to D′
and E′ respectively and get into communication range of each other. The
distance between them is kept in the adjacency table of both D and E.

is the number of messages sent in the merging process since
the local map information of each real node has to travel a
path of logn hops to the center.

V. SIMULATION RESULTS

A. Performance comparison with MDS-MAP(P) method

Simulation experiments have been carried out to evaluate
the localization improvement after introducing virtual nodes
under various network settings. As we know, the accuracy of
the MDS method is highly dependent on the density/degree
of the network. The higher the degree of each node, the
more accurate the localization is. Therefore, we will focus
on evaluating the improvement of the proposed scheme
in the localization of sparse networks, whose degrees are
under 5. We compared the performance of the MA-MDS-
MAP(P) with the MDS-MAP(P) method in network of both
uniform topology and irregular topology, see Figure 3. In this
experiment, only one virtual node is added per movement.

For the four networks in this experiment, the field size is
10 × 10 and the communication range of each node is 1.0.
In the random uniform network, 200 nodes are randomly
positioned within a 10 × 10 field. To prevent the nodes
from getting too close to each other, the minimum distance
between any two nodes is larger than 0.5. The average
degree is 4.72. In the regular uniform network, 144 nodes
are regularly positioned in a 12×12 grid. To model the error
in the grid placement, the positions of the nodes are adjusted
by a uniformly distributed noise. The mean of the noise is
0, the range is between −0.09 and 0.09. The average degree
is 4.39. The average degrees of the network in regular C
shape topology and the network in random C shape topology
are 3.96 and 4.12 respectively. The regular C shape network
has 112 nodes and the random C-shape network contains
150 nodes. The error comparison between the MDS-MP(P)
and the MA-MDS-MAP(P) is shown in Table I. As we can
see, more than 90% decrease in the localization error can be
achieved by incorporating virtual nodes.

B. Analysis of the fraction of mobile nodes

Up to now, we assume that every node in a network is
mobile. For many networks, only a subset of nodes can move.
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Fig. 3. The networks of four types of topologies

TABLE I

THE ERROR COMPARISON ON FOUR TYPES OF NETWORKS: FROM LEFT

TO RIGHT, RANDOM UNIFORM, REGULAR UNIFORM, REGULAR C SHAPE,

AND RANDOM C SHAPE.

mean
MDS-MAP(P) 0.182 0.162 0.695 0.286

MA-MDS-MAP(P) 0.010 0.001 0.008 0.070

deviation
MDS-MAP(P) 0.086 0.105 0.509 0.271

MA-MDS-MAP(P) 0.012 0.001 0.007 0.035

Even for the network where all nodes are mobile, we may not
want to let all nodes participate in the movement so as to save
the energy cost and reduce the localization error caused by
noise in tracking the movement trajectory. In this experiment,
we will evaluate for a network of certain degree, how many
mobile nodes are sufficient for accuracy localization. We
randomly created 10 networks for each type of topology
and on each randomly generated network, we change the
communication range, between 1.0 and 1.4, of the nodes to
simulate networks with various degree. Each movement node
creates three virtual nodes in a circular movement. In this
experiment, each node has a probability p of participating
in the movement. By evaluating the accuracy of localization
at various levels of p, we can see that with a network of
certain average degree, how many nodes should participate
in the movement to get the desired accuracy so as to avoid
unnecessary overhead and error due to moving more nodes
than needed. Figure 4 shows the results of this experiment.
As we can see from the figure, the higher the network degree,
the less mobile nodes are needed. For network of degree
higher than 6, the localization is good even with very small
number of mobile nodes. For network with degree less than
5, 40% of mobile nodes are sufficient.

C. Analysis of reliability to noise

Up to now, we have not considered the influence of noise
on the accuracy of the localization. In real applications. there
are two types of noise. One is the noise in measuring the
distance between real nodes. Since this noise is not caused
by the movement of nodes, we are not going to analyze it
here. The other noise is in tracking the trajectory of mobile
nodes. The noise influences the distance estimates between
virtual nodes and also the distances between virtual nodes
and the final position of mobile nodes. To evaluate how
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Fig. 5. Evaluation of the effect of the noise in sensor movement. The
horizon axis is the deviation of the noise. The vertical axis is the estimate
error.

well the proposed algorithm adapts to the noise inherent in
the tracking of the trajectories of mobile nodes, we carried
out a set of experiments with various levels of Gaussian
noise. In this experiment, we will analyze the influence of
noise on networks with 50% mobile nodes and each mobile
node moves in a circular way and adds three virtual nodes
during the movement. The mean of the noise is 0 and the
deviation of the noise is from 0 to 0.15. Fig. 5 shows the
results of the experiments. We can see that for uniform
network, under 6 percent of additive noise, both the mean and
standard deviation of the error is less than 0.05, which is 5
percent of the communication range. For C-shape networks,
we see more vibrations. However, the mean and the standard
deviation are still quite small if the deviation of the noise
is less than 0.03, which is 3 percent of the communication
range.

VI. CONCLUSION

In this paper, we propose a mobility assisted self lo-
calization method (MA-MDS-MAP(P)) based on multi-
dimensional scaling for sparse sensor networks. The MDS-
MAP(P) highly depends on the degree of the network, which
leads to poor performance in sparse network. Based on the
fact that sensors in a mobile network have limited mobile
capability, in the proposed approach, more information is
obtained by moving the sensors and adding virtual nodes
during the movement. The distances between the virtual
nodes and the real nodes are kept in adjacency tables. The

FrC5.3

4042



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fraction of nodes moving in localization

The mean of the error in location estimate

average degree=4.719
average degree=5.752
average degree=6.952
average degree=8.234

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fraction of nodes moving in localization

The mean of the error in location estimate

average degree=4.3181
average degree=5.4042
average degree=6.4111
average degree=6.9167

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of nodes moving in localization

The mean of the error in location estimate

average degree=4.49
average degree=5.4138
average degree=6.5125
average degree=7.72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fraction of nodes moving in localization

The mean of the error in location estimate

average degree=4.0161
average degree=4.9536
average degree=5.8339
average degree=6.2821

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Fraction of nodes moving in localization

The deviation of the error in location estimate

average degree=4.719
average degree=5.752
average degree=6.952
average degree=8.234

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Fraction of nodes moving in localization

The deviation of the error in location estimate

average degree=4.3181
average degree=5.4042
average degree=6.4111
average degree=6.9167

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fraction of nodes moving in localization

The deviation of the error in location estimate

average degree=4.49
average degree=5.4138
average degree=6.5125
average degree=7.72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fraction of nodes moving in localization

The deviation of the error in location estimate

average degree=4.0161
average degree=4.9536
average degree=5.8339
average degree=6.2821

random uniform regular uniform random C Shape regular C Shape

Fig. 4. The localization error with respect to the fraction of mobile nodes on networks of four topologies: random uniform, regular uniform, random C
shape and regular C shape. The first row shows the mean of the error and second row shows the standard deviation of the error.

virtual nodes are incorporated in building and merging the
local maps. Evaluation of the performance of the proposed
approach is carried out on four types of networks: random
uniform, random C-shape, regular uniform, and regular C-
shape. The results have shown significant improvement over
the MDS-MAP(P) approach on sparse networks. The MA-
MDS-MAP(P) algorithm can be used in both partial mobile
sensor networks and full mobile sensor networks, which
include robotic networks and body sensor networks.
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