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 Abstract – This paper addresses the problem of deploying 
a set of mobile sensor nodes of heterogeneous sensing ranges to 
give a large and connected coverage. A novel deployment 
algorithm based on the circle packing technique is given. It 
iteratively enhances the coverage area of the sensor network 
from an initial random deployment, while guarantees the 
absence of coverage hole and obstacle avoidance. The sensing 
area of each node is modeled as a circular disc while its radius 
is bounded by the corresponding sensing range limit. The 
problem of placing these circular discs to cover a field is 
intuitively transformed to the circle packing problem: given 
the specified combinatorics of tangency patterns of n circles, 
find the label R denoting the radii of these circles. Since a 
unique packing exists for any given set of triangulations and 
boundary conditions, we can always find the minimum sensing 
range required for every interior node to satisfy such packing 
conditions. Though an extension from tangency packing to 
overlap packing, the interstices among triples (which represent 
coverage holes) can be eliminated. We have proven that the 
maximum global scaling factor to vanish all possible interstices 
is α=3^(1/2)/2. Based on a number of numerical simulations, 
we have verified that the proposed algorithm always yields 
sensor deployments of wide coverage and minimize the sensing 
ranges required for every interior sensing node to satisfy the 
packing and boundary conditions.  
 
 Index Terms – Circle packing, deployment, mobile sensors, 
sensing coverage, wireless sensor network. 
 

I.  INTRODUCTION 

 Mobility enables a number of important functionality in 
sensor networks such as coverage maximization, adaptive 
sampling, network repair, localization and energy 
harvesting. An effective way to deploy a large set of sensor 
nodes is important yet difficult. Existing works dealing with 
sensor node deployment can be generally classified into two 
categories: physics-based and geometric (Voronoi-based) 
approaches.  

The work in [1] adopts a potential-field-based approach 
to spread sensor nodes throughout the target environment 
from a compact initial configuration. However, it does not 
consider some crucial problems like connectivity 
maintenance and topology control. The potential-field-based 

algorithm and the virtual force algorithm (VFA) presented 
in [2] work in a similar fashion, in that they increase sensor 
coverage by considering the virtual attractive and repulsive 
forces exerted on each sensor node by neighbor nodes 
and/or obstacles (if any). However, these works only 
consider homogeneous sensing models (i.e. sensors need to 
have an identical sensing capability), while in this paper, we 
address the problem of deploying heterogeneous sensor 
networks. Besides, VFA assumes all sensor nodes are able 
to communicate with their cluster head which is responsible 
for calculating sensor movement and the target location.  
 In [3], three protocols are proposed to enlarge sensor 
coverage in a target area. The first protocol, namely VEC, is 
similar to the VFA presented in [2]. The remaining two are 
based on the Voronoi diagram. In [4], we have presented an 
ISOGRID algorithm for autonomous deployment of mobile 
sensor networks. The principle is to redeploy the sensor 
nodes such that the communication graph approximates the 
layout of an isometric grid. Upon an initial random 
placement of sensor nodes, the algorithm iteratively 
computes node movements to enhance sensing coverage 
and avoid obstacles while ensuring sensor connectivity. 
 In this paper, the sensing regions are modeled as 
circular discs of variable sensing ranges. The problem of 
placing these circular discs on a field is intuitively 
transformed to the circle packing problem. A circle packing 
is a configuration of circles with specified patterns of 
tangency [5]. The central issues of the topic concern 
connections between the combinatorics of packings and 
their geometries, the variety among packings sharing 
combinatorics, computational methods, and connections 
with analytic function theory and conformal geometry. The 
study of circle packings was started by William Thurston in 
his famous notes [6]. Maps between circle packings which 
preserve tangency and orientation act in many ways as 
discrete analogues of analytic functions. Moreover, work 
flowing from a 1985 conjecture of Thurston, proven by [7], 
shows that classical analytic functions and more general 
classical conformal objects can be approximated using 
circle packings.  
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 In this paper, we adopt a circle packing algorithm to 
solve the sensor network coverage problem. For simplicity, 
we assume all nodes initially form a connected 
communication graph. We further assume that the 
communication graph can be transformed to some 
triangulations representing the geometric relation among the 
sensor nodes. Our problem is: given a set of sensors and 
their maximum sensing ranges, find a deployment and the 
required sensing range of each associated sensor to give a 
large and connected coverage region. The central existence 
result derives from circle packings with certain extremal 
properties and these packings are called maximal packings. 
Given a set of combinatorics and boundary conditions, the 
maximal packing is univalent and essentially unique. 
Therefore, we can always find the minimum sensing range 
required for every interior node satisfying the boundary and 
packing conditions. Though an extension from tangency 
packing to overlap packing, the interstices of triples (which 
represent coverage holes) can be eliminated. As the circle 
packing algorithm utilizes only the local information about 
a sensor node and its neighbors, this module can be 
executed in a decentralized framework, and thus it is 
computationally efficient and scalable. Based on a number 
of simulation experiments, we have verified that the 
proposed algorithm always yields sensor deployments of 
wide coverage and desired topologies while setting all 
interior sensor nodes to their minimum required ranges. 
 The remaining of this paper is organized as follows. 
Section II presents the preliminaries and techniques in circle 
packing. In section III, we will study the extension of 
tangency packing to overlap packing and apply it to our 
sensor node deployment problem, such that no coverage 
hole exists in the resultant deployment. In Section IV, based 
on a number of simulation results under various situations, 
we evaluate the performance of our deployment algorithm. 
Concluding remarks are given in Section V. 

 
II. CIRCLE PACKING 

 In this section, we give an overview of the circle 
packing problem. A circle packing is a configuration of 
circles with specified patterns of tangency [5]. We will first 
give a set of notations and preliminaries of the circle 
packing problem, and the corresponding physical meanings 
in our sensor deployment application. 
 
A. Preliminaries and Notations 
 We will adopt some notations in [5] to make the 
statements coherent. A hierarchy of circle packing structure 
consists of several levels of components, namely circles, 
triples, flowers and packings. The coordinates of circle 
centers refer to sensor node positions and radii refer to the 
corresponding sensing ranges. Here, all tangencies are 
referred as the external ones, each circle lying outside the 
disc bounded by the other. The number of petals defines the 
degree k of the central circle. The condition that every circle 
has such a flower is a local planarity condition that we will 
enforce on all our packings.  

Triangulation complex K: The tangency patterns for circle 
packings are encoded as abstract complexes K, which 
represent the triangulations of oriented topological surfaces. 
K is a combinatorial object, with no metric and no 
geometry. A sensor network topology is generally not a 
triangulated planar mesh. However, we adopt Delaunay 
triangulation to define a triangulation of communication 
graph. It is a simple and well-known triangulation method. 
The Delaunay triangulation of a discrete point set {v} is the 
geometric dual of the Voronoi tessellation for {v}. It is the 
triangulation of the convex hull of {v} in which every 
circumcircle of a triangle is an empty circle. It always gives 
unique triangulations and maximizes the minimum angles. 
Compared to any other triangulation of the points, the 
smallest angle in the Delaunay triangulation is at least as 
large as the smallest angle in any other. As it is desirable to 
avoid narrow triangles, we consider it as the best choice 
among all conventional triangulation approaches. In Section 
III, we will discuss an Obtuse-Angle Pruning to revise the 
complex K by trimming some boundary triangles of the 
Delaunay triangulation to improve the deployment result. 
 Circle packing P: A collection }{ vcP =  of circles is 
said to be a circle packing for a complex K if i) P has a 
circle cv associated with each vertex v of K, ii) two circles 

vu cc ,  are externally tangent whenever >< vu,  is an edge 
of K, and iii) three circles wvu ccc ,,  form a positively 
oriented triple whenever >< wvu ,,  forms a positively 
oriented face of K. 
 Radius label R: R is a collection {R(v)} of positive 
numbers associated with vertices v of K, where R(v) 
represents the radius of circle cv. It refers to the assigned 
values of sensing ranges over the set of sensor nodes. We 
refer to K(R) as a labeled complex.  
 Angle sums )(vRθ : For each triple of radii ri, rj and rk, 
the Law of Cosines gives the angle α in a corresponding 
triple of circles, as in Fig. 1. 
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Fig. 1 The Law of Cosines of a triple. 

 
 If we add these individual angles over the k triples 
involved, we get the angle sum )(vRθ  for this label at v. 
Suppose },,,;{ k21v vvvvF L=  is the flower for v in K. 
Vertex v belongs to m faces, where m=k if v is interior and 
m=k-1 if v is boundary. In a flower having central label r 
and petal labels { }k21 rrr ,,, L , the angle sum is given by the 
following summation formula, where m=k and rk+1=r1 if the 
flower is closed, and m=k-1 otherwise: 

rj

r 
rj+1 α
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 Packing condition: The flower of an interior vertex v 
can be realized as an actual geometric flower of circles with 
labels from R if and only if pR n2v πθ =)( for some integer 

1n p ≥ . The integer n is the number of times the petals wrap 
around the center circle, so it must be 1 for local univalence, 
i.e. the faces formed by the flower of any interior circle are 
nonoverlapping. As for sensor coverage application, we are 
only interested to the univalence case. The branched cases 
( 1n p > ) will not be covered in this paper, yet it has a 
potential application on k-coverage problem. A label R is 
termed a packing label for K if the angle sum )(vRθ  equals 
to 2π for every interior vertex v. 
 If K triangulates a simply connected surface, then a 
label R for K represents the radii for a circle packing P of K 
if and only if R is a packing label. [5] has done 
comprehensive studies of the circle packing problem. The 
existence and uniqueness of a maximal circle packing rely 
on a theorem given in [5]. Moreover, the packings we 
intend to compute are guaranteed by the fundamental 
existence and uniqueness result: given a set of fixed radii of 
all boundary vertices of K, there exists a unique circle 
packing (and the corresponding label R) such that the angle 
sum θ equals to 2π for every interior vertex of K. Then, we 
can define the circle packing problem as follows: 
 PROBLEM DEFINITION Circle packing problem: Given a 
complex K and the radii of all boundary vertices, compute 
the radii of interior vertices of the corresponding circle 
packing for K.  
 
B. Circle Packing Technique 

The central issue of our circle packing problem is to 
adjust the radii of interior circles until all their angle sums 
approach 2π, which is the packing condition. One important 
observation inspires how we should adjust the radii of the 
central circles to achieve the packing condition: the angle 
sum ),,,;( k21 rrrr Lθ  is strictly decreasing in r. As 
illustrated in Fig. 2, the radii of the five petals are fixed. 
When r3 increases from (a) to (c), the angle sum θ 
decreases. This monotonicity suggests that a strategy to 
adjust R(v) to decrease the difference )(v2 θπ −  for circle 
cv: decrease R(v) if πθ 2v <)( ; increase R(v) if πθ 2v >)( . 
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(a) θ  > 2π (b) θ  = 2π (c) θ  < 2π 

Fig. 2 Monotonicity of angle sum and radius of central circle. 
 

The strategy can be implemented in an iterative fashion. 
Given an interior vertex v, we would ideally replace its 

current label r with that unique label r  which gives angle 
sum 2π at v. However, we cannot yield a guaranteed 
stability without a proper choice of step size for the 
adjustment of R(v). [5] gave another geometric 
monotonicity which suggests a very efficient estimation of 
unique label r . 

III. ACTIVE SENSOR NETWORK DEPLOYMENT USING CIRCLE 
PACKINGS 

A. Obtuse-Angle Pruning 
The uniqueness of a certain circle packing result 

depends on the associated triangulation of the network. 
However, in circle packing, boundary condition plays an 
important role in controlling to resultant coverage size and 
shape. The Delaunay triangulation always yields a convex 
mesh with the vertices of convex hull as boundary and this 
highly constrains the circle coverage size. Therefore, we 
propose an Obtuse-Angle Pruning method to reform the 
triangulation and increase the number of boundary vertices. 
The idea is simple but efficient: prune boundary edges if the 
associate triangle is obtuse at the opposite angle (angle 
opposite to the candidate boundary edge). Whenever an 
eligible edge is trimmed, the third vertex of the associated 
triangle turns to a boundary one, and so the number of 
boundary vertices is increased by one. However, there are a 
few points to notice. First, the pruning process should be 
done one by one on the boundary vertices. Different choices 
of the starting vertex would sometimes lead to different 
resultant boundaries. However, it does not affect the 
performance of the algorithm because our aim is merely to 
enlarge the boundary set. Second, to make sure the resultant 
complex K is a simply connected triangulated mesh, we 
should not prune an edge with a vertex of degree<2. 
Moreover, we should not prune a candidate boundary edge 
if its third vertex in the associated triangle is already a 
boundary vertex. This can ensure the boundary edges 
always form a single enclosing loop with no crossover. The 
Obtuse-Angle Pruning is described as follows: 
Start from any boundary vertex vcurrent. 
Step 1. vnext denotes the next boundary vertex in 

anticlockwise sense and vmiddle denotes the third 
vertex in the associated triangle of boundary edge 
<vcurrent, vnext>. If i) deg(vcurrent)>2, ii) deg(vnext)>2, 
iii) triangle <vcurrent, vmiddle, vnext> is obtuse at vmiddle 
(i.e. o90vvv nextmiddlecurrent ≥∠ ) and iv) vmiddle is not a 
boundary vertex, then prune boundary edge 
<vcurrent, vnext> (i.e. delete triangle <vcurrent, vmiddle, 
vnext>). Set vmiddle as the next boundary vertex vnext 
and repeat this step again. Otherwise, go to Step 2 

Step 2. Set vnext as the current boundary vertex vcurrent. If 
vcurrent equals the starting vertex, then end. 
Otherwise, go to Step 1. 

Fig. 3 shows an example of the pruning process. 
Originally, the boundary vertices are the six vertices of the 
convex hull of the point set. We start to prune obtuse 
triangles from vertex no. 3, v3, in anticlockwise alone the 
boundary. Finally,  the number of boundary vertices 
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increases to 33. Notice that although 21942 vvv∠  is obtuse, 
edge <v42, v21> is not pruned since v9 is already a boundary 
vertex. The blue marks are the boundary vertices and the 
yellow ones are the interiors. 
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Fig. 3 An example triangulation after Obtuse-Angle Pruning. 

 
B. Overlap packings 

The central idea of circle packing problem is to adjust 
the radii of all interior circles to achieve the packing 
condition. Circle centers turn out to be secondary data. The 
geometric realization of a labelled complex K(R) can be 
done by fixing the coordinates of one circle and one of its 
neighbour, then the rest are consequently defined by the 
tangency relationships (Fig. 7(a)). 

The circle packing problem deals with tangency of 
triples and so interstices always exist. However, in the 
sensing coverage problem, interstices are referred to as 
coverage holes which are undesirable. Thus, we now 
discuss the overlap packing problem to eliminate the 
interstices. The notion of overlap angle (Fig. 4) 

),( jiij ccφφ =  suggests an index to measure the extent of 
overlap between two circles of euclidean centers zi, zj and 
radii ri, rj, and its formula is 

ji

2
ji

2
j

2
i1

ij rr2

zzrr −−+
= −

)(
cosφ .   (3) 

 
Fig. 4 Overlap angle φ. 

 
 In the tangency case, the sides of the triangle of any 
triple is equal to the sum of two radii, i.e. jiji rrzz +=−  

for all ji vv ~ , and therefore the overlap angle always 
equals π. In the overlap packing case, we reduce the relative 
distances among the centers (which in turns scale down the 
sizes of triangles) by a scaling factor so that the interstices 
disappear. Let ),( 10∈α  be a scaling factor for a triple <c1, 
c2, c3> with packing label r1, r2, r3 to form its geometric 
realization, i.e. 

)( jiji rrzz +=− α , 321ji ,,, = and ji ≠ .   (4) 

 Denote the three overlap angles of triple >< 321 ccc ,,  
as ),( 2112 ccφφ = , ),( 3223 ccφφ =  and ),( 3113 ccφφ = . As 
shown in Fig. 6, the interstice vanishes if and only if the 
summation ∑φ  of these three overlap angles is smaller 

than or equal to 2π, i.e. 
πφφφφ 2132312 ≤++=∑ .    (5) 

 The optimal scaling factor for a triple to precisely 
vanish its interstice ( πφ 2∑ =  Fig. 5(b)) depends on the 
ratios among the three radii. Moreover, it is impractical to 
impose different scaling factors for different triples, because 
that would cause incoherence in overall circle placement. 
Therefore, we should apply a proper scaling factor 

),( 10∈α  globally over the entire mesh and make sure the 
selected α is small enough to eliminate all interstices. Fig. 
6(a)-(c) shows an example triple with various scaling 
factors and Fig. 6(d) shows its plot of the summation of 
overlap angles against scaling factor α. 

 
(a) (b) (c) 

Fig. 5 Inversive distance triples: (a) Interstice exists ∑φ>2π 
(b) Interstice just vanishes ∑φ=2π (c) Interstice does not exist∑φ<2π 
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Fig. 6 (a)-(c) A comparison of different scaling factor on the same packing 

triple. (d) Plot of summation of overlap angles against scaling factor α. 
 

Theorem 3.1 The smallest scaling factor required to vanish 

the interstice of any triple is 
2
3 . 

Proof  

|| ji zz −  

ri rj 
φ 
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From (3)-(5), the interstice of triple >< 321 ccc ,,  vanishes 
if and only if 
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First, we study how φ12 is influenced by the ratio of r1 to r2. 
Let rr1 = , rrr 12 ττ ==  for 0>τ  and 

1
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1rr 22

r −
⋅

−+
=

τ
ατ

τσα
)()(

)(, (i.e. σφ 1
12

−= cos ,

],[ 11−∈σ ) where σα,r(τ) is the inverse distance function for 
certain fixed ),( 10∈α  and r. Then, we have 

   
τ
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τσα 2

11 222 )()( +−+
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and   2

22

2
11

d
d
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αττσ

τ α
))(()( −−
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Therefore, σ is independent of r. σ is strictly decreasing in 
),( 10∈τ  ( 21 rr > ) and is strictly increasing in ),( +∞∈ 1τ  

( 21 rr < ). It reaches its minimum 221 ασ −=*  when τ*=1 

( 21 rr = ). Moreover, for real value σφ 1
12

−= cos , we have 

1
1
1

≤≤
+
− α

τ
τ || . Since 01 ≥− σcos  strictly decreases in 

],[ 11−∈σ , without loss of generality, τ*=1 yields the 
largest φ12, φ22, φ13 and thus summation of overlap angles 

∑φ  for a certain fixed ],||[ 1
1
1

+
−

∈
τ
τα  among all the 

choices of τ. When the three circles have an identical radius 
rrrr 321 === , 
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Thus,  
2
3

=α  is the minimum scaling factor required to 

vanish the interstice of any triple.          ■ 

 Hence, taking 
2
3

=α  globally over the entire mesh 

can yield a set of sensor node positions for complex K(R) 
while eliminating all interstices. Fig. 7 shows an example of 
geometric realizations obtained from conventional tangency 
packing and its overlap packing. Note that overlap angle φij 

is undefined for 
1
1

+
−

<
τ
τα || . It refers to the case when the 

smaller circle ci (assume ji rr < ) lies strictly inside the 
bigger one cj. Therefore, if the ratio of sensing radii of two 

adjacent nodes 9313
32
32 .=

−

+
>τ , the sensor node with 

the smaller radius is idle as its coverage disc lies strictly 
inside the bigger one and it should be redeployed. 
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Fig. 7 (a) Tangency circle packing and (b) overlap packing with 
2
3

=α  

C. Circle packing deployment algorithm 
 In this subsection, we will summarize the circle 
packing and overlap packing strategies and describe the 
detail implementation of these approaches on the sensor 
network deployment problem. We first give the underlying 
assumptions: 
 1) At the beginning, the sensor nodes are randomly 
located (on a target region if applicable) while the 
communication graph remains connected. 
 2) Each sensor node is capable of broadcasting its 
position and obtaining the relative distances and 
orientations and sensing range of its neighbors. 
 3) Each sensor node has a upper limit of sensing range 
and is capable of adjusting its sensing range power. 
 Our central idea is to employ the circle packing result to 
calculate the required sensing ranges of each associated 
sensor node. A triangulated mesh describing the 
communication graph is generated upon a given initial 
deployment using Delaunay triangulation. Then, we use the 
Obtuse-Angle Pruning to increase the boundary size of the 
combinatorics complex K. The radii of the boundary circles 
will first be assigned as half of the maximum sensing ranges 
of the corresponding sensor nodes and gradually increase 
them to the maximum level. The radii of the interior sensing 
circles will be recursively calculated using the circle 
packing algorithm such that the packing condition is 
achieved while the communication graph is preserved as K. 
Note that if any calculated sensing circle radius exceeds the 
maximum range of the sensor, it means the required radius 
for that particular sensor cannot be achieved by its sensor 
node and the radius should be bounded to its maximum 
range. Next, the new position of each sensor node will be 
defined by the geometric realization of labeled complex 

K(R) with overlap scaling factor 
2
3

=α . A new complex 

K will be defined by the newly obtained deployment and the 
whole process should be executed iterative until equilibrium 
state is reached. The Circle Packing Deployment Algorithm 
is summarized as follows: 
Step 1: Set maximum number of iterations and threshold to 

determine if deployment has reached equilibrium. 
Step 2. Define the triangulation complex K base on current 

sensor node positions. 
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Step 3. Increase the number of boundary vertices using the 
Obtuse-Angle Pruning method. 

Step 4. Set the sensing radii of boundary vertices to a 
certain level in the first iteration. Then gradually 
increase them to their upper limits in successive 
iterations. 

Step 5. Execute Circle Packing algorithm on each interior 
node in a distributed sense to find its sensing range 
radius. Bound all sensing ranges to their upper 
limits. 

Step 6. Deploy all sensor nodes based on the circle packing 

result and take 
2
3

=α  to ensure no coverage hole 

exists in the connected coverage region. 
Step 7. Go to Step 2 if movement of sensor nodes is greater 

than the threshold (i.e. equilibrium not reached) 
and maximum number of iterations is not reached. 
Otherwise, end. 

 

IV. SIMULATION EXAMPLES 

 We have implemented the proposed algorithm in 
Matlab to verify the approach and demonstrate its 
performance. Extensive simulations performed show that 
the circle packing approach can always give deployments of 
large sensing coverage. Two examples are given below. 
 
A. Example 1 
 Our circle packing deployment algorithm is capable for 
constraining the sensing ranges. Fig. 8 shows the circle 
packing deployment results of 500 sensor nodes with 
different sensing range limits. If we do not limit the sizes of 
the interior circles, the algorithm may yield a circle packing 
result that some circles are bigger than their maximum 
sensing ranges, as indicated by the red circles with ‘+’ mark 
at center in Fig. 8(a). When we limit the sensing range, 
another packing result will be obtained as shown in Fig. 
8(b), where the six pink circles represent the nodes that 
have reached their maximum sensing limits.  
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Fig. 8 Circle packing: (a) without and (b) with sensing range limits 
 

B. Example 2 
 In this example, we illustrate the capability of the 
proposed algorithm to deploy a sensor network in the 
presence of obstacle. In Fig. 9, a stationary circular obstacle 
of radius rob = 20 is located in coordinates (-50,20). In Fig. 
9(a), 200 sensor nodes are randomly located in the field. 

The obstacle is considered as a virtual interior node with 7 
neighbors and of radius no less than rob. The new positions 
of all sensor nodes are defined by fixing the virtual obstacle 
circle. Fig. 9(b) shows the final deployment obtained by 
overlap circle packing.  

−100 0 100
−100

−50

0

50

100

 
−200 0 200 400 600

−400

−200

0

200

400

 
        (a)         (b) 

Fig. 9 Obstacle avoidance: (a) initial and (b) final deployment. 
 

V.  CONCLUDING REMARKS 

 This paper addresses the problem of autonomous 
deployment of active sensor networks. Upon an initial 
random placement, a triangulated mesh describing the 
neighboring relationship among the nodes is generated and 
refined by Obtuse-Angle Pruning to increase the number of 
boundary nodes. We have employed the circle packing 
technique to find the radius of each interior sensing circle. 
Then, the geometric realization of the circle packing result 
is done by fixing one node and one of its neighbor via 
overlap packing. We have proven that a global scaling 

factor of 
2
3

=α  can always vanish interstices of any triple 

which represent coverage holes. We have implemented the 
algorithm in Matlab and demonstrate its performance with 
numerical examples. We have verified that the proposed 
algorithm always yields sensor deployments of wide 
coverage, avoids obstacle and minimizes the sensing range 
required for every interior sensing node for achieving the 
packing condition. 
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