
Visual Servoing by Optimization of a 2D/3D Hybrid Objective Function

A. H. Abdul Hafez 1,2 and C.V. Jawahar 1

Abstract— In this paper, we present a new hybrid visual
servoing algorithm for robot arm positioning task. Hybrid
methods in visual servoing partially combine the 2D and
3D visual information to improve the performance of the
traditional image-based and position-based visual servoing. Our
algorithm is superior to the state of the art hybrid methods.
The objective function has been designed to include the full
2D and 3D information available either from the CAD model
or from the partial reconstruction process by decomposing the
homography matrix between two views. Here, each of 2D and
3D error functions is used to control the six degrees of freedom.
We call this method 5D visual servoing. The positioning task has
been formulated as a minimization problem. Gradient decent
as a first order approximation and Gauss-Newton as a second
order approximation are considered in this paper. Simulation
results show that these two methods provide an efficient solution
to the camera retreat and features visibility problems. The
camera trajectory in the Cartesian space is also shown to be
satisfactory.

I. INTRODUCTION

Visual servoing has become an attractive area of research,
and has recently received considerable amount of atten-
tion [1], [2], [3], [4], [5]. Visual servoing schemes use one
or more cameras along with computer vision algorithms to
control the position of a robot arm or mobile robot with
respect to an object or a set of features of the object to be
manipulated. It is used in a wide range of applications such
as robot navigation, lane tracking by vehicles, and industrial
manipulation.

The essence of visual servoing is to move the concerned
object from the current pose to a desired pose given by
current and desired images. This is essentially obtained by
minimization of a cost function. Visual features are extracted
from the two images and used to formulate a function of
the error between the current pose and the desired one. The
role of the minimization process is to regulate this error
function to zero. Image features can be used directly in the
definition of the error function. This leads to a formulation of
the 2D error function that is minimized in the image space.
These image features may also be used to formulate an error
function in the pose space.

In image-based visual servoing, the input is computed in
the 2-D image space, and called image-based visual servoing.
This method is robust to robot and camera calibration errors.

1 Center for Visual Information technology, International Insti-
tute of information Technology, Gachibowli, Hyderabad-500032, India
jawahar@iiit.ac.in

2 Dept. of Computer Science and Engineering, University col-
lege of Engineering, Osmania University, Hyderabad-500007, India
hafezsyr@ieee.org

However, image-based visual servoing is known to be locally
stable with a stability region that is difficult to determine.
This is in addition to the need of the depth estimates of the
image features. It was shown in [6] that the stability domain
with respect to depth estimates is not very wide. On the
other hand, in position-based visual servoing, the input is
computed in the 3D Cartesian space. This method is also
called 3D visual servoing. Assuming that the model of the
target is perfectly known, the pose of the target with respect
to the camera is estimated from the image features. The pose
is recovered at each iteration and the velocity command is
computed proportional to the pose error between the current
and the desired states.

The main drawback of 3D visual servoing is the lack of
control in the image space. This implies that the object may
get out of the camera field of view. In contrast, 2D visual
servoing does not have any control in the Cartesian space
and the camera trajectory is not predictable. A satisfactory
control scheme that avoids these drawbacks [2], [7] is to
use both kinds of information i.e., 2D and 3D. The 2D
information is obtained from the image space while the 3D
information is obtained from the pose estimation process of
the object or from partial pose estimate computed from the
current and desired images. A 6-D error vector consisting
of 3D information about the rotation and 2D information
about the translation had been employed. For this reason,
this control scheme is called 2 1/2D visual servoing [2].

We proposed in [8] a hybrid (2D-3D) cost function that
contains information from the 2D image space and the 3D
pose space. In this paper, we apply this objective function
minimization to the visual servoing process. The closest work
to ours is the error function that was proposed in the visual
servoing literature [2], [7].

In [2], the error function was defined as a 6-vector. The
3-vector that contains the 2D visual information from the
image space is used to recover the position of the camera,
where the 3-vector that contains the 3D visual information
from the pose space is used to recover the orientation of the
camera. In contrast, our method uses each of the image space
information and pose space information to recover the full
camera pose i.e., both position and orientation. Both 2D and
3D errors are concatenated into a 12-vector and minimized
together. In such a minimization method, the minimization
process searches for a least squares solution that minimizes
the 2D error from the image space and the 3D error from
the pose space simultaneously.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA2.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1691

II. VISUAL SERVO CONTROL AS A
MINIMIZATION PROBLEM

It was shown in [8] that camera pose alignment problem
can be presented a minimization problem of a suitable 2D
or 3D cost function. We follow here the same context to
represent the visual servoing problem.

The positioning task is to move the robot end-effector from
an initial pose P ∈ R3 ×SO(3) to reach a desired pose P ∗.
In other words, the problem is to minimize an error vector
e(s) of visual features s(P) by finding a vector ∆P that
minimizes a cost function E(s(P)). Viewing the problem as
a nonlinear least squares minimization allows us to formulate
the following cost function

E(s(P)) =
1
2
(s(P) − s(P ∗))T (s(P) − s(P ∗)). (1)

In the remaining of this section, two minimization methods
will be reviewed. The first one is based on the first order Tay-
lor series approximation of the cost function. This method is
called the gradient decent minimization. The second method
is based on the second order Taylor series approximation of
the cost function. This is called the Newton minimization.

A. Gradient Decent Minimization

Here, an approximation, using the first order derivative, of
the above cost function is evaluated at the desired pose P ∗.
The cost function given in (1) can be written as

E(s(P ∗)) ≈ E(s(P)) +
∂E(s(P))

∂P
∆P. (2)

The gradient of the cost function ∂E(s(P))
∂P is given as

∂E(s(P))
∂P

= (s(P) − s(P ∗))T ∂s(P)
∂P

= e(s)T J(P), (3)

where e(s) = s(P) − s(P ∗). The criteria in gradient decent
minimization is to move in the direction opposite to the
gradient. Indeed, the required change in the pose is

V = ∆P = −λJT (P)e(s), (4)

where λ is a positive constant parameter that defines the step
size of the minimization process.

This method is known in the robot literature as the Jaco-
bian transpose control method (JTC), and was used in [9],
[10] and recently restated in [11]. However, gradient decent
methods are known to have a slow and linear convergence
rate. The notion of JTC will be used in the remaining of this
paper to call all gradient methods.

B. Newton Minimization

Here, an approximation using the second order derivative
of the cost function is evaluated at the desired pose P ∗. The
cost function given in (1) can be written as

E(s(P ∗)) ≈ E(s(P))+
∂E(s(P))

∂P
∆P +

1

2
∆P T ∂2E(s(P))

∂P 2
∆P.

(5)

The first order term ∂E(s(P))
∂P

is as given in (3), while the
second order term ∂2E(s(P))

∂P2 is given by

∂2E(s(P))
∂P 2

= JT (P)J(P) +
n∑

k=0

Hk(P)ek(s). (6)

The matrix Hk is the Hessian matrix of the function ek(s).
In Gauss-Newton minimization, the second order derivative
is approximated by

∂2E(s(P))
∂P 2

= JT (P)J(P). (7)

Indeed, the required change in the pose is

V = ∆P = −λJ+(P)e(s), (8)

where the matrix

J+(P) =
(
(JT (P)J(P)

)−1

JT (P)

is the pseudo-inverse of the matrix J . This method is known
as the Jacobian Pseudo-inverse control method (JPC), and is
widely used in the robot control and visual servoing [12],
[11]. In the remaining of this paper, this notion will be used
to call all Jacobian Pseudo-inverse methods.

C. Second order Approximation of the Jacobian Matrix

The minimization methods which are presented in sections
II-A and II-B are known to have a low convergence rate due
to its approximation upto the first order derivative. Malis
proposed in [11] an efficient second order minimization
method based on the second order approximation of the
Jacobian matrix itself. Without going into further details,
the second order approximation of the error function can
be written as a function of the mean of both, the Jacobian
at the desired pose J(P ∗) and the current Jacobian J(P).

e(s) = −1
2
(J(P) + J(P ∗))∆P, (9)

where the approximated Jacobian matrix is given by:

Ĵ(P) =
1
2
(J(P) + J(P ∗)). (10)

The required change in the pose given in (4) becomes after
introducing the second order approximation

∆P = −2λ
(
J(P) + J(P ∗)

)T

e(s). (11)

This will be called in the remaining of this paper as Trans-
pose of the Mean of the Jacobian Control method (TMJC).

The required change in the pose given in (8) can be written
after introducing the second order approximation as

∆P = −2λ
(
J(P) + J(P ∗)

)+

e(s). (12)

This will be called in the remaining of this paper as Pseudo-
inverse of the Mean of the Jacobian Control method (PMJC).

This second order approximation of the Jacobian matrix
was used for the first time in [13]. Recently, a theoretical
justification has been presented in [11].

ThA2.1

1692

III. 2D VS. 3D OBJECTIVE FUNCTION

Based on the type of the visual features s(P ∗) used in the
minimization process, the cost function defined in (1) varies
from E2D(P) for 2D visual features from image space to
E3D(P) for 3D visual features from the Cartesian space.

If we consider the 2D coordinates of a set of
image points as features, the vector s(P) becomes
s2D(P) = [x1, y1, . . . , xN , yN]T while the desired vec-
tor s(P ∗) is s2D(P ∗) = [x∗

1, y
∗
1 , . . . , x∗

N , y∗
N]T . Indeed,

Equation (1) is rewritten as

E2D(s(P)) =
1
2
ei(P)T ei(P), (13)

where
ei(P) = s2D(P) − s2D(P ∗). (14)

In contrast, 3D visual features such as the position and
orientation can be part of the feature vector s3D(P) =
[Tx, Ty, Tz, uθ]T . The desired features are s3D(P ∗) =
[T ∗, uθ∗]T . Similarly to (13) and (14), we can write

E3D(s(P)) =
1
2
ep(P)T ep(P), (15)

where
ep(P) = s3D(P) − s3D(P ∗). (16)

It can be proved that minimizing either E3D(s(P)) or
E2D(s(P)) are equivalent. In other words, E3D(s(P ∗)) =
E2D(s(P ∗)) = 0.

Lemma 1: The cost function E3D(s(P)) = 0 if and only
if the cost function E2D(s(P)) = 0.
For the detailed proof reader may referred to [8].

Unfortunately, minimizing the cost function E3D(s(P))
has a contradicted behavior with minimizing E2D(s(P)).
Hybrid methods aim at reducing the undesirability while
keeping maximizing the advantages of each of the two
function minimization.

A. Model-based Jacobians Computation

In case of the CAD model of the object is available,
The set of 3D features can be selected as s3D(P) =
[C∗

TC , C∗
(uθ)C]T while s3D(P ∗) = 0(6×1).

The matrix Jp(P) = ∂(ep(P))
∂P is the Cartesian Jacobian

matrix that is given by

Jp(P) =
[

RC∗
C 0(3×3)

0(3×3) Lw

]
, (17)

where Lw =
∂(uθ)
∂P

.

The matrix Ji(P) = ∂(ei(P))
∂P is the image Jacobian matrix

which is given as follows

Ji(P) =
[

JT
i1 . . . JT

i2 . . . JT
i3

]T
,

where Jik is computed as a function of the kth image point
coordinates xk, yk and its depth Zk as following

Jik =
[

1
Zk

S(x, y) Q(x, y)
]

=

[− 1
Zk

0 xk

Zk
xkyk −(1 + x2

k) yk

0 − 1
Zk

yk

Zk
1 + y2

k −xkyk −xk

]
. (18)

The above definition of the Jacobian matrix uses the
full 3D information of the object. The depth of points and
the relative object-camera pose are required. The control
algorithm using the error function and features presented
above is called later on in this paper as the model-based
JPC. Figure 1(b) illustrates the s3D(P) used in this case.

B. Model-free Jacobians Computation

In case of these 3D information are not available,
the vector of 3D features can be set as s3D(P) =
[C0

TC , C0
(uθ)C]T i.e. the relative pose between the

current camera frame FC and the initial one FC0 . The
desired features can be set in this case as s3D(P ∗) =
[C0

TC∗ , C0
(uθ)C∗]T i.e. the relative pose between the

desired current camera frame FC∗ and the initial one FC0 .
The set of desired features s3D(P ∗) can be computed in an
off-line step by decomposing the homography or the essential
matrix [2], [14].

We use tracking algorithm to estimate the camera motion
between the initial and current images. This algorithm,
uses epipolar constraints from multiple view geometry as
a likelihood function to estimate the posteriori distribution
of the relative camera pose between the current and initial
camera states. Details of this algorithm is beyond the scope
of this paper. This relative pose is nothing but the feature
vector s3D(P). The apriori camera motion distribution is
computed using either the velocity control signal commanded
by the visual controller to the robot joint controller or
the odometery measurements. In other words, the tracking
algorithm iterates between predicting the relative camera
motion using the velocity control signal and correcting using
epipolar geometry constraints.

The image Jacobian Ji(P) can still be computed as given
in (18) since the depth, given the relative pose between two
cameras, can be estimated as explain in [15]. The Cartesian
Jacobian Jp(P) is given in this case by

Jp(P) =

[
C0

RC 0(3×3)

0(3×3)
C0

(Lw)C

]
, (19)

while the error function is

ep(P) = s3D(P) − s3D(P ∗) =

[
C0

TC −C0
TC∗

C0
(uθ)C − C0

(uθ)C∗

]
.

(20)
The control algorithm using the error function and features
presented above is called later on in this paper as the model-
free JPC. Figure 1(a) illustrates the s3D(P) used in this case.

IV. MINIMIZING A HYBRID ERROR FUNCTION

Let us define a hybrid cost function as the weighted sum
of the two E3D(s(P)) and E2D(s(P)) function as follows

Eh(s(P)) = λ1 E2D(s(P)) + λ2 E3D(s(P)). (21)

Here, λ1 and λ2 are positive scalar factors. It can be easily
shown, using Lemma 1, that the hybrid function given in (21)

ThA2.1

1693

Fig. 1. The current and desired 3D feature vectors. The model-free
method, s3D(P) = [C0

TC , C0
(uθ)C]T in (a). The model-based method,

s3D(P) = [C∗
TC , C∗

(uθ)C]T in (b).

is nullified only when P = P ∗. The two constant λ1 and λ2

play the role of the step size of the minimization process in
addition to the integration ratio between 2D and 3D spaces.
While minimizing this cost function, the process searches
for a solutions that reduce the value of the two individual
functions E3D(s(P)) and E2D(s(P)). In the following two
subsections we will show how the minimization methods
presented in Section II can be used to minimize this hybrid
cost function.

A. Gradient Decent Method

Consider a positioning task to be achieved using the gra-
dient decent minimization method. The hybrid cost function
given in (1) will be rewritten as

Eh(s(P)) =
λ1

2
E2D(s(P)) +

λ2

2
E3D(s(P)), (22)

where the division by 2 is useful to simplify the derivation
process. The gradient vector of this cost function is given as

∂Eh(P)
∂P

=
λ1

2

∂
(
ei(P)T ei(P)

)
∂P

+
λ2

2

∂
(
ep(P)T ep(P)

)
∂P

,

= λ1ei(P)T
∂
(
ei(P)

)
∂P

+ λ2ep(P)T
∂
(
ep(P)

)
∂P

,

= λ1ei(P)T Ji(P) + λ2ep(P)T Jp(P). (23)

To compute the change in the pose that minimizes the
above cost function, the change should be in the opposite
direction to the gradient. Indeed, the change in the pose is
given as

∆P = −λJ T (P)
[

ei(P)
ep(P)

]
, (24)

where the matrix J (P) is given

J (P) =
[

Ji(P)
Jp(P)

]
. (25)

In most practical situations we can set λ1 = λ2 = λ. One
may note that local minima may occurs if[

ei(P)
ep(P)

]
∈ Ker(J (P)T).

This means that either ei(P) = ep(P) = 0, i.e. the
global minima case, or (i) ei(P) ∈ Ker(JT

i (P)) and (ii)
ep(P) ∈ Ker(JT

p (P)) at the same time. The case (ii) hold
for global minima only where Ker(JT

p (P)) = {0(6×1)}. In
other words, problem relating to local image minima and
Jacobian singularity will not affect the convergence.

B. Gauss-Newton Method

To achieve the minimizing task defined by the hybrid cost
function Eh(P) given in (21), we substitute in (8) to get

∆P = −λJ +(P)
[

ei(P)
ep(P)

]
, (26)

where the matrix J (P) is given

J (P) =

[
∂ei(P)

∂P
∂ep(P)

∂P

]
=

[
Ji(P)
Jp(P)

]
. (27)

Here,

J +(P) =
(
JT

i Ji + JT
p Jp

)−1[
JT

i JT
p

]
. (28)

Since Ker(JT
p (P)) = {0(6×1)}, the velocity vector will be

nullified only at the desired position without suffering from
any local minima.

To summarize, It is shown that minimizing the hybrid
proposed function is realizable. This function Eh(P) has a
common global minima with each of E2D(P) and E3D(P).
The minimization of Eh(P) is done using NLSM owing
to the non-linear part arising from the 2D image space.
However, global minima is the optimal solution that can be
asymptotically obtained after a limited number of iterations.

C. Computing the Factors λ1 and λ2

The integration between 2D and 3D can be biased using
the scalar factors λ1 and λ2. The control law can be written
when λ1 �= λ2 as

V = ∆P = −λJ (P)+
[

Γ1 Γ2

] [
ei(P)
ep(P)

]
, (29)

where Γ1 = diag(λ1) and Γ2 = diag(λ2). This gives a sense
in designing a high level rule that computes these factors λ1

and λ2. A proper computation of the integration factors can
be used to improve the performance of the whole process by
individually taking advantages of the 2D or the 3D features
used in the error function. For example, it is possible to put
λ1 = ω2D

ω2D+ω3D
and λ2 = ω3D

ω2D+ω3D
. The weights λ1 and λ2

are the importance factors of the 2D and 3D informations
respectively [16]. Another method to adjust the weights λ1

and λ2 is the function proposed in [17]. In this method, the
process starts with PBVS i.e. corresponds to higher value of
λ2, and end with IBVS i.e. corresponds to higher value of
λ1. Ending with image-based avoids the effect of noisy data
on the stability of 3D algorithm.

ThA2.1

1694

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s 0 1 2 3 4 5 6 7 8

−0.4

−0.2

0

0.2

0.4

Sec

m
/s

e
c

vx
vy
vz

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

0.4

0.6

Sec

ra
d
/s

e
c

wx
wy
wz

(a) (b)

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s 0 5 10 15 20 25 30

−0.05

0

0.05

0.1

0.15

Sec

m
/s

e
c

vx
vy
vz

0 5 10 15 20 25 30
−0.5

0

0.5

1

Sec

ra
d
/s

e
c

wx
wy
wz

(c) (d)

Fig. 2. The image features trajectories and the screw velocity. Image-
based visual servoing in (a) and (b). 21/2D visual servoing (c) and (d).
The desired positions of the image features are marked by +.

V. EXPERIMENTAL EVALUATION

We present simulation experiments where the proposed
methods are compared to previous method like IBVS, PBVS,
and hybrid methods, namely 21/2D visual servoing. These
methods in addition to our proposed methods are imple-
mented in a simulation framework. The simulation assumes
a perspective camera model with 1000m focal length and
unit aspect ratio.

The comparison is carried out for two positioning tasks.
First one is with a π/4 rad pure rotation error around the
camera optical axis. Using this task we will evaluate the
efficient performance of the proposed methods compared to
previous work in the literature like IBVS and its improved
21/2D VS. The task is achieved using our two (model-based
and model-free) JPC proposed methods, and the results are
compared to IBVS and 21/2D VS. The camera retreat using
each method is evaluated by the magnitude of the screw
velocity Vz along the camera optical axis.

The second task is a general positioning task that contains
a rotational and translational errors. The task is useful to
evaluate the camera trajectory in the Cartesian space. The
camera trajectories using our two JPC methods and methods
like PBVS and 21/2D VS are compared here. The servoing
target object consists of six non-planar points.

A. Camera Retreat from Rotation Error

The experiments for the first task is done using JPC
(model-based and model-free), IBVS and 21/2D. The results
are shown in Figs. 2, and 3.

In case of using IBVS, the camera retreat along the
camera optical axis is demonstrated in Figs. 2(a) and 2(b).
These figures show the image trajectory and screw velocity
respectively. A nice image trajectory was obtained along with

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s 0 0.5 1 1.5 2 2.5 3 3.5 4

−0.06

−0.04

−0.02

0

0.02

Sec

m
/s

e
c

vx
vy
vz

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

Sec

ra
d
/s

e
c

wx
wy
wz

(a) (b)

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s 0 2 4 6 8 10 12 14 16

−1

−0.5

0

0.5

Sec

m
/s

e
c

vx
vy
vz

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

Sec

ra
d
/s

e
c

wx
wy
wz

(c) (d)

Fig. 3. The image features trajectories and the screw velocity of JPC
visual servoing. In (a) and (b), the model-based method. In (c) and (d), the
model-free method. The desired positions of the image features are marked
by +.

a considerable pure backward translation motion (camera
retreat). The task is done properly using 21/2D. This is
shown in Figs. 2(c) and 2(d). It is clear that there is
no significant translational motion while the rotation error
decreased properly to zero. In other words, the task has been
done without camera retreat.

The results in case of using our proposed (model-based
and model-free) JPC methods are shown in Figs. 3(a), 3(b)
and Figs. 3(c), 3(d) respectively. The model-based JPC
method shows an image trajectory similar to the one obtained
using 21/2D method. However, a moderately small camera
retreat exists. A similar image trajectory is obtained using the
model-free JPC but with very small camera retreat which can
be easily ignored.

B. Camera trajectory in the Cartesian Space

Now, we consider the second task. This is a general
task with both translational and rotational motion. First we
present the results from PBVS where the camera trajectory
in the Cartesian space is a straight line. This is the shortest
camera path. Figs 4(a) and 4(b) show the feature trajectory in
the image space and camera trajectory in the Cartesian space
respectively. However the image trajectory is an undesirable
complex curve and some features got out of the camera field
of view. In contrast, 21/2D visual servoing, as shown in
Figs 4(c) and 4(d), has improved the image trajectory, but
nothing about the Cartesian camera path, it is not straight line
at all. Using model-based PJC method produces a camera
trajectory that is not only very much near to the straight
line, but also with fine image trajectory. the model-free JPC
method produces a similar image trajectory, and camera path
is approximately straight line.

ThA2.1

1695

−100 0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s

Image
border

−1
0

1
2

3

−2.5

−2

−1.5

−1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

startend

(a) (b)

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s

−1
0

1
2

3

−2.2

−2

−1.8

−1.6

−1.4
−0.2

−0.1

0

0.1

0.2

start

XY

endZ

(c) (d)
Fig. 4. The image features trajectories and the camera trajectory in the
Cartesian space. PBVS visual servoing in (a) and (b), 21/2D visual servoing
in (c) and (d). The desired features are marked by +.

In general, our both model-based and model-free methods
show an improved performance in image space and Cartesian
space together. In both methods, image features are less
probable to leave the image while the camera performs less
retreat in the Cartesian space. An improvement in the features
behavior in the image space for all considered points exists.
Most of previous hybrid methods improve the path of one
point in the image.

VI. CONCLUSION

A novel 5D visual servoing method is formulated as
a minimization process. Applying gradient decent mini-
mization gives the 5-D Jacobian Transpose Control method
(JTC). From Gauss-Newton minimization we obtain the 5-D
Jacobian Pseudo-inverse Control method (JPC). The second
order approximation of the Jacobian matrix is also considered
here. The results show that our proposed methods improve
the performance of all features in the image space as while as
the camera trajectory in the Cartesian space. Future work will
focus on the visibility and joint limits constraint. They will be
introduced to the minimization process. The visual servoing
process will be considered as a constrained minimization
process.

REFERENCES

[1] P. Corck and S. Hutchinson, “A new partitioned approach to image-
based visual servoing,” IEEE Transactions on Robotics and Automa-
tion, vol. 14, no. 4, pp. 507–515, Aug 2001.

[2] E. Malis, F. Chaumette, and S. Boudet, “2 1/2 d visual servoing,”
IEEE Transactions on Robotics and Automation, vol. 15, no. 2, pp.
238–250, April 1999.

[3] S. Hutchinson, G. Hager, and Cork, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 17, pp.
18–27, 1996.

[4] F. Chaumette and S. Hutchinson, “Visual servo control, part i: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, December 2006.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s

−1
0

1
2

3

−2.5

−2

−1.5

−1
−0.15

−0.1

−0.05

0

0.05

0.1

startend

(a) (b)

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Pixels

P
ix

el
s

−1
0

1
2

3

−2.5

−2

−1.5

−1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

startend

(c) (d)
Fig. 5. The image features trajectories and the camera trajectory in the
Cartesian space of JPC visual servoing. In (a) and (b), the model-based
method. In (c) and (d), the model-free method. The desired features are
marked by +.

[5] ——, “Visual servo control, part ii: Advanced approaches,” IEEE
Robotics and Automation Magazine, vol. 14, no. 1, March 2007.

[6] E. Malis and P. Rives, “Robustness of image-based visual servoing
with respect to depth distribution errors,” in IEEE Int. Conf. on
Robotics and Automation, ICRA’03, vol. 1, Taipei, Taiwan, Sept. 2003,
pp. 1056–1061.

[7] E. Malis and F. Chaumette, “Theoretical improvements in the stability
analysis of a new class of model-free visual servoing methods,” IEEE
Trans. on Robotics and Automation, vol. 18, no. 2, pp. 176–186, April
2002.

[8] A. H. Abdul Hafez and C. V. Jawahar, “Improvement to the minimiza-
tion of hybrid error functions for pose alignment,” in IEEE Int. Conf.
on Automation, Robotics, Control, and Vision, ICARCV’06, Singapore,
December 2006.

[9] K. Hashimoto and H. Kimura, “L q optimal and nonlinear approaches
to visual servoing,” in Visual Servoing, ser. World Scientific Series
in Robotics and Automation Systems. World Scientific Press, 1993,
vol. 7, pp. 165–198.

[10] E. Malis, “Hybrid vision-based robot control robust to large calibration
errors on both intrinsic and extrinsic camera parameters,” in European
Control Conference, ECC’01, Porto, Portugal, September 2001, pp.
2898–2903.

[11] ——, “Improving vision-based control using efficient second-order
minimization techniques,” in IEEE Int. Conf. on Robotics and Au-
tomation, ICRA’04, New Orleans, USA, April 2004.

[12] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. on Robotics and Automation, vol. 8,
no. 3, pp. 313–326, July 1992.

[13] O. Tahri and F. Chaumette, “Application of moment invariants to visual
servoing,” in IEEE Int. Conf. on Robotics and Automation, ICRA’03,
vol. 3, Taipeh, Taiwan, May 2003, pp. 4276–4281.

[14] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2003.

[15] A. H. Abdul Hafez and C. V. Jawahar, “Depth/model estimation using
particle filters for visual servoing,” in IEEE Int. Conf. on Pattern
Recognition, ICPR’06, Hong Kong, August 2006.

[16] ——, “Probabilistic integration framework for improved visual ser-
voing in image and cartesian spaces,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, IROS’06, Bejing, China, October 2006.

[17] ——, “Probabilistic integration of 2d and 3d cues for visual servoing,”
in IEEE Int. Conf. on Automation, Robotics, Control, and Vision,
ICARCV’06, Singapore, December 2006.

ThA2.1

1696

