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Abstract— This paper focuses on the dribbling control prob-
lem of an omnidirectional mobile robot. Because the movement
of the dribbled object must be considered, dribbling control
is more challenging than normal mobile robot motion control.
A new feedback control algorithm, which steers a reference
point to follow the desired movement and keeps the ball near
to this point simultaneously, is proposed. To dribble a rolling
ball along a given path, the robot should provide the ball with
appropriate force by consecutive pushing operations when they
travel in an environment with obstacles. Based on the analysis
of the forces acting on the ball with respect to the mobile
robot coordinate system, a constraint for robot movement in
the dribbling process is also introduced. The simulation and
real-world experiments address the performance of this control
algorithm.

I. INTRODUCTION

Dribbling control is a challenging task in the RoboCup

Middle Size domain. As the rules only allow one third of the

ball to be covered by the dribbler, the dribbling behavior has

high requirements to the robot motion control. Some teams

fulfill the dribbling task by planning robot moving paths

[1] or designing the behavior-based approach [2], where

the mobile robot is controlled towards the desired postures.

The postures are generated by a planner based on the robot

dynamic or kinematic model. However, how the robot can

travels without losing the ball is not considered.

Considering the difficulty of determining the ball’s mo-

tion when it is in continuous contacts with a robot, many

RoboCup teams use neural networks ([3], [4]) and reinforce-

ment learning methods ([5], [6], [7]) to learn some basic

skills of the robot, such as kicking and dribbling. Although

suitable simulation systems can support the learning before

the experiments with a real robot, the skill learning needs

long time and high computational cost.

In this paper we address the dribbling control problem

for an omnidirectional robot. With the analysis of the force

exerted on the ball inspired by [8], we obtain a constraint

of robot movement in the dribbling process for keeping a

rolling ball. Under this constraint, the task of dribbling a

ball to follow a given path is completed by approaching a

reference point to the given path and steering the ball to

move around this point simultaneously.

II. ROBOT KINEMATIC MODEL

The mobile robot used in this dribbling task is an omnidi-

rectional robot, whose base is shown in Fig. 1. It has three

Swedish wheels mounted symmetrically with 120 degrees
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Fig. 1. Kinematics diagram of the base of an omnidirectional robot

from each other. Each wheel is driven by a DC motor and

has a same distance Lw to the robot’s center of mass R.

Besides the fixed world coordinate system [Xw, Yw], a

mobile robot fixed frame [Xm, Ym] is defined, which is

parallel to the floor and whose origin locates at R. θ denotes

the robot orientation, which is the direction angle of the

axis Xm in the world coordinate system. α and ϕ denote

the direction of the robot translation velocity vR observed

in the world and robot coordinate system, respectively. The

kinematic model with respect to the robot coordinate system

is given by :
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where v = [ẋm
R ẏm

R ω]T is the vector of robot velocities

observed in the robot coordinate system; ẋm
R and ẏm

R are the

robot translation velocities; ω is the robot rotation velocity.

q̇ is the vector of wheel velocities [q̇1 q̇2 q̇3]
T , and q̇i(i =

1, 2, 3) is the i-th wheel velocity, which is equal to the

wheel’s radius multiplied by the wheel’s angular velocity.

Introducing the transformation matrix from the robot co-

ordinate system to the world coordinate system as

wRm =

[

cos θ − sin θ
sin θ cos θ

]

, (2)

the kinematic model with respect to the world coordinate

system is deduced as:
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where ẋ = [ẋR ẏR θ̇]T is the robot velocity vector with

respect to the world coordinate system; ẋR and ẏR are the

robot translation velocities; θ̇ is the robot rotation velocity; δ
refers to the wheel orientation in the robot coordinate system

and is equal to 30 degrees.

It is important to notice that the transformation matrix

in model 1 is full rank, which denotes that the translation

and rotation of the robot are decoupled, and guarantees the

separate control of these two movements.

For the high level control laws without considering the

wheel velocities, the kinematic model

ẋ = Gv (4)

is used in our control method, where the transformation

matrix G is equal to [wRm 0 ; 0 1]. Because G is full rank,

the characteristics of decoupled movement is also kept.

III. DRIBBLING ANALYSIS

Dribbling is one of the most difficult skills of RoboCup

robots. Dribbling refers to the maneuvering of a ball through

consecutive and short contacts with a robot in the dynamical

obstacles environment. By dribbling, a robot can travel

through the opponents with the ball and shoot a goal. To

dribble a ball from an initial position to the goal, the robot

needs to keep the ball without losing it. Therefore, it is

necessary to analyze the relative movement between the

robot and the ball. When the ball is considered as a mass

point B locating at the sphere center, the relation between

ball’s accelerations observed in the world coordinate system

and the robot coordinate system is described in terms of

vectors as

aB = aR +am
B +2ω×vm

B + ω̇× rm
B +ω× (ω× rm

B ), (5)

where aR denotes the robot translation acceleration; aB

and am
B are the ball’s accelerations observed in the world

and robot coordinate systems; ω, ω̇ are the robot rotational

velocity and acceleration respectively; vm
B and rm

B are the

ball’s velocity and position observed in the robot coordinate

system.

Multiplying (5) by the mass mB of the ball, we get the

extended Newton’s second law in the robot coordinate system

as

Fm
B = FB + Fin = mBam

B , (6)

where FB = mBaB . FB is the vector sum of all the external

forces acting on the ball referring to the world coordinate

system. FB is composed of the force from the robot and the

friction between the ball and the floor. Fm
B is the vector sum

of the forces referring to the robot coordinate system. Fin

is the inertial force calculated as

Fin = −mBaR −mB(2ω×vm
B + ω̇×rm

B +ω× (ω×rm
B )).

(7)

Equation (6) implies that not only the external forces but

also the inertial force exerted on the ball when it is observed

in the robot coordinate system. Although the inertial force

manifests itself as a real force, it is not the real one while

Fig. 2. Ball’s relative position in the robot coordinate system. Three spongy
blocks are pasted on the robot’s front to increase the friction

it results from the non-inertial observing coordinate system

but not from interactions with other bodies.

If the ball is moving along a curve with the clockwise

turning shown in Fig. 2, it is only possible for the robot to

keep the ball if the force Fm
B has nonpositive projection on

the line
−→
BL which is parallel to the left border of the robot’s

front. That means that

(Fm
B )−→

BL
= (FB + Fin)−→

BL
≤ 0. (8)

As the ball follows a curve, the external force FB can

be projected on the tangent and normal directions of the

curve. The tangent part Ft determines the magnitude of the

ball’s velocity which can be calculated as Ft = mBat with

the acceleration parameter at. The value of at is hard to

determine, because it refers to the friction between the ball,

the robot and the floor. When the ball moves with constant

velocity, at is equal to zero. The normal part Fn contributes

to the ball’s moving direction, which is pointing to the center

of curvature and has the magnitude Fn = mBcv2

b , where c
is the curvature of the curve and vB is the ball’s translation

velocity.

The inertial force stems from the acceleration of the

reference coordinate system, which is the robot coordinate

system here. In (5), the term 2ω × vm
B is called Coriolis’

acceleration; the term ω̇ × rm
B is due to the robot rotation

acceleration; the term ω × (ω × rm
B ) is called centripetal

acceleration, which always points toward the axis of robot

rotation.

Inequation (8) implies the constraint of robot movement

in the dribbling process, under which the robot can move

in the obstacles environment along curved paths avoiding

losing the ball. Above analysis assumes the robot rotates in

clockwise direction, but similar results can be obtained in

the non-clockwise case.

IV. DRIBBLING CONTROL

In the ideal situation described in Fig. 2, the ball’s center

matches point E, which is always located at the front of

the robot with a distance L along the Xm axis. Since

we hope the ball is always in front of the robot, we can

solve the dribbling problem by controlling point E to move

ThC7.5

2624



along the desired path and keeping the ball near to point

E simultaneously, with the consideration of the decoupled

translation and rotation of the omnidirectional robot. In the

next sections, we present the path following control of point

E based on its linearized kinematic equations and the ball

keeping method with a PD controller.

A. Linearizing Kinematic Model

As point E is taken as a fixed point (L,0) with respect to

the robot coordinate system, its position can be transformed

to the world coordinate system by

xE = xR + L cos θ (9)

yE = yR + L sin θ, (10)

where xR and yR denote the robot position in the world

coordinate system; xE and yE denote the point E’s position

in the world coordinate system.

By differentiating equations (9) and (10) with respect to

time and introducing (4), we get the velocities of point E as

ẋE = ẋm
R cos θ − ẏm

R sin θ − Lω sin θ (11)

ẏE = ẋm
R sin θ + ẏm

R cos θ + Lω cos θ, (12)

where ẋR and ẏR are with respect to the world coordinate

system.

Combining equations (11) and (12) with the robot rotation

velocity, the kinematic model of point E is deduced as,

ẋ = Gv, (13)

where

ẋ = [ẋE ẏE θ̇]T ,

G =





cos θ − sin θ −L sin θ
sin θ cos θ L cos θ

0 0 1



 ,

ẋm = [ẋm
R ẏm

R ω]T .

Although this system is nonlinear because of the trigono-

metric functions of angle θ, it can be linearized by inducing

a simple compensator C = G−1, because the matrix G is

full rank. The linearized system ẋ = u is shown in Fig. 3

and has a new input vector u = [u1 u2 u3]
T .

This linear system is completely decoupled and allows the

controlling of point E to follow any reference path and θ to

track any desired orientation in a separate way.

When a controller K is designed based on this simple

linear system, the controller for the nonlinear system is

generated as CK. The overall control loop, which consists

of the nonlinear system, the compensator and the controller,

is shown in Fig. 4.

Fig. 3. Linearized system by the component C

Fig. 4. Closed-loop control system

B. Path Following Control of Point E

The path following problem is illustrated in Fig. 5. P
denotes the given path. Point Q is the orthogonal projection

of E on the path P . xt and xn are the tangent and normal

unit vectors at Q, respectively. The path coordinate system

xtQxn moves along the path P . θP is the path tangent

direction at point Q. θE denotes E’s moving direction. The

angular error is defined as θ̃E = θE − θP .

Based on the above definitions, the path following problem

is to find proper control values of E’s linear velocity vE and

angular velocity θ̇E such that the deviation distance xn and

angular error θ̇E tend to zero.

To solve this path following problem, a Lyapunov candi-

date function

V =
1

2
Kdx

2

n +
1

2
Kθ θ̃

2

E (14)

can be considered, where Kd and Kθ are positive constants.

The time derivation of V results in

V̇ = Kdxnẋn + Kθ θ̃E
˙̃
θE . (15)

A simple control law [9] is utilized here. It is only based

on the deviation of point E to the given path, and controls

point E moving along an exponential curve to converge to

the axis xt. The exponential curve is expressed as

xn = xn0
exp(−kxt), (16)

where xn0
is the deviation and the positive constant k deter-

mines the convergence speed of the deviation. Differentiating

(16) with respect to xt, we get the tangent direction of the

exponential curve as

θ̃E = arctan(
dxn

dxt

) = arctan(−kxn). (17)

Fig. 5. Illustration of the path following problem
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Fig. 6. Forces analysis for ball following a curve

Therefore, for a non-zero constant velocity vd, the velocity

of point E in the coordinate system xtOxn results in

ẋn = vd sin θ̃E , (18)

ẋt = vd cos θ̃E . (19)

Substituting the time derivative of θ̃E into (15), we get

V̇ = Kdxnẋn + kKθ arctan(−kl)
−ẋn

xn + (kxn)2
< 0, (20)

because xnẋn = xnVd sin(arctan(−kxn)) < 0 and

ẋn arctan(kxn) < 0. This solution of V̇ guarantees the

global stability of the equilibrium at xn = 0, θ̃E = 0,

which means that this control law solves the path following

problem.

Transforming the velocity of point E into the world

coordinate system, we get the control values of the linear

system as

u1 = vd cos(θE), (21)

u2 = vd sin(θE), (22)

where θE = θ̃E + θP .

The input of this controller is the relative distance between

point E and the given path, which normally can be directly

obtained by the sensors on the robot. Moreover, the deviation

converges to zero smoothly with the speed controlled by pa-

rameter k, which can be chosen according to the performance

requirement.

C. Ball Keeping Control

As only two degrees of freedom are used to control point

E to follow the given path, there is one remaining degree

of freedom for the robot orientation which can be used for

the ball keeping control. When a given path P performs a

turning as shown in Fig. 6, the robot movement needs to

be accurately controlled such that the force from the robot

FR is enough to overcome the friction Ff between the ball

and the floor and provide the ball with sufficient centripetal

force Fn. Although the shape of the robot’s front can help the

robot to exert the suitable force, it is necessary to keep the

robot orientation having some deviation ∆θ to the tangent

direction of the curve.

Based on the centripetal acceleration cv2

d, we calculate

the angle deviation as ∆θ = kθcv
2

d, where kθ is the positive

parameter. Then the ideal robot orientation θd is given by

θd = θP + ∆θ, (23)

A PD controller can be used to control the robot orienta-

tion to converge to the ideal one,

ω = kp(θd − θ) + kd(θ̇d − θ̇), (24)

where θ̇d and θ̇ are the corresponding differential values of

θd and θ; kp and kd are the proportional and derivative gains,

respectively.

Although a suitable dribbler mechanics can play a great

role in providing friction for the robot keeping the ball, the

robot movement should satisfy the condition given by (8).

The required robot rotation velocity ω must be constrained

based on the required robot translation velocity coming

from the path following control of point E. Since point

E is considered as a fix point on the robot, the movement

relationship between the robot and point E in vector notion

is as follows:

vE = vR + ω × rm
E , (25)

v̇E = v̇R + ω̇ × rm
E + ω × ṙm

E , (26)

where v̇E , v̇R are the translation accelerations of point E
and the robot with respect to the world coordinate system;

rm
E is the position vector from R to E with respect to the

robot coordinate system; ṙm
E is the derivative of rm

E ; ω̇ is the

robot rotation acceleration.

If point E is controlled with constant translation velocity

moving along the given path, the tangent acceleration at

is equal to zero and the centripetal acceleration is cv2

E .

Substituting (26) into (7) and (8), the constraint of dribbling

becomes

at + cv2

B − v̇E + ω̇ × rm
E + ω × ṙm

E−

(2ω × vm
B + ω̇ × rm

B + ω × (ω × rm
B )) < 0. (27)

When the ball is near to point E, ṙm
E approximates to zero

and ṙm
B approximates to ṙm

B . Then the above constraint can

be reduced to

cv2

B − v̇E − (2ω × vm
B + ω × (ω × rm

B )) < 0. (28)

V. EXPERIMENTS

The control algorithm discussed above has been tested in

both simulation and real-world environments, where the ball

is required to follow a sinusoidal path y = 1.3 sin x with

constant translation velocity vd = 1.2 m/s.

A. Simulation Experiment

In our simulator, the movements of the robot and the

ball have been calculated from their kinematic equations.

The pushing process is considered as a consecutive high

frequency and low magnitude compact process. We utilize

the basic collision equations, which describe the collisions of
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(a) Simulation (b) Real-world experiment

Fig. 7. Ball follows the path y = 1.3 sin x with vd = 1.2 m/s

(a) Simulation (b) Real-world experiment

Fig. 8. Deviation from point E to the desired path

(a) Simulation (b) Real-world experiment

Fig. 9. Relative deviation from ball to point E along the axis Ym

two rigid bodies, and Newton’s law of restitution to calculate

the motion of the two objects after collisions.

The difficulty in this collision simulation is the exact de-

termination of the collision moment. As a common method,

we detect whether the robot and the ball overlap by some

degree due to the limited time; if they overlap, the simulation

calculates n time steps backwards within the last cycle such

that the overlap disappears. Since the simulation cycle is

short enough, the accuracy of the collision detection is

satisfiable. The parameters of our simulator, like the friction
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Fig. 10. The real omnidirectional robot and ball

coefficient and the restitution coefficient, are adopted as

experience values. The masses and the moment of inertia

of robot and ball are adapted to the real values.

The parameters of our control algorithm were chosen as

k = 3.5, kθ = 0.9, kp = 10, kd = 6. These results

illustrated in Fig. 7(a), 8(a) and 9(a) show us that the

dribbling control method steers the point E converging to

the given path with little deviation. Meanwhile, the ball does

not slide away from the robot, because the ball’s relative

distance to point E along the axis Ym is always less than

the maximum value ±15cm.

B. Real-world Experiment

The real-world experiment was made in our robot labora-

tory having a half-field of the RoboCup middle-size league.

The ball’s observation values come from our omnidirec-

tional viewing system and object detection process. Our

omniderectional viewing system consists of a AVT Marlin

F-046C color camera with a resolution of 780× 580, which

outputs images up 50 times per second. In order to achieve

a complete surrounding map of the robot, the camera is

assembled pointing up towards a hyperbolic mirror, which is

mounted on the top of our omnidirectional robot, as shown

in Fig. 10. After obtaining the image from the camera, a fast

object detection algorithm is used to get the ball’s real world

position, as described in [10].

The parameters of our control algorithm were chosen as

k = 3.5, kθ = 0.9, kp = 5, kd = 3. Although measurement

noise, environment disturbance and the actuator delay of the

robot were induced, the experiment results illustrated in Fig.

7(b), 8(b) and 9(b) demonstrate that the control method has

good performance.

VI. CONCLUSIONS

In this paper a new control method for an omnidirectional

robot dribbling a rolling ball is presented. This approach

solves the control problem of the consecutive mobile robot

pushing operation by introducing a reference point as the

controlled object, which is also regarded as a fixed point

of the robot itself. Feedback control methods are used to

steer the reference point to follow the given path and the

ball to move around the reference point simultaneously. In

order to keep the ball, the relative movement between the

robot and the ball has been analyzed and a constraint of

robot movement is presented, with which controller outputs,

namely the required translation and rotation velocities, have

been limited. With the Lyapunov stability theory, the global

stability of the path following control law has also been

proven.

The simulation and real-world experiments used a si-

nusoidal curve as the ideal path, and required a constant

translation velocity of the ball. The results show that this

control method can control the omnidirectional robot to apply

appropriate pushing operations such that the ball follows the

given path and does not slide away from the robot.
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