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Abstract— Auction based techniques are a highly successful
tool used for multi-robot task allocation. However, theoretical
performance and a proper taxonomy of optimization objectives
have remained scarce until recent studies. Implementations
from different authors have not been compared in common
grounds and in light of these recent findings. In this paper we
address this lack of comparative experimentation, providing
simulation results on a large real life based scenario and in
random worlds. Two intuitive optimization objectives, minimum
total resource usage and minimum total time, are evaluated in
object searching missions. A method for flexible tailoring of
the bidding rules is presented and new insight is gained on the
effect of using hybrid criteria for the optimization objective.

I. INTRODUCTION

In recent years, researchers have moved towards multi-

robot systems in order to solve problems in less time, more

efficiently and with higher reliability. In some cases the

robots act independently of each other, but the use of explicit

coordination offers potential advantages in efficiency and

flexibility. However, this use of explicit cooperation intro-

duces a new challenge: determining the optimal utilization

of team members. The allocation of tasks to robots has

been shown several times to be an NP-complete problem

[1]. For this reason, approximated methods have been used

extensively.

We focus on auction based methods [2], which are one

of the most successfully tested solutions. Auction methods

are based on the exchange of bids amongst robots; bids are

offered for the tasks and the winner of a task takes respon-

sibility to carry it out. Auction methods are decentralized

in nature, since no central authority controls the bidding

process. They are also efficient bandwidth-wise because all

relevant information is synthesized and exchanged by means

of such bids, which usually take the form of single scalars.

Experimental results have shown that they perform very well

in real life, often far above their worst case bounds when

known. For all these reasons they have been the subject of

abundant research.

Numerous implementations have been described ( [3]–[6]

to cite a few) but efforts for strong mathematical charac-

terization of its efficiency have been scarcer [1], [7], [8].

Also, although they are usually presented as flexible general

task allocation methods not particularly bounded to a definite

problem, the effects of different optimization criteria are

This work was funded by the Spanish MCYT-FEDER projects DPI2003-
07986 and DPI2006-07928, and EU project IST-1-045062-URUS-STP.

Authors are with Departamento de Informática e Ingenierı́a de Sistemas,
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seldom thoroughly analyzed. We are not aware of compar-

isons on performance for the different implementations on

a common ground. In this paper we aim to fill this gap

with simulation runs over a model of a real world large

building in a mission for object searching. Also, randomized

experiments are used to extract trends not confined to this

scenario. For flexible mission objective tailoring, we use a

technique that we call criterion descriptors [9]. We explore

the effects of the different criteria on the team performance,

and highlight the interesting good performance of hybrid

objectives. To the best of our knowledge, this has not been

previously observed in the context of auction allocation.

We will start examining the theoretical models underlying

the auction process in section II. Next, we present in section

III the auction methods we have implemented. We follow

with simulations and its discussion in section IV, to finally

conclude with a summary of the most relevant results.

II. OPTIMIZATION CRITERIA

Auction methods can be modelled for minimization (cost

based [7]) or for maximization (utility based [10]). In this

paper we will adopt the first approach; hence, the lowest bid

is the best one and cost will be the used metric.

We focus on two intuitive and useful optimization criteria

for a robotic team. The MINSUM objective aims to minimize

the total usage of resources (sum of individual costs). It is

the most commonly one found in auction based research,

because it naturally arises in market-mimicking varieties

where agents try to minimize their costs in order to maximize

their own gains, and the team reward is defined as the sum

of individual rewards [10].

Other interesting criterion, less commonly found, is the

MINMAX one, where the objective is to minimize the cost

of the worst performing robot. This has a direct translation

to finding the shortest timespan for a given mission [5].

A detailed mathematical analysis of these criteria is found

in [7] in the context of auctions for vehicle routing. Since

many robotic endeavors consist of visiting places to there

perform tasks of interest (analysis of ground, deployment of

sensors, surveillance), this is of direct relevance.

More formally, let us define R = {r1, .., rn} as the set

of robots in the team and T = {t1, .., tm} as the set of

tasks to be executed. An allocation A = {a1, .., an} is a

partition of T where ai is an ordered list of tasks assigned

to be executed by robot ri. That is, we are using a sequential

execution model where robots are capable of executing a task

at a time. Let C(ri, ai) be the cost robot ri incurs when

executing the ordered sequence ai. Hence, the costs for the
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two presented team objectives are

CMM = max
i

C(ri, ai)

CMS =
∑

i

C(ri, ai)

where MM and MS are abbreviations for MINMAX and

MINSUM respectively.

With these definitions, each of the two presented criteria

aim to find the optimal allocation AO such as

AO

MM = arg min
A

CMM

AO

MS = arg min
A

CMS

In [7], bidding rules are defined for these two criteria, in a

framework for optimality analysis. Performance bounds are

given in the form of competitivity ratios (Worst case cost
Optimal cost

)

for the studied bidding rules. We have identified that sev-

eral auction implementations use at least the MINSUM bid

construction rule, even if exact timing details differ; and we

ourselves have used the MINMAX bids in past work. For the

flexible switching between both criteria we have defined in

[9] criterion descriptors as a tuple (ωMM, ωMS), with ωMM

being a weight factor for the MINMAX cost, and ωMS a

weight factor for the MINSUM cost. The team allocation cost

is computed as

C(A) = ωMMCMM + ωMSCMS

A robotic team can use a unique bidding rule parametrized

with a criterion descriptor for flexible switching between

objectives. Let us assume t is a new task being auctioned.

Let us denote by ai the assignation for ri before the task is

added to its plan, and by a′
i

the best assignation ri is able

to find including t in its plan. In [7] is shown that the bid bi

of ri for each objective is to be:

MINMAX : bi = CTi = C(ri, a
′
i)

MINSUM : bi = C∆i = C(ri, a
′
i) − C(ri, ai)

where CTi stands for total cost and C∆i stands for incremen-

tal cost. Both quantities can be maintained and computed by

a robot in constant time, so without performance losses we

propose the following unique rule:

bi = ωMMCTi + ωMSC∆i

where a criterion descriptor is used to tailor the desired

optimization criterion. In this paper we will experiment with

the following descriptors:

MINMAX: (1.0, 0.0) MINSUM: (0.0, 1.0)
MINTIM: (1.0, δ) MINMIX: (1.0, 1.0)

We name the descriptors after the objective they pursue. Here

appear two notable additions, that we call hybrid for its

use of both CMM and CMS: MINTIM (where δ represents

a small real1) is our attempt to provide minimum time but

also improving the costs of robots not involved in the critical

1E.g. 0,00001.

worst cost of a pure MINMAX optimization [9]. The idea is

that the dominating cost is still the CMM one, but the CMS

scaled down cost is used to prefer less costly assignations

for the remaining robots. On the other hand, MINMIX uses a

balanced combination of both costs in an attempt to achieve

good performance for both objectives. The exact meaning

in physical units is not clear, but our interest is to properly

ascertain if the saying “Jack of all trades, master of none”

applies here or, in the contrary, it is a useful alternative.

Note that all descriptors will be evaluated in terms of

pure CMM and CMS performance, because these are the

magnitudes with real meaning. In our discussions we will

often refer to cost as time or resources. When the rationale

is MINMAX, time is a common measure of cost and refers

to the mission timespan. When the rationale is MINSUM,

resources could represent the sum of distance traveled or

power (batteries, fuel) consumed.

III. IMPLEMENTED ALGORITHMS

In this section we present the relevant auctioning tech-

niques we have implemented for testing. We are particularly

interested in techniques with proved performance bounds or,

lacking this, high popularity. For this initial testbed we have

preferred methods that are of similar complexity, specifically

in the order of the one with known performance bounds. We

have thus not tested complex methods like combinatorial

or hierarchical auctions [3]. The bidding rule is the one

explained except when noted, and usually what changes is

the timing details.

A. Parallel auctions with performance bounds

This implementation follows the full directions given in

[7] for auctions with proved performance bounds when the

triangle inequality holds, e.g. in routing problems. We call

it LAGO in reference to the first author. In these auctions,

initially no tasks are allocated. In each round a task is

allocated this way: Each agent in parallel computes bids

for all the remaining tasks, using an insertion heuristic. The

lowest bid of all robots wins and the appropriate task is

awarded. After m rounds, all tasks in T have been awarded

and the auction ends. In our implementation robots and tasks

have an implicit order, used to resolve ties.

We also test a variant identified as LAGOTAIL. Now, a

task can only be added to the tail of a robot plan (instead of

considering all possible insertions). This kind of auction does

not have any quality bounds that we know, but is tested here

because it is extremely cheap to be computed when robots

have very long task lists.

B. Single item auctions

In this case, agents do not consider bids for all tasks

in each round, but only for a single task that in our im-

plementation is chosen at random. Again, m auction runs

are performed until no task remains unassigned. We call

this SINGLE in our tables. SINGLEEXT, in turn, refers to

the allocation found after prolonging for one extra minute

the auction process. During this extra time, in each round
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Fig. 1. Left: an example of randomly generated graph for the randomized
worlds. Right: a quarter of the floorplan used for the large grid simulation.

some robot auctions one of its already owned tasks (see

the accompanying video). In our implementation, auctions

occur at a rate of approximately 60 auctions per second, so

roughly 3600 additional rounds are performed. In real robotic

teams, usually auctions are always running during mission

execution.

This resembles mechanisms used when not all the tasks

can be known in advance, or where tasks are generated by the

robots during the mission. In this case, to prevent entering

in conflicting bids, robots bid for a single task at a time. A

possible example of this kind of implementation is [10].

C. Allocation on availability

This method is partially inspired in [6], which is consid-

ered the first auction based embedded implementation tested

in real robots. Its singular characteristic is that robots can

have just a task in their plan; when a new task is introduced,

the best suited idle robot wins it via regular bidding and

abstains of further bidding until it is idle again. At that

point, it will choose among the unallocated tasks the one for

which it has the lowest bid. (In [6], task reintroduction was

not implemented.) In other words, this is an initial greedy

allocation where the first robot to become idle executes the

cheapest available task. We will refer to our implementation

as FIFO (because the first robot to become idle is the first

one to choose a task).

IV. SIMULATIONS AND COMPARATIVES

The first kind of scenario are graphs composed by a

hundred randomly placed locations in a bounded area, with

the restriction that not all locations are reachable from each

other. See fig. 1 for an example. Robots start at a random

node and all remaining nodes are goals that must be visited.

This setup aims to be a generic testcase.

The second scenario is a real building floorplan (see fig.

1), modelled as a discrete grid of over 1200 cells (see fig.

2). Each cell adjacent to a wall is considered a goal task that

must be visited by some robot2. Real examples of application

comprehend: vehicle location in a parking, explosive sniffing

in buildings, inventory maintenance with RFID3 tags. Unity

2There are 1023 of these cells.
3Radio Frequency Identification

Fig. 2. Grid extracted from building floorplans. Each vertex is a reachable
place. Vertices not completely surrounded by reachable space are goal places
to be visited. The robots are initially positioned at the four leftmost vertices.

is the cost of traveling from cell to cell, thus implying

holonomic robots. Cells have 4-vicinity as depicted in fig.

2. Robots travel using the shortest path in the grid graph and

start in the four leftmost vertices (building entrances).

All simulations use four robots because this is the size of

our real robotic team, with which we intend to carry real

experimentation in the future in the real building.

Experiments in subsection IV-A aim to extract general

trends using multiple random graphs, and to observe if these

trends appear also in the grid map. Subsections IV-B and IV-

C use the best solutions found in the grid map to evaluate

mission variants.

A. Costs of full allocations

The objective in this experiment is to visit all goals in a

map. For the random graphs we performed a hundred runs,

each in a randomly generated world like the one shown in

fig. 1. Average costs are shown in table I and fig. 3.

In the grid map (table II), only SINGLE and SINGLEEXT

results are averages of a hundred runs. This is because

their algorithms have a random step, while the others are

deterministic for a given initial world state.

We have computed the allocations for all combinations of

implementations and descriptors. The FIFO case is special,

because its single task rule precludes the meaningful use of

descriptors, so only one solution exists. In the grid map we

also have computed the optimal MTSP4 solution for the CMS

cost using the Concorde solver [11]. The leftmost column

names the combinations, while the topmost row names the

allocation evaluation (i.e. team performance). We give now

some highlights on these results.

1) Descriptors: Clearly seen in fig. 3 is that any descriptor

with nonzero ωMM performs comparably well for the CMM

cost, with small differences in the 5% range. For the CMS

cost differences are smaller; MINSUM is the best descriptor,

MINMAX and MINTIM are comparably worse and MINMIX

is in middle ground.

4Multiple Traveling Salesmen Problem
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TABLE I

MEAN COSTS OF FULL ALLOCATIONS IN RANDOM SCENARIOS

Allocation evaluation

MinMax MinSum

Ratio Ratio

Algorithm + Descriptor CMM to best CMS to best

Best found 228 1.00 816 1.00

LAGO MINMAX 262 1.15 943 1.16

LAGO MINTIM 259 1.14 935 1.15

LAGO MINMIX 272 1.19 903 1.11

LAGO MINSUM 463 2.03 849 1.04

LAGOTAIL MINMAX 269 1.18 962 1.18

LAGOTAIL MINTIM 270 1.18 971 1.19

LAGOTAIL MINMIX 272 1.19 904 1.11

LAGOTAIL MINSUM 387 1.69 868 1.06

SINGLE MINMAX 259 1.13 998 1.22

SINGLE MINTIM 260 1.14 1000 1.23

SINGLE MINMIX 249 1.09 932 1.14

SINGLE MINSUM 399 1.75 847 1.04

SINGLEEXT MINMAX 240 1.05 949 1.16

SINGLEEXT MINTIM 235 1.03 924 1.13

SINGLEEXT MINMIX 228 1.00 869 1.06

SINGLEEXT MINSUM 385 1.68 816 1.00

FIFO 320 1.40 1159 1.42

2) Worst cases: Observe that using the MINSUM criterion

causes a huge overcost for CMM (in the range of 42% to

200%, within a same algorithm), whereas using a descriptor

with nonzero ωMM gives a worst overcost for CMS in the

5%-18% range only.

The huge overcost of the MINSUM-CMM combination

emanates from the fact that, when tasks are easily chainable

to one another, is more resource-effective to just move a

robot along a path than to move several of them. Thus, is

possible for a single robot to have a high cost which is

also a great percentage of the total team cost. See fig. 4

as example, where a robot is visiting only two goals. This

would be aggravated in teams with more robots.

3) MINMIX: This descriptor ranges from being the best

one in many cases to a 5% overcost for CMM, and has a

penalty of 1%-10% for CMS. From the previous points, it

seems clear that using a criterion with ωMM is better for

general purpose robotic teams, since they perform very well

for both CMM and CMS solutions. Furthermore, in our tests,

MINMIX wins over the other two ωMM criteria in more cases.

MINSUM is only justified when the only relevant metric is

CMS (which leaves out missions involving time).

MinMax
MinTim

MinMix
MinSum

Lago
LagoTail

Single
SingleExt

0

500

1000

Criterion

C
MS

Algorithm

C
o
s
t

Fig. 3. Average CMM and CMS costs in the random worlds.

TABLE II

COSTS FOR THE LARGE GRID WORLD

Allocation evaluation

MinMax MinSum

Ratio Ratio

Algorithm + Descriptor CMM to best CMS to opt.

Optimal - - 1285 1.00

Best found 371 1.00 1455 1.13

LAGO MINMAX 449 1.21 1723 1.34

LAGO MINTIM 451 1.22 1789 1.39

LAGO MINMIX 441 1.19 1735 1.35

LAGO MINSUM 1331 3.59 1709 1.33

LAGOTAIL MINMAX 377 1.02 1497 1.16

LAGOTAIL MINTIM 411 1.11 1609 1.25

LAGOTAIL MINMIX 371 1.00 1467 1.14

LAGOTAIL MINSUM 560 1.51 1455 1.13

SINGLE MINMAX 458 1.23 1825 1.42

SINGLE MINTIM 452 1.22 1802 1.40

SINGLE MINMIX 433 1.17 1721 1.34

SINGLE MINSUM 1113 3.00 1627 1.27

SINGLEEXT MINMAX 448 1.21 1788 1.39

SINGLEEXT MINTIM 438 1.18 1748 1.36

SINGLEEXT MINMIX 420 1.13 1673 1.30

SINGLEEXT MINSUM 1115 3.00 1610 1.25

FIFO 491 1.32 1783 1.39

Optimal MTSP MINSUM 675 1.82 1285 1.00

4) Algorithms: We observe that the SINGLEEXT auctions

are the best ones in most cases. This is due to the extra

auction runs, as evidenced by the improvement over the

SINGLE results. This strongly suggests to use cost-bounded

LAGO auctions for the initial allocation when possible and

continue with SINGLEEXT rounds for the entire mission

duration. FIFO is worst in all cases but when the least suited

descriptor is used for an objective (e.g. MINSUM for the

CMM cost).

5) Anomalies: LAGO performs notably worse than

LAGOTAIL in the grid world, even if the latter algorithm

is simpler. The runs in randomized worlds show that this is

not a general trend.

6) Bounds: The algorithm with theoretical proved bounds,

LAGO, is well within these bounds in the grid run. Table III

shows the solution costs compared against their theoretical

bounds, as per [7]. Note that we know the optimal CMS cost,

but not the CMM one, so its column reflects the ratio against

the best known solution (showing thus a too optimistic

value). Also note that all runs by the other algorithms are

within these bounds too.

TABLE III

LAGO
sol. cost

optimal
ratios compared to their theoretical bounds for n robots.

Team objective

Bidding criterion CMM CMS

MINMAX 1.21 ≤ 2n 1.34 ≤ 2n

MINSUM 3.59 ≤ 2n 1.33 ≤ 2
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Fig. 4. The best MINSUM solution found via auctions. Note that the second
robot from top (bolder) only performs two tasks.

B. Single object finding

In this section we highlight some results on the mission

of finding an object randomly placed in the grid world.

Now we measure the cost until the object is found and

not the total plan cost. The two box diagrams to the left

in fig. 5 show the distribution of costs for the best CMM and

CMS solutions found via auctions (LAGOTAIL-MINMIX and

LAGOTAIL-MINSUM combinations respectively), over 1000

runs. When the team evaluation is to minimize time, the

CMM solution performs patently better. However, when the

team evaluation is to minimize resource usage, we observe a

similar performance from both solutions. This confirms the

findings in the previous subsection about the convenience of

descriptors with nonzero ωMM weight.

The histograms to the right of that same figure reveal

that the distribution that appears when repeating the mis-

sion 30.000 times is roughly uniform for the implemented

algorithms, except for the FIFO case. We understand this

inspecting fig. 6, which shows the distributions of each

algorithm over 1000 runs. We see that all of them but FIFO

have a uniform appearance, while FIFO has a lower median

compared to its mean. This is caused by its greedy nature:

FIFO tends to perform better toward the beginning, but this

short-sightedness causes a higher cost at the tail of the plan,

where far apart goals will remain. We will observe this again

in the remaining experiments.
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Fig. 5. Left: The best CMM and CMS solutions, evaluated for both
mission time and total resources objectives. Median, quartiles and extreme
values are shown. Right: histogram of cost for the best CMM solution with
time evaluation, CMS solution with resource evaluation and FIFO with time
evaluation.
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Fig. 6. The four auction algorithms compared. Left: Mission time
evaluation. Right: Resource usage evaluation.

C. Objects found in limited time

In this experiment we place a hundred objects in random

places of the grid world, limit the mission time, and count

how many of the objects are found. Three variations are

presented:

1) CMM vs. CMS: We compare the best solution of each

class, when the mission deadline is fixed to half the CMM

time (note that in half the CMS time, the CMM solution would

almost finish the exploration). As shown by fig. 7, the shorter

exploration timespan of CMM allows to find more objects.

Even if this seems evident, we consider this of relevance to

multi-robot exploration where reward maximization is used:

this gives a good ratio
Area explored

Distance traveled
, but exploration time

can be highly suboptimal if our observations are confirmed

in these problems.

2) Halved algorithm solution time: We test each algo-

rithm taking half the time of their best solution as mission

deadline. Thus, the algorithm with lowest median, FIFO,

finds more objects (fig. 8a). This confirms the rationale

argued in [6]: the instantly greedy FIFO strategy is best

when there is no information on task arrival, since greedy

allocation will give the lowest average cost per task. For

infinite horizon problems with unbounded task arrival, FIFO

would likely be the best algorithm.

3) Fixed global time: But our mission has a finite environ-

ment with finite objects. Now, all algorithms share the same

deadline: half the time of the globally best known solution.

This is a fairer comparison of absolute performance. As

shown by fig. 8b, FIFO is no longer the best, since its solution

is more costly. The short-term advantage is neglected by the
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Fig. 7. Objects found by the best CMM and CMS allocations.
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Fig. 8. The four algorithms with MINMIX descriptor in search of 100 objects limited to (a) half their CMM time; (b) a same fixed mission time for all.

shorter plan of the best solution obtained by the LAGOTAIL

algorithm. It would be interesting to pursue this point to

determine at which problem sizes or mission durations FIFO

is surpassed by the other algorithms.

As a final observation, the Gaussian curves found in figs.

7 and 8 arise because the distributions in figs. 5 and 6 satisfy

the properties from which the central limit theorem follows.

Particularly, for the two roughly uniform distributions, there

are k objects to be uniformly found during mission total time.

This follows a Poisson distribution with λ =

CMM

k
.

V. CONCLUSIONS

We have tested several auction techniques in a large sim-

ulated real scenario and in smaller random worlds. We have

applied several criteria to optimize the MINMAX (mission

time) and MINSUM (resource usage) costs. These criteria

are linear combinations of both costs. Multiple runs have

been performed to extract general trends, for several mission

kinds like goal visiting or object finding.

The principal finding is that the MINMIX criterion, which

combines equally time and resource costs, is very good in

all cases. It is best for the time objective in a majority

of occasions, better than any other time criterion for the

resource objective, and very close to the MINSUM one for the

resource objective. In the other hand, MINSUM is only good

for its intended resource objective, being notably bad for the

mission time. This finding strongly suggests that multi-robot

teams should carefully justify the use of MINSUM auctions,

due to its narrow applicability.

Of all tested algorithms, the only one with a patently

different performance is the myopic FIFO one, which only

considers one task ahead. Our experiments confirm early

literature results where it is best suited for situations where

tasks outnumber robots and task arrival is ongoing. For other

kinds of problems, like finite maps and tasks, it is not a

competitive alternative.

We have also observed that ongoing auctions after the

first full allocation noticeably improve the mission plan.

Thus, an initial bound-guaranteed auction (LAGO) followed

by ongoing auctions of already assigned tasks (SINGLEEXT)

would couple all the observed advantages.

Our experiments on object searching evidence that the

MINSUM criterion is badly suited for this kind of mission
in all cases. The greedy short-sightedness of FIFO makes it

well-performing in the early mission stages, but as the time

elapses the better plans of the other algorithms take over the

lead.

Future work has the purpose of observe if these findings

can be generalized to more situations. We intend to carry out

further testing in more regular and human-made scenarios.

Especially, we want to verify if the huge underperformance

of the MINSUM descriptor for the mission time cost is

also observed in these regular scenarios. Experiments with a

wider range in the number of robots are also needed to learn

more about the generality of the results found herein.
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