
 

 

 

  

Abstract— This paper introduces a model-based approach to 

estimating longitudinal wheel slip and detecting immobilized 

conditions of autonomous mobile robots operating on outdoor 

terrain. A novel tire traction/braking model is presented and 

used to calculate vehicle dynamic forces in an extended Kalman 

filter framework. Estimates of external forces and robot 

velocity are derived using measurements from wheel encoders, 

IMU, and GPS. Weak constraints are used to constrain the 

evolution of the resistive force estimate based upon physical 

reasoning. Experimental results show the technique accurately 

and rapidly detects robot immobilization conditions while 

providing estimates of the robot’s velocity during normal 

driving. Immobilization detection is shown to be robust to 

uncertainty in tire model parameters. Accurate immobilization 

detection is demonstrated in the absence of GPS, indicating the 

algorithm is applicable for both terrestrial applications and 

space robotics. 

I. INTRODUCTION 

OBILE robot position estimation systems typically 

rely (in part) on wheel odometry as a direct estimate of 

displacement and velocity [1],[2]. On high-traction terrain 

and in combination with periodic GPS absolute position 

updates, such systems can provide an accurate estimate of a 

robot’s position. However, when driving over low-traction 

terrain, deformable terrain, steep hills, or during collisions 

with obstacles, an odometry-based position estimate can 

quickly accumulate large errors due to wheel slip. Between 

absolute position updates, an odometry-based system is 

unable to differentiate between a robot that is immobilized 

with its wheels spinning and one that is driving normally. 

Autonomous robots should quickly detect that they are 

immobilized in order to take appropriate action, such as 

planning an alternate route away from the low-traction 

terrain region or implementing a traction control algorithm. 

Additionally, robust position estimation is required for 

accurate map registration.   

Wheel slip can be accurately estimated through the use of 

encoders by comparing the speed of driven wheels to that of 

undriven wheels [3]; however this does not apply for all-

wheel drive vehicles or those without redundant encoders. 

Ojeda and Borenstein have proposed comparing redundant 

wheel encoders against each other and against yaw gyros as a 

fuzzy indicator of wheel slip, even when all wheels are 

driven [4], and have also proposed a motor current-based 

slip estimator [5]; however this technique requires accurate 
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current measurement and terrain-specific parameter tuning. 

A body of work exists in the automotive community related 

to traction control and anti-lock braking systems (ABS); 

however, this work generally applies at significantly higher 

speeds than is typical for autonomous robots [6],[7]. 

A large amount of work has utilized Kalman filters with 

inertial and absolute measurements to enhance dead 

reckoning and estimate lateral slip [8]-[10]. The notion of an 

effective tire radius, which can indirectly compensate for 

some longitudinal slip, is presented in [11]. None of this 

work, however, explicitly considers the effects of 

longitudinal wheel slip or vehicle immobilization.   

A potentially simple approach to detecting robot slip and 

immobilization is to analyze GPS measurements. However, 

nearby trees and buildings can cause signal loss and 

multipath errors and changing satellites can cause position 

and velocity jumps [12],[13]. Additionally, GPS provides 

low frequency updates (e.g. typically near 1 Hz [14]) making 

GPS alone too slow for immobilization detection.  

Another potentially simple approach could rely on 

comparison of wheel velocities to a robot body velocity 

estimate derived from integration of a linear acceleration 

measurement in the direction of travel.  As shown in a 

companion paper [15]; however, such an approach is not 

robust at low speeds during travel on rough, outdoor terrain. 

Here a method is presented for detecting robot wheel slip 

and immobilization that does not require redundant wheel 

encoders or motor current measurements. The proposed 

approach uses a dynamic vehicle model fused with wheel 

encoder, inertial measurement unit (IMU), and (optional) 

GPS measurements in an extended Kalman filter to create an 

estimate of the robot’s longitudinal velocity. An insight of 

this approach is the realization that a robot becomes 

immobilized due to an external force resisting motion. The 

proposed algorithm utilizes a novel tire traction/braking 

model in combination with sensor data to estimate external 

resistive forces acting upon the robot and calculate the 

robot’s acceleration and velocity. Weak constraints are used 

to constrain the evolution of the resistive force estimate 

based upon physical reasoning. The algorithm has been 

shown to accurately detect immobilized conditions on a 

variety of terrain types and provide an estimate of the robot’s 

velocity during “normal” driving. The algorithm has been 

run in real time onboard a mobile robot and has proven 

robust to periods of GPS and IMU dropout. 

This paper is organized as follows. In Section II the 
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vehicle dynamic model and tire model are presented. In 

Section III the slip detection algorithm is described. In 

Section IV experimental results are presented. In Section V 

conclusions are drawn from this work and future work is 

suggested. 

I. DYNAMIC MODELS  

A. Robot Configuration 

The robot configuration considered in this work is shown 

in Fig. 1. The robot has four rubber pneumatic tires and is a 

front-wheel differential-drive configuration with undriven 

rear wheels that are freely-rotating castors mounted to a rear 

pivot joint suspension. Robot body and tire forces are shown 

in Fig. 2. The dynamic models presented below are specific 

to this robot configuration; however the modeling process is 

adaptable to other wheeled vehicle configurations. 

B. Vehicle Dynamics 

Modeled forces acting on the robot include gravity, a 

lumped external disturbance force, and tire forces acting at 

the four tire-terrain contact patches (Fig. 2). The disturbance 

force represents external forces such as wind resistance or 

the force caused by collision with an obstacle. In this work 

we limit the disturbance force to forces resisting vehicle 

motion.  

Tire forces are composed of normal, traction/braking, 

rolling resistance, and lateral force components. For the 

robot considered, the rear traction/braking forces can be 

assumed negligible since these wheels are undriven. The rear 

lateral forces can be neglected because the rear castors spin 

freely.  

The vehicle acceleration along the body x-axis is:  
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where m is the total vehicle mass, g is the acceleration due to 

gravity, ftire and adist,bx are the equivalent x-axis body 

accelerations due to tire forces and the disturbance force. 

Assuming the vehicle’s axis of yaw rotation is approximately 

the point midway between the front tires and neglecting any 

yaw moment due to gravity, the vehicle’s yaw acceleration 

is: 
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where J is the vehicle’s moment of inertia about the body z-

axis and c is the distance between front wheel centers.   

C. Normal Forces 

Calculation of the robot’s normal forces with arbitrary 

body roll (θ) and pitch (φ) is in general an underconstrained 

problem. Methods proposed in the literature [16], [17] 

typically consider a simplified 2-wheeled “bicycle” model, 

which can be applied when roll effects are ignored. In [18] it 

is suggested that normal forces be estimated by considering 

the elasticity of the terrain. A rigid body solution can also be 

found (utilizing the Moore-Penrose Generalized Inverse), 

assuming point tire-soil contact [19].    

For the robot configuration considered in this work, 

assuming zero moment about the passive rear suspension 

pivot joint allows the rear left and right normal forces to be 

assumed equal. With this assumption the normal force 

calculation is no longer underconstrained and an explicit 

solution exists. For normal force calculations it is also 

assumed that the vehicle longitudinal acceleration is 

negligibly small, which is generally valid for slow-moving 

robots. The normal forces are: 
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D. Traction/Braking Model 

A large body of research has been performed on modeling 

tire forces on rigid and deformable terrain. Most models are 

semi-empirical and express tire traction/braking forces as 

functions of wheel slip i and wheel skid is, where [20]: 

ωr

v
i −=1  and 

v

r
is

ω
−=1  (6),(7) 

where r is the tire radius and ω is the wheel angular velocity.  

Here a unified, explicitly differentiable traction/braking 

model is proposed that captures the critical elements of the 

models proposed in the literature. The traction/braking force 

is expressed as a function of the wheel’s relative velocity, 

rather than slip. A relative velocity-based formulation does 

not introduce the singularities found in slip-based 

formulations and is consequentially easier to apply within an 

Fig. 1. Robot kinematic parameters and body-fixed coordinate system. 

Fig. 2. Diagram showing vehicle and tire forces.   
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extended Kalman filter framework. The simplified model is: 

( )( )rel
v-A

relTraction vCCvNF relt
21 e-1)sign( +=  (8)  

where vrel is the velocity of the tire relative to the ground: 

fwdrel vrv  - ω= , and vfwd is the tire’s forward velocity, 

computed as: ψ&cvv bxfwd 5.0±= , where ψ&  is the robot yaw 

rate, and C1, At, and C2 are constants.  

The simplified model is continuously differentiable and 

can predict both traction and braking force, without a need to 

distinguish the two cases. This model requires three 

terrain/tire dependant parameters as opposed to the popular 

“Magic Formula” which requires six. C1 and At are positive 

constants which can be viewed as the maximum tire-terrain 

traction coefficient and the slope of the traction curve in the 

low relative velocity region, respectively. C2 is the slope in 

the high relative velocity range and can be positive or 

negative depending on the terrain.  

Fig. 3 shows a plot of traction/braking versus wheel slip 

for lines of constant wheel velocity using the proposed 

traction/braking model, as well as a representative traction 

force curve from the literature [20]. Assuming the robot 

typically operates near a nominal velocity, the proposed 

model can be interpreted as a pseudo-linearization around 

the nominal operating velocity.  

E. Rolling Resistance Model 

 Rolling resistance is generally modeled as a 

combination of static and velocity dependant forces [20], 

[17]. Here a function with form similar to (8) is proposed as 

a continuously differentiable formulation of the rolling 

resistance, with the static force smoothed at zero velocity to 

avoid a singularity. The rolling resistance is:  

( ) ( )( )fwd
v-A

fwdresroll v R -eRNvF fwdroll
21 1sign +−=  (9)  

where R1, Aroll, and R2 are positive constants. 

 
Fig. 3. Comparison of traction force vs. wheel slip curves for the slip-based 

model and the proposed simplified model at various wheel speeds. 

II. SLIP DETECTOR ALGORITHM 

A. Extended Kalman Filter 

The slip detector algorithm utilizes an extended Kalman 

filter (EKF) to integrate sensor measurements with the 

nonlinear vehicle model. The EKF structure requires that the 

discrete, nonlinear process model be written in the form 

( )11 ,,ˆˆ −−
− = kkkk wuxfx , where −

kx̂  is the a priori estimate of 

the state vector, x, at time step k and f is a nonlinear function 

of the previous state estimate, 1ˆ −kx , the current input vector, 

ku , and process noise, 1−kw . The measurement vector, z, is a 

nonlinear function, h, of the true, current state vector and 

sensor noise ν  such that: ( )kkk xhz ν,= .    

The standard EKF time update equations using the 

notation of [21] and Joseph’s form of the covariance update 

equation [22] are used. The relations )0,,ˆ( 1 kk uxf −  and 

)0,ˆ( −
kxh  express the estimated state and measurement 

vectors, −
kx̂  and ẑ , by evaluating the nonlinear process and 

measurement equations, assuming zero noise. Q and R are 

process and measurement noise covariance matrices and Ak, 

Wk, Hk, and Vk are process and measurement Jacobians. 

B. State Space Model Formulation 

The vehicle and sensor dynamics are formulated as a state 

space model using the following state vector: 

[ ] [ ]Tgrlbxdistaxbx
T

babvxxxxxxx ψψωω ,,,,,,,,,,,, ,7654321 &==x , 

where ωl and ωr are the angular velocities of the left and 

right front wheels and bax and bgψ are the accelerometer x-

axis and yaw gyro walking biases, respectively, which are 

part of the IMU error model suggested in [23]. 

Using the above state vector, the vehicle dynamics can be 

written as: 
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where wi are zero mean white noise and fcontroller(u) is the 

wheel acceleration which is a function of the robot’s onboard 

velocity controller and the desired velocity. When estimating 

the vehicle dynamics, we neglect fcontroller, assuming it is 

negligible compared with the process noise. The a priori 

estimate of the robot state is found by discretizing the state 

equations and neglecting the zero-mean process noise, wi.     

C. Measurement Model 

The algorithm utilizes measurements from the IMU, GPS, 

and front wheel encoders. The measurement vector is:  

[ ] [ ]T

encrenclGPSIMUIMU

T
xxzzzzz ,,54321 ,,,,,,,, ωωψ &&&&==z , 

where IMUx&&  and IMUψ&  are IMU measurements of x-axis 

acceleration and yaw rate, GPSx&  is the component of the GPS 

velocity measurement along the body x-axis, and ωl,enc and 

ωr,enc are the left and right front wheel encoder angular 
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velocities. The measurement vector can be written as:  
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where cax and cgz are constant offsets of the x-axis 

accelerometer and yaw gyro respectively. To approximate 

the constant offsets, they are initialized to the average of the 

first n IMU measurements, subtracting out the acceleration 

due to gravity from the acceleration measurement. When the 

robot is at rest, the constant offsets are updated with new 

measurements using the exponential moving average [24]: 
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which is an approximation of the time average of the 

measurement over the last p samples, with a higher weight 

given to the most recent measurements. The EMA is not 

guaranteed to converge to the true value of the constant 

offsets, however it is easily and recursively calculated and 

has yielded good results in practice. The estimated 

measurement vector, ẑ , is found by evaluating ( )0,ˆ −
kh x . 

D. Weak Constraints 

The disturbance, x3, and accelerometer walking bias, x2, 

have both been modeled as random walks. Practically, the 

only difference between these variables in the model are that 

x3 appears in the calculation of 1x&  while x2 does not, and 

that x3 is assigned a larger covariance in the matrix Q so that 

x3 can evolve more quickly than x2.  

Although a direct measure of the disturbance force is 

generally not available, rules governing its evolution can be 

developed based upon insight into the physical nature of the 

disturbance. These rules are implemented using weak 

constraints described in [25] and implemented in a vehicle 

model in [11]. Unlike ad hoc solutions, weak constraints are 

a principled method for integrating rules and constraints into 

the Kalman filter framework which correctly update the state 

vector and system covariance matrix. Weak constraints can 

be viewed as virtual measurements or observations.   

Table I summarizes the weak constraints employed in this 

work. The middle column presents the condition that must be 

met for the constraint to be applied and the right column 

gives the measurement innovation to be used in the EKF. For 

some of the conditions the variable VelDir is used, defined 

as: ( )rlVelDir ωω += sign , such that VelDir equals 1 if the 

wheels are driving forward, 0 if the wheels are stopped, and -

1 if the wheels are driving in reverse.  iEMA is the EMA (12) 

of the average of the left and right front wheel slip.  

E. Slip and Immobilization Detection 

The extended Kalman filter provides an estimate of the 

robot’s forward velocity and the front wheels’ angular 

velocities. Using these estimates, a criterion for detecting 

when the robot is immobilized is desired.  A natural choice 

TABLE I. SUMMARY OF WEAK CONSTRAINTS USED. 

Description Condition “Measurement” Innovation 
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3) The disturbance can stop the robot, but should not 

pull the robot backwards. If the robot is moving 

backwards, then either it is sliding down a hill and 

the disturbance should be zero, or the estimated 

disturbance is too high and should be reduced. 
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4) When robot is fully stopped, the disturbance force 

and walking biases should tend to zero for 

calibration of the IMU constant biases. tstop is a 

constant. T is the length of time the condition has 

been met. 
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5) In practice there may be known limits on the 

magnitude of a state. These can be implemented as 

weak constraints as a precaution to keep the states 

bounded. Under normal operation, these constraints 

will rarely be called. maxxi are constants. 
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6) Similar to 5, we can also impose limits on the rate 

of change of a state. For example, we may know that 

a robot’s acceleration will never exceed a certain 

limit. 
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for an “immobilized” metric is the wheel slip (6). In practice, 

the calculated wheel slip can be noisy. To improve 

robustness, the EMA (12) of the average of the left and right 

wheel slips is calculated and immobilization is detected if the 

EMA is larger than a threshold value. The threshold value is 

chosen empirically. A low threshold value allows the 

detector to react quickly, however can be prone to falsely 

detecting immobilized conditions. In practice, since 

measurement noise can cause large variations in calculated 

slip at low speeds, the threshold can be chosen to vary with 

speed. Immobilization is not detected if the robot is braking 

(i.e. vbx > rω). The above technique represents one possible 

criterion for detecting immobilization which has worked well 

in practice; however other criteria are possible. 

III. EXPERIMENTAL RESULTS 

A. Robot Description 

An autonomous mobile robot developed for the DARPA 

LAGR (Learning Applied to Ground Robots) program [26] 

has been used to experimentally validate the algorithm (Fig. 

4). The robot is 1.2 m long x 0.7 m wide x 0.5 m and has the 

kinematic configuration discussed in Section IIA. The robot 

is equipped with 4096 count per revolution front wheel 

encoders, an Xsens MT9 IMU, and a Garmin GPS 16 

differential GPS. The robot has been used to collect data to 

process offline using a Matlab implementation of the slip 

detector, as well as to run an online C++ implementation on 

one of the robot’s 2.0 GHz Pentium M computers. 

  

B. Algorithm Performance 

The algorithm was applied to 21 experimental test runs. 

During these tests, the robot traveled approximately 120 

meters over a range of terrain types including loose mulch, 

loose gravel over hard dry soil, mud, and various grasses. 

The robot was driven at speeds ranging from 0.1 m/s to 1 

m/s. The test runs include 20 instances of the robot coming 

to a complete stop with the wheels still spinning, which were 

initiated by holding the robot back using a spring scale.   

The slip detector correctly identified each of these 20 

instances as immobilized with an average detection time of 

0.4 seconds. All data with the robot driving freely or sitting 

at rest was correctly labeled as normal driving, with the 

exception of two false positives. In total, less than 0.2% of 

the data points were falsely labeled as immobilized.   

Fig. 5 shows a plot of the robot driving unconstrained over 

grass at 1 m/s until t ~ 16 s, after which the robot attempts to 

drive forward while restrained with a spring scale, producing 

100% wheel slip. In the top plot, it can be seen that the 

filter’s estimated robot velocity (x1) follows the measured 

wheel velocity during the unconstrained driving. The middle 

plot shows the estimated disturbance (x3), which remains 

small while the robot is driving normally. Just after the robot 

stops at t ~ 14.5 s, suspension displacement creates a small 

spike in the disturbance. The bottom plot shows the EMA of 

the wheel slip. While driving normally, the wheel slip is 

estimated at approximately 3%, which is physically 

reasonable. The increased slip while accelerating and 

braking is also expected. The detector correctly labeled the 

unconstrained driving as driving normally.  

After t ~ 16 s the velocity estimate shows that the robot 

accelerates against the spring, but quickly becomes 

immobilized. The disturbance estimate approaches a near-

constant resistive value ranging from -2.8 to -3.1 m·s
-2

 while 

the robot is immobilized, before returning to zero when the 

wheels stop spinning. During this test, the spring scale 

measured a 325 N force holding the robot back. The 

equivalent body acceleration for the 117 kg robot is 2.8 m·s
-

2
, which closely agrees with the estimated disturbance. The 

slip EMA quickly approaches 100% and the detector 

identifies the robot as immobilized at t = 17.56 s.   

 
Fig. 5. Example of robot driving normally, then becoming immobilized. 

GPS velocity estimates for this test were available at 1 Hz, 

slower than desired for detection. Additionally, GPS returns 

the average velocity over the previous time step, and thus the 

measurement is truly accurate for 0.5 seconds prior to the 

reported measurement time. In this example, immobilization 

could not be detected by GPS until t ~ 18.5 s, nearly one 

second slower than the proposed algorithm. 

C. Algorithm Performance without GPS 

The 21 experimental datasets were reprocessed without 

including GPS velocity measurements (i.e. using wheel 

encoder and IMU measurements only). The algorithm again 

 
Fig. 4. The LAGR robot. 
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correctly identified all 20 immobilizations. The false 

immobilization detections increased from two to four (0.35% 

of all data points). These results suggest the algorithm can be 

applied on systems lacking reliable GPS, such as mobile 

robots in urban surroundings, underwater, or where GPS is 

not available such as for Mars rovers. However, GPS can 

increase accuracy and improve performance when available. 

D. Sensitivity to Tire Model Parameters 

To study the algorithm’s sensitivity to tire model 

parameter values, the 21 experimental data sets were 

reprocessed, individually varying one of the five tire 

constants by ±20%. In all 210 tests, the algorithm correctly 

identified all 20 immobilizations. The number of false 

positives for each case is summarized in Table II. It was 

observed that the algorithm performance was most sensitive 

to changes in C1. Increasing C1 increases the maximum 

modeled traction, making the model less likely to estimate 

that traction has been lost and the wheels are slipping. 

Conversely, decreasing C1 reduces the modeled available 

traction, increasing the likelihood of wheel slip in the model 

and causing an increase in the number of false 

immobilization detections. Even in the worst case, only 0.3% 

of the data points were falsely labeled immobilized. In 

summary, the algorithm appears quite robust to errors in 

estimated tire model parameters. It should be noted that the 

algorithm’s velocity estimate appeared less accurate in the 

majority of the non-nominal cases.     

IV. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

A dynamic model-based slip detector has been proposed 

that has proven effective at detecting robot immobilization 

over a variety of terrains. The detector utilizes a novel tire 

traction/braking model and weak constraints to estimate 

external forces acting on the robot. The algorithm can be 

applied to any vehicle with an IMU, wheel encoders, and 

(optionally) GPS. Sensitivity analysis has indicated that 

accurate immobilization detection is possible with relatively 

coarse engineering estimates of tire-model parameters. The 

algorithm also yields reasonably accurate estimates of the 

robot’s velocity and could potentially be implemented in a 

position estimation system that is robust to wheel slip.  

Current work focuses on techniques for autonomously 

adapting the tire model parameters which would allow the 

algorithm to provide highly accurate velocity estimates as 

well as improve the slip detection time and reliability over 

variable terrain. Current work is also exploring fusing the 

output of multiple slip detection algorithms to increase 

detection speed and accuracy. 
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TABLE II. SENSITIVITY OF FALSE IMMOBILIZED FLAGS TO CHANGES IN TIRE PARAMETERS. 

Parameter  C1 At R1 R2 Aroll 

Parameter Change Nominal +20% -20% +20% -20% +20% -20% +20% -20% +20% -20% 

# False Positives 2 1 5 2 3 2 2 2 2 2 2 
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