
 

 

 

  

Abstract— This paper introduces a signal-recognition based 

approach for detecting autonomous mobile robot 

immobilization on outdoor terrain. The technique utilizes a 

support vector machine classifier to form class boundaries in a 

feature space composed of statistics related to inertial and 

(optional) wheel speed measurements. The proposed algorithm 

is validated using experimental data collected with an 

autonomous robot operating in an outdoor environment. 

Additionally, two detector fusion techniques are proposed to 

combine the outputs of multiple immobilization detectors. One 

technique is proposed to minimize false immobilization 

detections. A second technique is proposed to increase overall 

detection accuracy while maintaining rapid detector response. 

The two fusion techniques are demonstrated experimentally 

using the detection algorithm proposed in this work and a 

dynamic model-based algorithm.  It is shown that the proposed 

techniques can be used to rapidly and robustly detect mobile 

robot immobilization in outdoor environments, even in the 

absence of absolute position information. 

I. INTRODUCTION 

OBILE robot wheel slip frequently occurs when 

driving over low-traction terrain, deformable terrain, 

steep hills, or during collisions with obstacles, and can 

frequently result in robot immobilization. As position 

estimation systems typically rely heavily on wheel odometry 

[1],[2], undetected immobilization can lead to poor 

localization between low-frequency absolute position 

updates, resulting in poor map registration. Autonomous 

robots should quickly detect that they are immobilized in 

order to take appropriate action, such as planning an 

alternate route away from the low-traction terrain region or 

implementing a traction control algorithm [3].    

Wheel slip can be accurately estimated through the use of 

encoders by comparing the speed of driven wheels to that of 

undriven wheels [4], however this does not apply for all-

wheel drive vehicles or those without redundant encoders. 

Ojeda and Borenstein have proposed comparing redundant 

wheel encoders against each other and against yaw gyros as a 

fuzzy indicator of wheel slip, even when all wheels are 

driven [5], and have also proposed a motor current-based 

slip estimator [6]; however this technique requires accurate 

current measurement and terrain-specific parameter tuning. 

A body of work exists in the automotive community related 

to traction control and anti-lock braking systems (ABS); 
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however, this work generally applies at significantly higher 

speeds than is typical for autonomous robots [7],[8]. 

A potentially simple approach to detecting robot slip and 

immobilization is to analyze GPS measurements. However, 

nearby trees and buildings can cause signal loss and 

multipath errors and changing satellites can cause position 

and velocity jumps [9],[10]. Additionally, GPS provides low 

frequency updates (e.g. typically near 1 Hz [11]) making 

GPS alone undesirably slow for immobilization detection.  

Another potentially simple approach could rely on 

comparison of wheel velocities to a robot body velocity 

estimate derived from integration of a linear acceleration 

measurement in the direction of travel.  As will be shown in 

Section IIIb, however, such an approach is not robust at low 

speeds during travel on rough, outdoor terrain. 

Machine learning/classification techniques have been 

employed in various mobile robotics applications including 

vibration-based terrain classification [12] and self-supervised 

vision-based road detection [13], as well as other 

applications such as speech recognition [14]. The authors are 

aware of no previous work utilizing these techniques for 

robot immobilization detection. 

Here a method is presented for detecting robot 

immobilization using a signal-recognition approach. Offline, 

a support vector machine (SVM) classifier is trained to 

recognize immobilized conditions within a feature space 

formed using inertial measurement unit (IMU) and optional 

wheel speed measurements. The trained SVM can then be 

used to quickly detect immobilization with little 

computation. Experimental results show the algorithm to 

quickly and accurately detect immobilization in various 

scenarios. 

To improve algorithm accuracy and robustness, 

immobilization detector fusion techniques have been 

explored. One technique is proposed to minimize false 

immobilization detections. A second is proposed to increase 

overall detection accuracy while maintaining rapid detector 

response. The two fusion techniques are demonstrated with 

experimental data using the algorithm proposed in this work 

and a dynamic model-based algorithm described in an 

accompanying paper [15].   

This paper is organized as follows. In Section II the 

classifier-based immobilization detection algorithm is 

presented and its performance is experimentally 

demonstrated in Section III. In Section IV two detector 

fusion techniques are presented along with a summary of the 

dynamic model-based slip detector previously developed 
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[15]. The effectiveness of the fusion techniques is analyzed 

through experimental results. In Section V conclusions are 

drawn from this work and future work is suggested. 

II. MOBILE ROBOT IMMOBILIZATION CLASSIFICATION 

A. Classification Algorithm Overview 

The algorithm proposed in this work was inspired by the 

observation that a human in a vehicle with eyes closed can 

quickly and robustly distinguish whether the vehicle is:  

1) completely stopped with wheels stopped,  

2) driving normally over outdoor terrain, or 

3) immobilized, with the wheels rotating but slipping. 

Even in the absence of training for this task and without 

visual feedback, a human can interpret clues such as vehicle 

heave/jounce and motor/engine sound signature to 

discriminate between cases 1-3 with reasonable accuracy. 

The proposed algorithm uses a signal-recognition 

approach to detect mobile robot immobilization (case 3 

above) based on inertial and wheel speed measurements. The 

measurements are used to form n features that can be used to 

distinguish between the two classes “immobilized” and 

“normal driving.” A support vector machine (SVM) is used 

to determine class boundaries within the n-dimensional 

feature space [16].  

The SVM is trained using a hand-labeled data set of l 

instance-label pairs (x1, y1), … , (xi, yi), … , (xl, yl) with 
n

i ℜ∈x  and { }1,1−∈iy  [17],[18].  In this work, “normal” is 

labeled as 1−=iy  and “immobilized” as 1=iy .  The l 

training instance feature vectors, xi, are combined to form 

the l x n feature matrix, [ ]T

lxxX L1= , and the labels 

form the l x 1 training label vector, [ ]T

lyy L1=y .     

Classification accuracy is improved by scaling each 

feature type to have similar magnitudes [18].  To scale each 

feature to the range [-1, 1], the n x n scale factor matrix, S, is 

formed such that: 
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 and y are used to train a SVM using a radial basis 

function (RBF) kernel as this kernel performs well with both 

non-linear and linear class relations and requires few kernel 

parameters [18]. SVM parameters are found using a grid 

search to systematically find a parameter set that minimizes 

the average classification error and error standard deviation 

of a v-fold cross-validation [18]. The final SVM model is 

trained using the best SVM parameter set and the entire 

training data set.  

The parameter search and SVM training can be 

computationally expensive. However training is performed 

only once, offline, producing an SVM model suitable for 

computationally inexpensive online classification.  Note that 

during online classification, each measured feature vector, x, 

is first multiplied by the scale factor matrix, S, before 

classification by the trained SVM. 

During online classification, the output of the SVM’s 

decision function is a scalar decision value, ),(ˆ ∞−∞∈f , 

where the value of f̂  is a measure of the distance of the 

instance from the class boundary in the n-dimensional 

feature space. Typically an instance is labeled as:   
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However, increased accuracy can usually be achieved at the 

expense of lowered labeling completeness (i.e. labeling more 

instances “unknown”) using the following: 
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where threshold ≥ 0.  In this work (3) has been used unless 

otherwise specified, meaning that all data has been classified. 

B. Feature Vector Selection 

In this work four features have been chosen to form the 

feature vector [ ]4,3,2,1, ,,, iiiii xxxx=x . Each feature is a 

numerical representation of sensor data that attempts to 

mimic the sensory cues a human operator would exploit 

when attempting to detect immobilized conditions. Data is 

sampled at a rate fs and a numerical transform is calculated 

on a set of N data points for each feature instance. Fig. 1 

illustrates the coordinate system used in feature definitions. 

The first two features were chosen as the variance of the N 

element groupings i of roll rate, i,Nθ
& , and pitch rate, i,Nφ& , 

such that:        

( ) ( )( )( )2

,,1, EEvar NiNii,Nix θθθ &&& −== , (5) 

( ) ( )( )( )2
,,2, EEvar NiNii,Nix φφφ &&& −== . (6) 

These two features are a measure of the degree of roll and 

pitch experienced by a vehicle during travel over uneven 

outdoor terrain. 

The third feature was chosen as a measure of the variation 

in the z-axis (vertical) acceleration. The variance is a 

measure of the total variation from the mean over all 

frequencies; however empirical results have shown that only 

high frequency z-axis acceleration signal variation 

effectively distinguishes immobilized conditions. For feature 

three, iz ,aP  the p element vector of the power spectrum 

coefficients of grouping i of z-axis acceleration is calculated 

using a discrete Fourier transform, where:  






 +
=

2

1N
p .  (7) 

Where    is the ceiling function. Then feature three is 
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calculated as: 
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For this work, N = 50 was chosen and fs = 100 Hz, resulting 

in a sum of the frequency content from 25 to 50 Hz. This 

frequency range was empirically determined to perform well 

for the robot system used in this work.   

 Feature four was chosen as the mean of the magnitude 

of the wheel angular accelerations: 

( ) ( )NirtNilftNirtNilftix ,,,,,,,,4, Emean ωωωω &&&& +=+=  (9) 

where Nilft ,,ω&  and Nirt ,,ω&  are the N element groupings i of the 

left and right wheel angular accelerations, respectively. 

During outdoor driving, terrain unevenness leads to 

variations in wheel torque, leading to variations in wheel 

angular acceleration.  This variation is minimized when the 

robot is immobilized. 

III. EXPERIMENTAL RESULTS 

A. Robot Description 

An autonomous mobile robot developed for the DARPA 

LAGR (Learning Applied to Ground Robots) program [19] 

has been used to experimentally validate the algorithm (Fig. 

2). The robot is 1.2 m long x 0.7 m wide x 0.5 m, has four 

rubber pneumatic tires, and is a front-wheel differential-drive 

configuration. The robot is equipped with 4096 count per 

revolution front wheel encoders, an Xsens MT9 IMU, and a 

Garmin GPS 16 differential GPS (not used in this algorithm). 

IMU and wheel encoders are sampled at 100 Hz. The robot 

has been used to collect data to process offline using a 

Matlab implementation of the slip detector. 

B. Algorithm Performance 

The SVM classifier was trained on data gathered during 

traversal of mud, loose mulch, and various grasses at speeds 

ranging from 0 to 1.0 m/s. The training data included 14 

instances of the robot coming to a complete stop with the 

wheels still spinning, which were initiated by retarding robot 

motion with a spring scale. Using N = 50, the classifier was 

trained with 408 instance-label pairs, 18% of which were 

labeled as immobilized. 

 
Fig. 2. The LAGR robot.  

The classifier was tested using two distinct data sets. In 

the first set, the robot was driven once again over grass; 

however immobilization was initiated when the robot 

experienced significant wheel slip while attempting to 

surmount a hill. In the second set, the robot was driven over 

loose gravel mixed with dry, brittle soil, and immobilization 

was initiated by retarding robot motion with a spring scale. 

Note that this terrain type was not present in the training data 

set. 

Test results using all four features described in Section IIb 

are shown in Fig. 3. Total classification accuracy was 94.7%. 

The figure shows that all incorrectly labeled points were near 

an actual immobilized period, with 98.1% of normal points 

correctly classified. The 1.9% of normal points classified as 

immobilized were all near the start or end of an immobilized 

period, which could indicate small errors in hand labeling of 

these extremal points. 75% of immobilized instances were 

classified correctly; however all immobilized periods were 

recognized as immobilized in at least some of the data 

instances comprising that occurrence.  

Using only the first three features so that only IMU 

measurements were required, total classification accuracy 

was 92.0%, with 97.7% of normal instances and 59.1% of 

immobilized instances correctly classified. With only three 

features, classification accuracy was reduced, however false 

immobilized detections remained low and all immobilized 

occurrences were again detected. 

Fig. 4 shows a receiver operating characteristic (ROC) 

curve for classification of the test data set using all four 

features. The vertical axis shows the percentage of total 

instances that are classified correctly while the horizontal 

axis shows the percentage classified incorrectly.  The curves 

are generating by progressively increasing threshold in (4), 

causing fewer points to be classified and more points to be 

“unknown.” Thus, increasing threshold results in a more 

conservative classifier. The upper-right endpoint of each line 

is the classifier accuracy with all instances classified 

(threshold = 0).  

It can be seen that as threshold is increased, the percent of 

incorrect classification initially deceases rapidly, while the 

percent correct remains near constant, meaning in this region 

the majority of correctly labeled points were further than 

threshold from the class boundary. This curve shows the  
Fig. 1. Body-fixed coordinate system used in this work. 
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possible tradeoffs between number of instances labeled and 

labeling accuracy and can be a useful design tool. 

  One potentially simple slip detection technique is to 

estimate robot body velocity by integrating acceleration 

measurements (after subtracting gravitational acceleration 

due to vehicle pitch) then comparing this estimate against 

wheel velocity, thereby estimating wheel slip [20]. Fig. 5 

compares wheel velocity with estimated body velocity for the 

grassy hill data set. At low speeds accelerometer errors 

dominate, causing the velocity estimate to quickly diverge. 

In this case a detector based on this estimate would detect 

immobilized for the majority of the data set and be 

ineffective. Because the velocity estimate error is essentially 

a random walk, in some cases such a detector would estimate 

the velocity to always be larger than the wheel velocity, thus 

never detecting immobilization.  

IV. DETECTOR FUSION 

A. Fusion Techniques 

To increase immobilization detection accuracy two 

techniques have been explored to fuse multiple detector 

outputs. The first technique (termed Fusion 1) is designed to 

minimize false immobilization detections at the expense of 

increasing the number of immobilized instances incorrectly 

classified as normal. For d detectors, Di, each with output 1 

for “immobilized” and -1 for “normal”: 

( ) ( )
( ) ( )


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




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==

=

otherwise1-
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di DD
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Thus Fusion 1 detects immobilized only if all detectors agree 

that the robot is immobilized. 

The second technique (termed Fusion 2) is designed to 

increase total detection accuracy and yield faster 

immobilization detection than Fusion 1. For Fusion 2, each 

detector output, Di, is expressed as a continuous variable on 

the interval [-1, 1], with an output of 1 meaning the detector 

is completely confidant that the robot is immobilized, -1 

meaning the detector is completely confidant the robot is 

driving normally, and 0 meaning there is an equal probability 

of the robot being immobilized or driving normally.  Fusion 

2 is a weighted average of the detector outputs: 
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where a is a threshold value and wi are weights with: 

 ∑
=

=

d

i

iw
1

1 .  (12) 

B. Dynamic Model-Based Wheel Slip Detector Summary 

An alternate, dynamic model-based wheel slip detection 

algorithm was proposed in [15] and has been studied in 

conjunction with the classification-based algorithm proposed 

in this work to test the efficacy of the fusion techniques. The 

proposed approach uses a dynamic vehicle model fused with 

wheel encoder, IMU, and (optional) GPS measurements in 

an extended Kalman filter (EKF) to create an estimate of the 

robot’s longitudinal velocity. The proposed algorithm 

 
Fig. 3. Experimental results of classifier-based immobilization detection. Each incorrectly classified point is a 0.5 second instance. Wheel velocity is 

effective linear velocity at wheel radius.  

 
Fig. 4. ROC curve for immobilization detection experimental results. 
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utilizes a novel tire traction/braking model in combination 

with sensor data to estimate external resistive forces acting 

upon the robot and calculate the robot’s acceleration and 

velocity. Weak constraints are used to constrain the 

evolution of the resistive force estimate based upon physical 

reasoning. The algorithm has been shown to accurately 

detect immobilized conditions on a variety of terrain types 

and provide an estimate of the robot’s velocity during 

“normal” driving. In experimental testing the algorithm 

falsely labeled ~0.2% of data points as immobilized. Near 

perfect detection is desired; which may be achievable by 

fusing multiple detection algorithms.   

One drawback of the model-based slip detection algorithm 

is that it requires identification of a small number of physical 

tire model parameters. The classification-based approach 

presented here was developed as an alternative, model-free 

approach to detecting robot immobilization. 

C. Fusion Results 

The performance of the fusion techniques described in 

Section IVa was studied using the detector proposed in this 

work (i.e. the SVM method) and the detector proposed in 

[15] (i.e. the EKF method).  The output of the SVM method 

was scaled for Fusion 2 by first determining the smallest 

threshold for which all classified training points are 

classified correctly, threshold100%. Then: 






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



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ˆ
sat

%100threshold

f
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where the saturation function, sat(x, y), is defined here as: 
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The EKF method outputs a detected class for each of the 

N data points that make up instance i of the SVM method, 

but does not output a confidence value. DEKF is therefore 

taken as the mean of the N data points, providing an estimate 

of the detector’s confidence. If half of the N points are 

classified as immobilized, then there is approximately a 50% 

chance the robot was immobilized during those data points 

and DEKF = 0. This estimate has the drawback of assigning 

low confidence when immobilization begins near the end of 

the N points, possibly leading to sub-optimal detection time; 

however it provides a computationally simple method to test 

the fusion technique performance. For Fusion 2, w1 = w2 = 

0.5 and a = 0 were used.      

Fig. 6 shows a dataset of the robot driving over loose 

mulch which demonstrates the relative performance of the 

fusion techniques. In sections A and C the robot was driven 

normally under remote control, and in sections B and D the 

robot was commanded to drive forward at 0.5 m/s but was 

restrained with a spring scale, causing immobilization. The 

bottom plot indicates the moments when immobilization was 

detected by the two detectors and two fusion techniques. 

It can be seen that in section A the SVM method falsely 

detects immobilization, likely due to the rapid wheel speed 

oscillation. The EKF method, however, correctly labels this 

instance as normal driving, allowing both fusion techniques 

to correctly label this section as normal. Similarly, in section 

C the EKF method misclassifies an instance as immobilized, 

but the SVM method and both fusion methods correctly 

classified this section.   

In section B, the SVM method detected immobilization 

very rapidly, while the EKF method’s detection time was 

approximately 1.0 second slower. In this case, the SVM 

method detects immobilized immediately after the robot 

begins to decelerate, while the EKF method detects 

immobilized when the robot comes to a stop. As expected, 

Fusion 1 only detected immobilization when both detectors 

agreed. Fusion 2 was able to detect immobilization 

approximately 0.5 seconds sooner than Fusion 1 because the 

SVM method expressed high confidence in its output while 

the EKF method expressed an uncertain output (i.e. an 

output near 0). In section D, the SVM method expressed a 

low confidence in its early immobilization detection and 

neither fusion technique detected immobilization until the 

EKF method was in agreement. Table I compares detection 

accuracy of the four methods when run on the Section IIIb 

test set, which included 301 half second instances. All four 

techniques detected the 6 immobilized periods. The SVM 

method detected immobilized the quickest followed by 

Fusion 2; however in some cases the SVM method detected 

immobilized before the vehicle was stopped, accounting for 

the 3 false positives. Both fusion techniques eliminated these 

false positives, with Fusion 2 demonstrating the highest total 

accuracy.  

Table I compares detection accuracy of the four methods 

when run on the Section IIIb test set, which included 301 

half second instances. All four techniques detected the 6 

immobilized periods. The SVM method detected 

immobilized the quickest followed by Fusion 2; however in 

some cases the SVM method detected immobilized before 

the vehicle was stopped, accounting for the 3 false positives. 

Both fusion techniques eliminated these false positives, with 

Fusion 2 demonstrating the highest total accuracy. 

Although not shown in Fig. 6 or Table I, it is possible that 

a detector could falsely label an instance with high enough 

confidence for the point to be mislabeled by Fusion 2 but not 

Fusion 1. Fusion 1 should therefore be more robust to false  
Fig. 5. Inaccuracy of estimating robot velocity by integrating measured accel. 
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positives. If both detectors mislabel an instance, it will be 

mislabeled under both fusion techniques. 

V. CONCLUSIONS 

A signal recognition based approach to detecting robot 

immobilization has been proposed and experimentally 

validated.  Four distinguishing features have been proposed 

for the algorithm requiring an IMU and (optionally) wheel 

encoders or tachometers, both common sensors on outdoor 

mobile robots. Future work will explore the effects of SVM 

kernel selection and robot speed and configuration on 

algorithm performance and test the algorithm on alternate 

terrain types and situations. 

Two simple detector fusion techniques have been 

proposed to combine the output of the classifier-based 

immobilization detector and a dynamic model-based 

detector. Fusion 1 resulted in a conservative approach to 

minimize false detections, while Fusion 2 provided faster 

performance while potentially allowing more false 

detections. Both fusion techniques were shown to eliminate 

false immobilization detections on the experimental data set 

and increase overall accuracy compared to each individual 

detector. Future work will explore using various fusion 

techniques to combine more than two detectors and for 

alternative applications including terrain classification. 
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TABLE I. COMPARISON OF ACCURACY OF DETECTION AND FUSION 

TECHNIQUES ON SECTION IIIB TEST SET. 

 SVM 

Method 

EKF 

Method 

Fusion 1 Fusion 2 

Total Accuracy: 94.7% 95.7% 91.7% 98.0% 

# False Positives: 3 0 0 0 

# False Negatives: 13 13 25 6 

 

 
Fig. 6. Detector fusion results. Wheel velocity is effective linear velocity at wheel radius. 
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