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 Abstract – Flexible joint robot manipulators can be 
decomposed into two cascaded subsystems, a series connection 
of robot link dynamics and joint dynamics. For these flexible 
manipulators, we propose the robust controller using a 
recursive design method. The recursive design procedures are 
constructive and contain two steps. First, a fictitious robust 
controller for the robot link dynamics is designed as if the link 
dynamics had an independent control. As the fictitious control, 
a nonlinear H ∞  control using the energy dissipation is designed 

in the sense of 2L -gain attenuation from the disturbance 
caused by uncertainties to performance. Second, a real robust 
control is designed recursively by using a Lyapunov’s second 
method. The designed robust control is applied to a 2 DOF 
robot manipulator with joint flexibilities. 
 
 Index Terms - Flexible Joint, Robust Control, H ∞  Control, 
Backstepping Control, NLMI (Nonlinear Matrix Inequality) 
 

I.  INTRODUCTION 

 For a class of nonlinear system which is composed of 
series connection of finite number of nonlinear subsystems, 
a recursive design is applied for stabilizing control. 
Interesting progress in the recursive design has been 
achieved in adaptive control of feedback linearizable 
systems [1]. 
 Since many systems inherently have uncertainties such 
as parameter variations, external disturbances, and 
unmodelled dynamics, the robust control can be considered. 
The Lyapunov’s second method is widely used in designing 
robust controllers, as proceeded in existing results [2,3]. One 
of the difficulties in using Lyapunov’s second method is that 
it is not easy to find an appropriate Lyapunov function for 
control design. 
 Another robust control method which has attracted 
attention of many researchers is H ∞  control. Although the 

nonlinear H ∞  control has been derived by the 2L -gain 
analysis based on the concept of the energy dissipation [4,5], 
its application is not easy due to the difficulty in solving the 
first-order partial differential inequality called as Hamilton 
Jacobi inequality (HJ inequality). The H ∞  control problem 
in nonlinear systems reduces to the existence of the solution 
to HJ inequality and many methods are proposed in recent 
papers [6,7,8,9]. 

 In this paper, a robust controller is designed for 
cascaded nonlinear uncertain systems using a recursive 
design which is composed of two steps. In the first step, a 
fictitious robust controller for the first subsystem is designed 
as if the subsystem had independent control. As the fictitious 
control, the nonlinear H ∞  control is used to guarantee the 
robust stability of the system. The solution to HJ inequality 
can be obtained through a more tractable nonlinear matrix 
inequality (NLMI) method and the fact that the matrices 
forming the NLMI is bounded [9]. In second step, the actual 
robust control is designed recursively by Lyapunov’s second 
method. 
 The designed control is applied to a 2 DOF robot 
manipulator with flexible joints. In the system, the two 
subsystems representing joint dynamics and link dynamics 
are connected in a series with stiffness terms. Simulations 
are performed for this system with uncertainties of inertia 
and stiffness. 
 This paper is organized as follows. In section Ⅱ, the 
recursive design procedures are presented for the system 
without uncertainties and the robust controls are designed 
for the uncertain system. In section Ⅲ, the robust design is 
designed for the robot manipulators with flexible joints 
using the suggested procedures in section Ⅱ. In section Ⅳ, 
the simulation is presented. In section Ⅴ, the conclusions 
are presented. 
 

II.  ROBUST RECURSIVE DESIGN 

A. Recursive Design for Certain System 
 The system considered in this paper is described by 
 

1 1 1 2( ) ( )x f x F x x= +                                                           (1) 

2 1 2 2( , , )x g x x x Gτ= +                                                        (2) 
 

where 1x  and 2
nx ∈  are the states of systems and  nτ ∈  

is a control input, and G  is a constant matrix. Equation (2) 
of the second subsystem is a differential equation whose 
output is the input signal to the first subsystem. The 
recursive design exploits this structural property. 
  In recursive design, it is required that there exists a 
fictitious control, which stabilizes the first subsystem of (1). 
 
Assumption 1 (Global Stabilizability)  When 2x  is assumed 

to be the fictitious control, there exists a 2C  fictitious 
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control law 1fu  such that the first system 

1 1 1 1( ) ( ) fx f x F x u= +  is globally stable. This is established 

with a 1C  positive definite function 1( )E x  such that 
 

( )1 1 1
1

( ) ( ) 0f
E f x F x u
x

∂ + ≤
∂

. 

 
In the first subsystem, this control law is not implementable 
and its effect must be achieved through the second 
subsystem, that is, the real control τ  must be determined so 
that 2 1fx u= . 
 
Theorem 1  If assumption 1 is satisfied with the fictitious 
control 1fu  then the overall system has stable equilibrium 
point with the second fictitious control and the real control 
 

2 1 1 1( )T
f f Fu u L E eα= − −                                                   (3) 

2 1 2 2fG u g e eτ α= − − −                                                     (4) 
 

where 
1

F
EL E F
x

∂=
∂

, 1 2 1fe x u= − , 2 2 2fe x u= −  and 1α  

and 2α  are positive constants. 
 
proof : Using the fictitious control 1fu , we can rewrite (1) as  
 

1 1 1 1 1 1( ) ( ) ( )fx f x F x u F x e= + + .                                        (5) 
 
To show that the real control achieves stable equilibrium 
point, we use the positive definite function 
 

1 1 1 2 2
1 1( )
2 2

T TV E x e e e e= + + .                                              (6) 

 
Using (2) and (5), its time-derivative is  
 

( ) ( ) ( )

( ) ( )
( )

1 1 1 1 1 1 2 1 2 2 2
1

1 1 1 1 1 2
1

2 1 2 2 2 1

( ) ( ) ( )

( ) ( ) ( )

( , , ) .

T T
f f f

T T
f F f f

T
f

EV f x F x u F x e e x u e x u
x
E f x F x u e L E u u
x

e g x x x G u eτ

∂= + + + − + −
∂
∂= + + − +
∂

+ + − +

 

 
By assumption 1 and (3) and (4), stability is proved. 
                                                                                     Q.E.D. 
 
 
B. Robust Fictitious Control for Uncertain System 
 The recursive design in the previous section can be 
applied easily to a class of nonlinear systems without model 
uncertainties, but every system has modeling errors. For the 
reason model uncertainty must be considered in control 
design to obtain good performance. In this section the 

fictitious control is designed with the nonlinear H∞  control 
to guarantee the robustness to model uncertainties.  
 To find the H∞  control is to find a stabilizing state-
feedback control input such that the closed-loop system has 
a 2L -gain equal to or less than γ  in the input-to-output 
sense. In the nonlinear H∞  control design, it is essential to 
find the solution to the associated Hamilton-Jacobi [HJ] 
inequality derived from the condition to satisfy 2L -gain 
property in the input-to-output sense [4]. If a solution exists, 
then it will guarantee the stability as well as the disturbance 
attenuation. 
 Before proceeding detailed design, we defined the 
fictitious control 1fu  such as 
 

1f t ru u u= +  
 
where tu  is the control input to transform (1) satisfying the 
following assumption 2 and ru  is a robust control input to 
be designed with H∞  theory. 
 
Assumption 2  There exist a 1C  control input tu  such that 
the first system (1)  is  transformed to  
 

1 1 1 1 2 1( , ) ( ) ( ) rs A x x s B x w B x u= + +                                     (7) 
 
where 1 1( , ) n

ds x x ∈  is the new state, 1
n

dx ∈  is the 

desired trajectory, nw∈  is the disturbances caused by 
model uncertainties and 1 1( , )A x x , 1 1( )B x  and 2 1( )B x  are 
the matrix-valued function of suitable dimensions. 
 
 By assumption 2 and with the performance vector z , 
the first nonlinear subsystem (1) can be described as 
 

1 1 1 1 2 1( , ) ( ) ( ) rs A x x s B x w B x u= + +  

, 0, 0T Tz Hs Du H D D D= + = >                                     (8) 
 
where H  and D  are the constant matrices of suitable 
dimensions. 
 In the form of (8), the derived HJ inequality is more 
tractable since it can be transformed to nonlinear matrix 
inequality (NLMI). The design of a nonlinear H∞  controller 
for the nonlinear system in the form of (8) is summarized as 
the following theorem. 
 
Theorem 2  Given 0γ > , suppose there exists a matrix P  
satisfying 
 

1
1 1 2 22

1 [ ] 0T T T T T T T TP A A P P B B P H H P B D D B P
γ

−+ + + − ≤    (9) 

 
and there exists a non-negative energy storage function 
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( ) 0TE s s Ps= ≥ . Then the control input satisfying 

2L gain γ− ≤  is 
 

1
2[ ]T T

ru D D B Ps−= − .                                                       (10) 
 
proof : The derivative of energy storage function E  along 
the trajectory of s  is 
 

1 2

1 2

2 ( )

( ) 2 ( ).

T T
r

T T T T T
r

EE s s P As B w B u
s

s P A A P s s P B w B u

∂= = + +
∂

= + + +

 

 
Introducing 2 22 w zγ −  into above equation, we obtain 
 

22 22 2 2
1

2

2

2 1
1 1 2 2

(1 ) 2

{

(1/ ) ( ) } .

T T T
r

T T T T T
r

T T T T T T

E w z w B Ps s H Du

Du D B Ps s P A A P

P B B P P B D D B P H H s

γ γ γ

γ

−

−

= − − − +

+ + + +

+ − +

 

 
By using (9) and the control input ru , the derivative of the 
storage function is arranged as  
 

2 22E w zγ≤ − . 
 
Therefore it satisfies 2L gain γ− ≤ . 
                                                                                     Q.E.D. 
 
 
 To obtain the solution of (9) easily, it is transformed to a 
nonlinear matrix inequality using the Schur complement. 
Firstly, premultiplying and postmultiplying the inequality (9) 
by the positive definite matrices TP−  and 1P−  respectively, 
then by the Schur complement, the HJ inequality becomes 
 

0
TW Q H

HQ I
 

≤ − 
 

 

where 1
1 1 2 22

1 [ ]T T TW AQ Q A B B B D D B
γ

−= + + −  and 1Q P−= . 

 Solving the above NLMI yields convex optimization 
problem. Unlike the linear case, this convex problem is not 
finite dimensional. However, if the matrices forming the 
NLMI are bounded, then we only need to solve a finite 
number of LMIs. 
 The overall stabilizing robust fictitious control becomes  
 

1 1
1 2[ ]T T

f tu u D D B Q s− −= − . 
 
C. Robust Real Control for Uncertain System 
 If there exists the fictitious control tu  and ru  satisfying 
assumption 2 and theorem 2, the choice of 2 1fx u= , if 

permitted, would ensure robust stability. Since 2x  is not a 
real control input, we cannot let 2 1fx u=  and its effect must 
be achieved through the second subsystem. 
 Using the fictitious control 1fu , we can rewrite (1) as 
 

1 2 2 1rs As B w B u B e= + + + . 
 
To design the robust real control, which achieves 2L -gain 
property, we use the function (6). Its time derivative is  
 

2 2 2 22
1 1 2 2

1 1 2 2 2

( )

( ) ( )T T
f

V w z e e

e u e G

γ α α

τ

≤ − + +

+ ∆ + + ∆ +
                           (11) 

 
where 1 1 1 2 12 T

fe B Ps uα∆ = + − , 2 2 2 1 2fe g e uα∆ = + + −  and 

1α  and 2α  are positive constants. 
 To design the second fictitious control with robustness, 
the bound of 1∆  must be obtained. Using (7) and (10), it 
can be obtained as 
 

1 1 1 1 1 1 1 1 2 3 1:fe s u e s sα β α β β β ρ∆ ≤ + + ≤ + + + =  
 
where 1β , 2β  and 3β  are positive constants. Therefore the 
second fictitious control 2fu  can be designed as 
 

1
2 1

1 1
f

e
u

e
ρ

ε
= −

+
. 

 
But to obtain the bound of 2∆ , it is necessary to modify 

2fu  to be differentiable as following equation [13] 
 

2
1 1

2 13
1 1

f

e e
u

e
ρ

ε
= −

+
.                                                        (12) 

 
Using (12), the bound of 2∆  can be obtained as  
 

2 2 2 1 2

2
2 2 1 1 1 2 2: .

fe g e u

e g e k k

α

α ρ ρ

∆ ≤ + + +

≤ + + + + =
 

 
If it is assumed that min maxG G G≤ ≤  for known upper and 
lower bounding matrices, the real control input can be 
chosen as 
 

1 2
min 2

2 2

eG
e

τ ρ
ε

−  
= −   + 

. 

 
With the second fictitious control 2fu  and the real control 
τ , the storage function satisfies 
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2 2 2 22

1 1 2 2( )V w z e eγ α α≤ − + +  
 
which achieve 2L -gain property. 
 

III.  DESIGN FOR FLEXIBLE ROBOT MANIPULATORS 

A. Dynamics of flexible Robot Manipulators 
 Consider the dynamics of robot manipulators with joint 
flexibility. The dynamics is  
 

1 1 1 1 1 1 2 1( ) ( , ) ( ) ( )M x x C x x x G x K x x+ + = −                      (13) 

2 2 2 1( )Jx Bx K x x τ+ + − =                                               (14) 
 
where 1

nx ∈  is the link side angle, 2
nx ∈  is motor side 

angle, 1( )M x  is the positive definite symmetric inertia 
matrix, 1 1( , )C x x  represents the centripetal and coriolis 
torque, 1( )G x  represents the gravitational torque, J  denotes 
the diagonal inertia matrix of actuator about their principal 
axes of rotation multiplied by the square of the respective 
gear ratios, B  is the viscous function matrix and K  is the 
stiffness matrix [14]. Since model uncertainties exist in the 
above dynamics, the robust control is needed for the 
recursive design. 
 
B. Robust Fictitious Control for Uncertain System 
Transformation of Dynamics.  To design the fictitious 
control be robust to model uncertainties, Equation (13) is 
rewritten as 
 

1 1 1 1
1 1 1 2x M Cx M G M Kx M Kx− − − −= − − − + .                    (15) 

 
Before proceeding with tu  in section II, the new state s , 
which is modified error for joint tracking, is defined as 
 

1 1 1 1 1 1{ ( )}d d rs x x x x x x= − − Λ − = −  
 
where 1dx  and 1dx  are the desired position and velocity 
respectively. If the elements of s  approach to zeros at 
t → ∞ , so do the tracking errors of joints. 
 A suitable control input satisfying assumption 2 can be 
chosen as 
 

1
1 1 1

ˆ ˆˆ ˆ( )t r ru K Mx Cx G x−= + + +  
 
where K̂ , M̂ , Ĉ  and Ĝ  are the matrixes with nominal 
parameter values. 
 Substituting 1fu  for 2x , Equation (15) is transformed to  
 

1 1 1 1 2 1( , ) ( ) ( ) rs A x x s B x w B x u= + +                                   (16) 
 
where 1A M C−= − , 1

1B M −= − , 1
2B M K−=  and (w M=  

1 1 1
1 1

ˆ ˆˆ ˆ ˆ ˆ) ( ) ( )r rKK M x C KK C x G KK G− − −− + − + −  which is a 
disturbance vector caused by model uncertainties. 
 
Robust Control.  To derive the HJ inequality for the robust 
control input, each matrix term of (16) is substituted into (9), 
then  
 

1 1 1 1 1 1
2

1 1 1 1 1

1( ) ( ) ( ) ( )

( ) ( ) ( ) 0.

T T T T T T

T T T

MP C C P M H H MP P M

MP K D D K P M
γ

− − − − − − − −

− − − − −

− + + +

− <
 

 
Premultiplying and postmultiplying the inequality by the 
positive definite matrices TMP−  and 1 TP M−  respectively, 
then the HJ inequality becomes 
 

1
2

1 ( ) 0

T T T T T T

T T

CQM MQ C CQ H HQM

I K D D K
γ

−

− − +

+ − <
                             (17) 

 
where 1Q P−= . Using the Schur complement, Equation (17) 
can be described as a NLMI 
 

0
T T

T

W MQ H
HQM I
 

≤ − 
                                                 (18) 

 

where 1
2

1( )T T T T TW CQM MQ C K D D K I
γ

−= − − − + . The 

matrices M  and C  is the nonlinear function of 1x  and 1x  
in (18). However, those matrices include trigonometric 
functions and can be bounded when each joint velocity range 
is bounded between two empirically determined external 
values. Using this fact, we consider that the matrices 
forming above NLMI vary in some bounded sets of the 
space of matrices, i.e., 
 

[ ] { }{1,2, , }, , , , , , , ,i i i i LM C K H D Co M C K H D ∈∈     

 
where Co  represents the convex hull and L  is the number 
of vertices of bounded space. Therefore, if there exists a 
solution Q  to (19), then it is also a solution to (18) [9]. 
 

0, {1, 2, , }
T T

i
T
i

W M Q H
i L

HQM I
 

≤ ∈ − 
                     (19) 

 

where 1
2

1( )T T T T T
i i i i i iW C QM M Q C K D D K I

γ
−= − − − + . 

This approach provides a tractable method to get constant 
solution to NLMI, which can be used to design the robust 
control input. However, this approach generally leads to 
conservative results if the prescribed bound is large. 
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C. Robust Real Control for Uncertain System 
 To design the robust control, which achieves 2L -gain 
property, we use the positive definite function (6). Its time 
derivative is  
 

( )2 2 2 22
1 1 2 2

1
1 1 2 2 2( ) ( )T T

f

V w z e e

e u e J

γ α α

τ−

≤ − + +

+ ∆ + + ∆ +
                          (20) 

 
where 1 1 1 12 T T

fe K M Ps uα −∆ = + − , 1
2 2 2 1e e J Kα −∆ = + −  

1
1 2 2 2( ) fx x J Bx u−− − − , 1α , and 2α  are positive constants. 

This inequality contains the motor side dynamics and the 
real control input τ . 
 If the uncertain model matrices satisfy 
 

min max min max

min max min max

,
,

M M M J J J
K K K B B B

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

 

 
then the bound of 1∆  and 2∆  can be obtained as 
 

1 1 1 1 2 1:e sα δ δ ρ∆ ≤ + + =  
2

2 2 2 1 2 1 2 1 3 2:e k q q k kα ρ ρ∆ ≤ + − + + = . 
 
The second fictitious control can be designed as 
 

2
1 1

2 13
1 1

f

e e
u

e
ρ

ε
=

+
. 

 
And the real control input can be chosen as 
 

2
max 2

2 2

eJ
e

τ ρ
ε

 
= −   + 

. 

 
By using 2fu  and τ , the storage function is arranged as 
 

( )2 2 2 22
1 1 2 2V w z e eγ α α≤ − + + . 

 
 Therefore it satisfies 2L -gain property. 
 

IV.  SIMULATION 

 In this section, the robust performance of the proposed 
controller for the 2 DOF robot manipulators against inertia 
and stiffness uncertainties is verified through simulation. 
The performance of the proposed robust controller is 
compared with that of a model based dynamic controller. 
The model based dynamic controller is composed of a PID 
controller and a feedforward dynamic controller considering 
joint flexibility. Table 4.1 shows the nominal values of the 
physical parameters of the 2-DOF robot manipulator.  
 

TABLE I  PHYSICAL PARAMETERS 

1m  6  kg  2cl  0.15  m  

2m  4  kg  1k  1500  Nm rad  

1l  0.3  m  2k  1200  Nm rad  

2l  0.3  m  1b  0.05  Nms rad  

1cl  0.15  m  2b  0.05  Nms rad  

  
At the initial pose, the two links are paralleled to the surface 
of land straightly against the gravity. The first joint 1θ moves 
180 degree in counterclockwise, and the second joint 2θ  
moves 90 degree in counterclockwise. And there is 
disturbance torque (100 Nm ) at 2.3 sec. 
 The angles and angular velocities of the proposed robust 
controller and a model based dynamic controller are shown 
in the Fig. 1 and Fig. 2. The results have similar behaviors, 
but there is no oscillation in case of the proposed robust 
control, moreover a convergence is very quick after 
disturbance torque. Also simulation is performed for 
perturbed parameter cases when the mass of links varies by 
20% and the stiffness of joints varies by 20%. The results of 
parameter uncertainties, as shown in the Fig. 3 and Fig. 4, 
show the proposed controller has robustness to model 
uncertainties. 
 

 
Fig. 1 Link angle. 

 

 
Fig. 2 Link velocity. 

(RC : Robust control, DC : Model based dynamic control) 
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(a) Proposed robust control 

 
(b) Model based dynamic control 

Fig. 3 Angular velocity under inertia uncertainty. 
 
 

 
(a) Proposed robust control 

 
(b) Model based dynamic control 

Fig. 4 Angular velocity under stiffness uncertainty. 
 
 

 

V.  CONCLUSION 

 Using recursive design, a robust control was designed 
for the robot manipulators with flexible joint, which can be 
decomposed into two cascaded subsystem, i.e. the link 
dynamics and the joint dynamics. First, the fictitious robust 
control for the link dynamics was designed using nonlinear 
H∞  control. The associated HJ inequality was transformed 
to NLMI and its solution was obtained from the fact that the 
terms in matrices can be bounded. The application of 
proposed method was simple since the gain matrix can be 
determined easily by an efficient convex optimization 
algorithm. Second, the real robust control for the joint 
dynamics was designed recursively using a Lyapunov’s 
second method. In the results, the proposed robust controller 
had robustness to model uncertainties. 
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