
 
 

 

  

Abstract—A new and fast technique for generating collision-
free paths for a mobile sphere, whose size (radius) dynamically 
changes, is introduced in this paper. A collision between the 
mobile-sphere motion and an obstacle is predicted by computing 
its minimum translational distance. This distance parameterizes 
an intermediate configuration for the sphere, which is in contact 
with the obstacle or separated a configurable distance. Collision 
with a given obstacle is then avoided by forcing the mobile 
sphere to pass through a selected intermediate configuration. 
This paper describes a technique to reduce or to grow this 
configuration (sphere) in order to bring it into contact (or as 
close as desired) with a second obstacle. This fact provides the 
path planner some remarkable properties like it really generates 
a set of homotopic paths in narrow environments for not only a 
sphere but any other mobile object which always keeps inside 
the volume represented by the generated path.  

I. INTRODUCTION 
OTION planning is an extensive studied area in 
robotics. Many techniques have been published and 

their application settings are continuously growing. A deep 
and wide review on planning algorithms is found in [1]. 

A new path-planning technique, centered on dealing with 
some encouraging points in motion planning: size-changing 
mobile objects, narrow corridors and enveloping the free 
space between obstacles, is introduced in this paper. 

Although path planning is constrained to two degrees of 
freedom, obstacles are modeled by 3D spherically-extended 
polytopes. Mobile object is modeled by a sphere with the 
ability of changing dynamically its radius. Obstacle motions 
are also constrained to the same plane that the mobile sphere. 
It is assumed that obstacles' positions are measurable. 

The proposed path-planning algorithm is based on the 
computation of the minimum translational distance [2] 
between a given mobile-sphere motion and an obstacle. Such 
a distance characterizes an intermediate configuration 
(sphere) for the mobile sphere which is in contact with the 
involved obstacle. When a collision is predicted, a new 
motion for avoiding such an obstacle is defined by its 
associated intermediate configuration. This avoidance 
strategy is based on the previous work in [3]. 

When an intermediate configuration defining a new 
motion has been selected, this configuration is immediately  
 

 
Manuscript received September 15, 2006. This work has been partially 

funded by the Generalitat Valenciana project with reference GV06/115, 
MASMICRO European Project number 500095-2 and FEDER projects 
with references DPI2005-08732-C02-02 and DPI2006-15320-C03-01. 

Enrique J. Bernabeu is with the Instituto de Automática e Informática 
Industrial, Universidad Politécnica de Valencia, E-46022, Valencia, SPAIN 
(phone: +34-963877007 Ext. 88232, fax: +34-963879816; e-mail: 
ebernabe@isa.upv.es). 

tested if it collides with a nearby obstacle. A fast technique is 
then applied to reduce the configuration size until such a 
collision disappears.  

Collaterally, if this technique is applied to a configuration 
which does not collide with an obstacle, this configuration is 
grown, if desired, until it gets in contact with the obstacle. 

After that, the modified intermediate configuration defines 
a new mobile-sphere motion. New collision tests between 
this new motion and the obstacle are required again. 

A collision-free path for the size-changing mobile sphere 
is finally generated under real-time constraints. Path planner 
is so fast that can be run as frequently as new information 
from the sensor system is received. 

The path generated envelopes the free-space volume swept 
by the mobile sphere. Given that the mobile sphere change 
its size, this volume really represents a set of homotopic 
paths for any sphere or generic mobile object that always fits 
inside the above-mentioned free space. 

Generally, when this collision-free path is provided to a 
motion-planning algorithm dealing with complex objects, the 
collision-detection problem is then transformed into 
checking if the mobile object is inside the given free space. 

II. SPHERICALLY-EXTENDED POLYTOPE 
A spherically extended polytope (s-tope) is the convex 

hull of a finite set of spheres. A sphere is denoted s=(c,r) 
where c is the center and r is its radius. Given the set of 
spheres S={s0,s1,...,sn}, the convex hull of such a set, SS, 
contains an infinite set of swept spheres expressed by 
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The convex hull of spheres does not include all possible 
spheres which can fit inside the s-tope, only those that are 
generated by (1). Spheres in S are called spherical vertices. 
S-tope order is the number of spherical vertices. Graphical 
examples of s-topes are shown along the paper.  

An s-tope is said to be overspecified if one or more of its 
spherical vertices can be removed without changing the 
convex hull. These spherical vertices are called redundant. 
An s-tope which is not overspecified is called valid. 

As a polytope with four or more points is a polyhedral 
object with triangular facets, tetra-spheres (or greater-order 
s-topes) are composed of tri-sphere facets [4]. A tri-sphere 
has three bi-spherical edges. The simplest s-tope is a sphere. 
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A bi-sphere is the s-tope characterized by a set of two 
spheres {(c0,r0), (c1,r1)}. The axis of a bi-sphere is charac-
terized by the vector c1−c0. Degree η and angle of conver-
gence α of a bi-sphere are respectively defined as follows 
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where ||·|| is the Euclidean norm. 
Bi-sphere will degenerate into a single sphere [5] (equal to 

its bigger spherical vertex) when the degree of convergence 
does not verify the condition η∈[-1,1]. 

III. GENERATION OF A COLLISION-FREE PATH FOR                   
A MOBILE SIZE-CHANGING SPHERE 

Given a mobile sphere, whose size dynamically changes 
and a set of obstacles modeled by s-topes, a technique for 
generating a collision-free path for the mentioned sphere is 
introduced in this section. 

A. Problem Formulation 
This technique also requires as inputs the start ss=(cs,rs) 

and goal sg=(cg,rg) configurations. These two configurations 
define a bi-sphere. This bi-sphere Ssg represents the motion 
of the mobile sphere from its initial position to its final one. 
Each one of the infinite intermediate positions of the mobile 
sphere from its start to its goal position is parameterized as  
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Note that (3) is the formal definition of a bi-sphere.  

If rs ≠ rg, radius of the mobile sphere is progressively 
changing from its initial to its final value. 

A collision-free path from the start to the goal configura-
tion is obtained by computing the distance between the 
mobile-sphere motion and each one of the obstacles. When a 
collision is predicted, a new collision-free intermediate 
configuration is generated in order to avoid such a collision. 

B. Distance Computation. 
The presented technique is based on a version of the GJK 

algorithm [4], called GJK* algorithm [2]. This algorithm 
computes the minimum translational distance (MTD) 
between two s-topes. 

Each one of the obstacles is modeled by an s-tope. A 
separation or penetration distance between the bi-sphere, 
which states the mobile-sphere motion, and an obstacle is 
computed as the distance between the origin point and the 
Minkowski difference set of the involved s-topes. 

Minkowski difference s-tope of two s-topes SA, SB, 
defined respectively by the sets of spheres A and B, is given 
by the following spherical vertices [6], 
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As MTD is a translational distance, MTD between two s-
topes SA, SB is defined as follows: if one of the s-topes is 
translated MTD, distance between SA, SB is then zero. 

MTD predicts a collision between the bi-sphere repre-
senting the mobile-sphere motion with an obstacle.  

Anyway, two previous and important aspects have to be 
considered before running GJK* algorithm. First, given that 
motions are constrained to a plane, the 3D s-topes used for 
modeling obstacles are composed of just bi-spherical facets. 
Second, note that MTD has to be computed normal to the 
vector cg−cs, otherwise when a collision is predicted such a 
collision will not be properly avoided [2]. 

For this application, GJK* algorithm requires as an 
additional input a set of as maximum three spherical vertices 
of the involved Minkowski difference s-tope. Algorithm ends 
returning the following information 
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where },{ 0 lccS ′′=′  with l≤1 states the centers of the spherical 
vertices )},(),,{( 00 ll rcrc ′′′′  that define the closest feature 
(sphere or bi-sphere) of the Minkowski difference s-tope to 
the origin point O. If l=1, directions hold by vectors cg−cs 
and 01 cc ′−′  are equal. O┴ is the projection of the origin point 
onto the structure defined by the centers in S'. Parameter λ 
states the O┴ relative position with respect to the spheres' 
centers in S'. Note that if l=0, no parameter λ is returned. In 
accordance with (3), λ characterizes the sphere in the mobile-
sphere motion which is used to determine the minimum 
translational distance. When GJK* algorithm ends with l=0, 
it means that such a sphere in the mobile-sphere motion is 
the start or the goal configuration. Case l=0 is considered as 
a particular case of l=1 with λ=0 or λ=1. dO is the distance 
from O to the structure defined by the centers of the 
spherical vertices, which define the Minkowski difference s-
tope. Finally, MTDv̂ , with 1||ˆ|| MTD =v , states the translational 
vector of the MTD which is normal to cg−cs. 

If l≤1, the minimum translational distance MTD between 
the origin point and the Minkowski difference s-tope, i.e., the 
MTD between mobile-sphere motion and a given obstacle is 
obtained as follows 
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Anyway, the MTD computed by (6) is only true if 10 rr ′=′ , 
i.e., if spheres' radii returned by the GJK* algorithm are 
equal. In accordance with the given approach, it is trivial to 
proof that case 10 rr ′≠′  is just presented when rs≠rg. 

If 10 rr ′≠′ , parameters λ, dO, MTD and MTDv̂  has to be up-

dated and respectively referred to as λ', Od ′ , MTD' and MTDv̂′ . 
Computation of these new parameters is shown in fig. 1.   
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Fig. 1.  Minimum translational distance computation when GJK* algorithm 
finishes returning two spherical vertices (bi-sphere) with angle of conver-
gence α≠0. For clarity, bi-sphere has been schematically depicted. Real bi-
sphere is obtaining by rotating the image upon its axis. α is negative  
 
Attending to fig. 1, such parameters are obtained as follows   
 

 
||||

tanλλ
01

O

cc
αd

′−′
⋅+=′ ;   

cos
O

O α
dd =′  

)(λ)(
||||

tanO 01001
01

O
MTD ccccc

cc
dv ′−′⋅′+′=′−′⋅

′−′
α⋅+=′ ⊥  

OMTDMTDˆ dvv ′′=′ ;   1||ˆ|| MTD =′v  

(7) 

 

where α is the corresponding angle of convergence. 
The right MTD' is then computed as 
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Note that the sign of the computed minimum translational 

distance codifies the relationship between the mobile-sphere 
motion and the involved obstacle. In this way, if MTD' is 
negative a collision is predicted, and consequently a penetra-
tion distance has been computed. If MTD' is zero, the mobile 
sphere, along its motion, will be in contact with the obstacle, 
whereas if MTD' is positive, its value state the maximum ap-
proach of the mobile sphere along its motion to the obstacle.  

Nevertheless, GJK* algorithm can end with l=2. In this 
case, only a set of three spherical vertices is returned. There-
fore, it means that O is inside the area defined by the centers 
of the spherical vertices, which define the mentioned Min-
kowski difference s-tope. In order words, obstacle is divided 
by the motion axis. Consequently, a collision is presented 
between the mobile-sphere motion and the obstacle. In order 
to compute the corresponding penetration distance, a version 
of the GJK∗ algorithm is run in triplicate [2]. Each one 
receives as an initial set, one of the three different bi-spheres 
obtained from the spherical vertices previously returned. 

Note that this GJK*-algorithm version returns the distance 
from the origin point to the axis of the external bi-spherical 
facet which is the closest to the initially provided bi-sphere.  

After finishing this GJK∗-algorithm version, the minimum 
translational distance is computed by applying the correspo-
nding equations (6), or (7) and (8). However, two important 
differences have to be considered. First, MTD expression 
associated with the radius in (6) or (8) is added instead of 
subtracted and afterwards its sign is set to be negative. 
Second, the sign of the vector that states the translational 
 

 
Fig. 2.  Computation of the minimum translational distance between a 
mobile-sphere motion and an obstacle modeled by a tri-sphere.  
 
distance has to be changed, since such a distance has been 
computed in the opposite direction (from inside to outside). 

As this version of the GJK* algorithm is run more than 
once. Several translational distances are obtained. As all 
these translational distances are normal to the motion axis, 
those ones that are maximal for each direction are selected. 
The lowest one of these two states the minimum penetration 
distance between the mobile-sphere motion and the obstacle.  

It is important to remark that in the same way that in [4], 
GJK* algorithm does not previously require to compute the 
Minkowski difference s-tope. Consequently, its complexity is 
linear with the total number of the spherical vertices  

C. Collision-Free Path Generation 
From now and for clarity, with independence of cases 

rs=rg or rs≠rg, parameters obtained after computing the 
minimum translation distance are going to be referred to as 
λ, dO, MTD and MTDv̂ . 

This distance-computation technique is fast enough to be 
used as a path-planner mechanism [2].  

An important advantage is that the parameters returned by 
the distance-computation algorithm characterize the sphere 
position in the motion whose translation is minimal to bring 
it into contact with the involved obstacle. 

Let Ssg be the bi-sphere representing the motion of a mo-
bile sphere from a start position to a goal one, which are res-
pectively given by ss=(cs,rs) and sg=(cg,rg). Let S be a given 
obstacle modeled by an s-tope. Let sx=(cx,rx) be the sphere in 
the motion which is translated MTD to bring it into contact 
with S. Let sI=(cI,rI) be such a sphere position touching S.  

After computing the separation or penetration distance 
between the mention motion and the obstacle S, spheres sx, 
sI, are determined by means of the known parameters λ, 
MTD, MTDv̂  as follows 
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δ≥0 states a safety threshold. If δ=0, sphere sI is in contact 

with the involved obstacle. A graphical example is shown in 
fig. 2. For clarity, fig. 2 has been represented in 2D. In fig. 2,  
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Fig. 3.  Intermediate configurations of the mobile sphere in contact with the 
obstacles. Si with i=1,...,5, are obstacles modeled by s-topes and sIi are their 
associated intermediate positions. Intermediate positions associated with an 
obstacle without collision have been depicted by a dashed line. Those ones 
associated with a collision situation have been represented by a solid line. 
Bi-sphere axis cg−cs states the motion of the mobile-sphere center.  

 
if Ssg is translated MTDˆMTD v⋅ , Ssg is in contact with obstacle 
S and sx is then the sphere in Ssg which is contact with S. 

In accordance with the situation depicted in fig. 2, after 
computing the corresponding distance, a collision is 
predicted (MTD is negative). Note that sI represents an 
intermediate position that avoids such a collision. This 
position sI is locally optimal. Nevertheless, the distance-
computation algorithm can end computing more than one 
translational distance. All these distances are rejected except 
two. In fig. 2, the minimum one has been the selected. The 
other one characterizes an alternative way of avoiding the 
obstacle that can be used for a global motion planner [2]. 

From a given intermediate position, two new motions are 
obtained. One motion is represented by the bi-sphere defined 
by the start and the intermediate spheres. The second one is 
characterized by the bi-sphere defined by the intermediate 
and the goal spheres. 

Now, the MTD between each motion and the obstacle is 
computed again. Note that a collision-free path is obtained 
by repeating recursively this process. 

A collision-free path for a mobile sphere, whose radius 
dynamically changes, is obtained by computing the minimum 
translational distance between the mobile-sphere motion and 
each obstacle. After that, a set of parameters (λi, 
MTDi, MTDiv̂ ) with i=1,…,n and n being the number of 
obstacles in sight, is computed. As a consequence, a set of 
intermediate configurations are determined by applying (9). 
A situation is presented in fig. 3.  

Although, λi, MTDi, MTDiv̂  have not been explicitly pointed 
out in fig. 3, it is easily to deduce the following properties: 

a) Obstacles can be sorted in accordance with their 
parameter λi∈[0,1]. See (9). 

b) Bi-sphere axis cg−cs, which represents the motion of the 
mobile-sphere center, divides the motion plane into two half 
planes. Vector MTDii ˆMTD v⋅  points to one half plane. 

 
Fig. 4.  Generation of a collision-free path. Path is the volume swept by the 
size-changing sphere from its start to its goal position. Every selected 
intermediate position has been depicted. Objects are represented in 2D. 

 
c) Obstacles are trivially classified into two types. A type 

1 obstacle is completely located in a half plane. A type 2 
obstacle is divided by the motion axis.  

A collision-free path from the start to the goal position is 
obtained by considering a set of new submotions. Attending 
to fig. 3, these new submotions can be respectively defined 
by the bi-spheres {ss,sI1}, {sI1,sI5} and {sI5,sg}. These 
submotions are defined from a subset of the intermediate 
configurations associated with the obstacles collided by the 
mobile-sphere motion [3]. 

For each new submotion, minimum translational distances 
are computed again, but only closer obstacles to this 
submotion are considered. Note that these obstacles are 
easily selected by its current λi. Each one of these new 
distances is computed by providing to the GJK* algorithm as 
initial set of spherical vertices, the same returned by the last 
distance computation in which such a obstacle was involved. 
This fact makes that the distance-computation algorithm 
complexity tends to 1. 

Repeating recursively this process, a collision-free path is 
found. From situation in fig. 3 and with the above-mentioned 
submotions, the collision-free path shown in fig. 4 is 
obtained. This collision-free path has been computed in 139 
µsec. on a Pentium® 4 CPU 3.00 GHz. 20 intermediate 
positions have been totally considered. Note that the path in 
fig. 4 represents a set of homotopic paths for a mobile sphere 
whose size always fits inside such a volume. 

This path-planner technique always finds a collision-free 
path from the start to the goal configuration except when a 
generated intermediate position collides with any other 
obstacle. This situation is given when the mobile sphere is 
intended to pass through a narrow region of the free space. 

IV. PATH PLANNING IN NARROW REGIONS 
When a selected intermediate configuration collides with 

another obstacle, a narrow area of the workspace is 
presented. Two options can be then adopted. First, both 
obstacles (s-topes) are joined by defining a new obstacle. For 
instance, obstacles S3 and S5 in fig. 4 degenerate into a tri- 
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Fig. 5.  Reduction of an intermediate position (sphere) sI=(cI,rI) which 
collides with obstacle Sj.   is the reduced sphere from sI which does not 
collide with Sj. For clarity, every object is depicted in 2D. 

 
sphere when they are joined. Then, distance between the 
current motion and the new obstacle is computed and, 
consequently, a new intermediate position is determined [2]. 
This process is repeated until a collision-free intermediate 
position is found. After that, the joined obstacle is substituted 
by the original ones. The second option consists of reducing 
the size (radius) of the intermediate-position until the new 
intermediate does not collide with the two involved 
obstacles. See fig. 5. This option is introduced in this paper. 

Let S be an obstacle that collides with a given motion. 
This obstacle is then characterized by the parameters 
λi∈[0,1], MTD<0 and MTDv̂ . Its associated intermediate 
configuration sI=(cI,rI) has been selected to define a new 
submotion. Such an intermediate position collides with 
another obstacle Sj. See fig. 5.  

From sI, a set of infinite spheres is defined by means of a 
parameter µ∈ℜ. Spheres ))µ(),µ(()µ( rcs =  do not collide 
with obstacle S. Centers )(µc  of spheres )µ(s  are defined as  
 

MTDx ˆ)( vcc ⋅µ−=µ  (10) 
 

cx is described in (9). Note that centers )(µc  are cons-
trained to one degree of freedom which is hold by the vector 

MTDv̂ . As sphere )µ(s  does not collide with S, if µ=MTD−δ, 
then radius verifies )(µr =rI. δ≥0 is the safety threshold cited 
on (9). On the other hand, if )(µr =0, then it is trivial that 
µ=rI+MTD−δ is verified. Consequently, )(µr  is defined 
 

µ−δ−+=µ MTD)( Irr  ;    µ∈(MTD−δ,rI+MTD−δ] (11) 
 

Equation (11) limits µ. In this way, as )(µr ≥0, µ verifies 
µ≤rI+MTD−δ. On the other hand, as sI has to be reduced to 
avoid a collision with Sj, )(µr <rI, and then, µ>MTD−δ. 

Problem is now stated as finding the value of µ which 
defines the sphere os  in )µ(s  whose separation distance 
from Sj is δ. If Sj is a simple sphere, problem is then trivial.  

Let Sj be a valid s-tope. Let j
cs  be the closest spherical 

vertex, defining Sj, to sI. Let { 1-j
cs , j

cs } and { j
cs , 1j

c
+s } be the 

bi-spherical facets of Sj which are the closest to sI. For 
clarity, such bi-spherical facets are generally referred to as 
{sj0,sj1} with sji=(cji,rj1) with i=0,1. 

Distance between )µ(s  and bi-sphere {sj0,sj1} is computed 
such as it has been previously indicated. Minkowski 
difference s-tope between )µ(s  and {sj0,sj1} is a bi-sphere 
defined by {M0,M1} 
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M0, M1 centers and radii verify the following properties 
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Consequently, although bi-sphere {M0,M1} depends on an 
unknown parameter µ, its angle of convergence is computed  
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Next step in computing such a translational distance 
requires the corresponding parameter λ, called now λ . 
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In accordance with (10), (15) is now rewritten  
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where λx and λµ are finally computed as 
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Note that λx characterizes ⊥
xc  i.e., the projection of cx onto 

axis cj0−cj1, with )( j1j0xj1x cccc −λ+=⊥ . See fig. 5. If angle of 

convergence verifies α ≠0, xλ′  is determined by 
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The minimum translational distance MTD  between )µ(s  
and bi-sphere {sj0,sj1} is the distance between origin point 
and the Minkowski difference bi-sphere {M0,M1} [2].  
 

( ))()(||)())((||MTD j0j1j1j0j0 rrrcccc −λ+µ−−λ+−µ=
 

(19) 

Forcing MTD  to be equal to δ≥0, a second-degree equation 
is generated with µ as the unknown parameter. But previ 
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Fig. 6.  Path generation for a size-changing sphere in narrow regions. Obj-
ects are modeled in 2D. Path represents the volume swept by such a sphere.  
 
ously, the following aspect is considered. If λx≤0, or xλ′ ≤0, 
if computed, then λ  is set to be λ =0. The reason is because 
the sI size reduction to avoid a collision with bi-sphere 
{sj0,sj1} only requires considering sj0. If λx≥1, or xλ′ ≥1, if 
computed, then λ  is set to be λ =1. Analogously, in this 
case, only spherical vertex sj1 has to be taken into account.  

After solving such an equation, two solutions are returned, 
one of these solutions is always rejected because is strictly 
greater than rI+MTD−δ. The other one, called µ  has to be 
updated to µ′ , if α ≠0, by means of the process pointed out 
by (7). In this way, λ  is modified and it is now called λ′  
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tan)µλλ(λ
0j0j

O
xx cc
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with ( ) δ)(λ)µ( j0j1O +−+= rrrd  
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Od  expression comes from (19) with the constraint 

MTD =δ. The desired solution µ′  is finally obtained by 
solving the simple equation 
 

( ) δ)(λ)µ( j0j1O +−′+′=′ rrrd ;   with  cosOO αdd =′  (21) 
 

If µ′  verifies µ′>MTD−δ, sphere os  is obtained by 

substituting µ for µ′  in (10) and (11). See fig. 5. It is 
important to remark that if µ′<MTD−δ is verified, it implies 
that size reduction of sI is not required because sI does not 
collide with Sj. 

This process is applied to both bi-spherical facets 
{ 1-j

cs , j
cs }, { j

cs , 1j
c
+s }. Smallest result (sphere) returned is 

selected to be the new intermediate position, instead of sI, for 
the path planner. 

Now, the selection process of obstacle Sj is formally intro-
duced. Let sI=(cI,rI) be a selected intermediate configuration 
in order to define a new submotion. Let Sk be any other 

obstacle where corresponding parameters (λk,MTDk, MTDkv̂ ) 
are related with the current motion. Let ),( IkIkIk rcs =  be the 
intermediate configuration sphere associated with Sk. Let 

),( XkXkXk rcs =  be the sphere in the current motion whose 
translation is minimal or maximal to be in contact with Sk, 
i.e., to obtain Iks . Let f be the following function 
 

(22)  
obstacle 2- typea is  if;  ||||
obstacle 1- typea is  if;    ||||

),(
kXkIXkI

kIkIIkI





−−−
−−−

=
Srrcc
Srrcc

SSf k

 
Note that f is not applied to all the type-1 obstacles. It is 

only applied to those type-1 obstacles whose Ikc  is in the 
same half plane that cI. Finally, Sj, if exists, is the obstacle 
with the minimum f.  

This planning algorithm has been implemented in C and 
extensively run on a Pentium® 4 CPU 3.00 GHz. An 
example is shown in fig. 6. Path in fig. 6 has been obtained 
in 428 µsec. 61 intermediate configurations have been 
considered and 42 of these configurations have been 
reduced. Note that path in fig. 6 would be different if others 
intermediate configurations should have been chosen. An 
important property of this path-planning technique is based 
on the fact that the determined path represents a set of 
homotopic paths for a general object which always keeps 
inside of such a free-space volume. 

A direct consequence of the proposed method is 
concluded when the final obtained parameter µ′  verifies 

µ′<MTD−δ. In this case, no reduction of sI is required, 
because sI does not collide with the involved obstacle. 
Anyway, note that µ′<MTD−δ represents a sphere, strictly 
bigger than sI, which is separated δ≥0 from obstacle S. In 
other words, sI would have been grown. 

V. FINDING THE FREE SPACE BETWEEN TWO OBSTACLES 
A narrow region among obstacles is an unavoidable prob-

lem in many motion-planning algorithms [1]. Nevertheless, 
when free space between two obstacles is wider than the 
mobile-object size, most of these path planners do not get 
worried about computing such a free space. 

Now, after selecting an intermediate configuration sI, it is 
reduced or grown, with the same computational effort, by 
using the same technique presented in the previous section. 
Size of sI is modified to be separated δ≥0 from obstacle Sj. Sj 
is selected as it has been indicated in the previous section.  

After that, sI is substituted for the modified one, and a new 
submotion is defined. 

This planning algorithm has been implemented in C and 
extensively tested. An example of this path planner is shown 
in fig. 7. Path has been obtained by considering 30 interme-
diate configurations, 17 have been grown and 13 reduced. 
Such a path has been obtained in 240 µsec. Note that this 
path also represents a set of homotopic paths for a general 
object which is always inside of such a free-space volume. 
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Fig. 7.  Path enveloping free space. Path represents the volume swept by the 
mobile sphere. For clarity, objects have modeled in 2D. 

 

VI. ADDITIONAL PROPERTIES  
The path planning introduced in this paper is so fast that it 

can be run each time new information from the sensor system 
is received. Consequently, this path planner can work 
together with a robot navigator system. 

The process for reducing or growing a sphere to put it in 
contact (or separated a given distance) with an obstacle 
acquires properties of the growth-distance function [7]. 

The free-space volume returned by this path planner can 
be used as a safety or collision-free area to constrain the 
solution of a motion planner for deformable linear objects 
like the one introduced by [8]. Reducing, in this way, the 
collision-detection computational cost which is generally 
required by this complex objects. 

Sequence of intermediate configurations (spheres) 
between obstacles returned by the path planner characterizes 
an axis by joining the centers of such spheres. This axis can 
be used as a medial axis and, consequently, as an input for 
sample-based planning algorithms [9], [10]. 

In the same way, the above-mentioned axis states the 
maximum clearance roadmap between two obstacles.  

A sensor system provides a set of points from the surface 
of each obstacle in sight. Each set of points is enveloped by a 
spherically-extended polytope [11]. As a consequence, this 
roadmap is conceptually connected to the hierarchical gener-
alized Voronoi graph [12], where centers of the generated 
intermediate configuration are interpreted as meet points. 

The path generated for the motion planner represents a 
volume that can be used as elastic strips [13]. Axis of such a 
volume would be the proposed as a candidate path. See, for 
instance, path in fig. 7. 

VII. CONCLUSION 
A new technique for generating a collision-free path for a 

mobile sphere in environments with narrow regions has been 
presented in this paper. Mobile sphere has the ability of 
changing its size (radius) while it moves. Collisions between 
mobile sphere and obstacles are predicted by computing their 
minimum translational distance. It is assumed that obstacle  

positions are measurable. 
In this way, when a collision is predicted, an intermediate 

configuration for the mobile sphere is determined in order to 
avoid such a collision. If this configuration (sphere) collides 
with a second obstacle (narrow region), a method for 
reducing its radius is then applied. This reduction is carried 
out by constraining sphere center to one degree freedom and 
separation from this obstacle is set equal to a configurable 
distance. If sphere and obstacle do not collide, this sphere is 
similarly grown by this method. 

Any path generated characterizes a free-space region. 
Therefore, this path planner really generates a set of 
homotopic paths for any type of mobile object which always 
keeps inside of such a free space. Indeed, if collision 
detection is computationally prohibitive for a given mobile 
object, this volume can be used as a free workspace for 
finding a path for such a mobile object. 

This motion-planning technique is so fast that can be run 
as frequent as new information from the world is received. 
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