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Abstract— This paper proposes an algorithm that drives
a unicycle type robot to a desired path, including obstacle
avoidance capabilities. The path following control design relies
on Lyapunov theory, backstepping technics and deals explicitly
with vehicle dynamics. Furthermore, it overcomes initial con-
dition constraint present in a number of path following control
strategies described in the literature. This is done by controlling
explicitly the rate of progression of a ”virtual target” to be
tracked along the path; thus bypassing the problems that arise
when the position of the path target point is simply defined
as the closest point on the path. The obstacle avoidance part
is using the Deformable Virtual Zone principle, that defines
a safety zone around the vehicle, in which the presence of
an obstacle induces an ”intrusion of information” that drives
the vehicle reaction. The overall algorithm is combined with a
guidance solution that embeds the path following requirements
in a desired intrusion information function, that steers the
vehicle to the desired path while the DVZ is virtually keeping
a minimal contact with the obstacle, implicitly bypassing it.
Simulation and experimental results illustrate the performance
of the control system proposed.

I. INTRODUCTION

Real-time obstacle avoidance coupled with an accurate

path following control is one of the major issue in the field

of mobile robotics [10], [3]. The underlying problems to be

solved can be divided in three issues:

• path following control of non-holonomic systems,

• obstacle avoidance strategy,

• the coupling between the two previous goals.

The general underlying assumption in path following

control is that the vehicle’s forward velocity tracks a de-

sired speed profile, while the controller acts on the vehicle

orientation to drive it to the path. See the works of Micaeli et

al [8], Samson et al [12] for pioneering work in the area as

well as Canudas de Wit et al [4], Jiang et al [7] and Soetanto

et al [13] and the references therein. The main contributions

of the method exposed in [13] are :

i) it extends the results obtained by Micaeli et al in [8] - for

kinematic wheeled robots - to a more general setting, in order

to deal with vehicle dynamics and parameter uncertainty,

ii) it overcomes stringent initial condition constraint that

are present in a number of path following control strategies

in the literature. This is done by controlling explicitly the

rate of progression of a virtual target to be tracked along

the path, thus bypassing the problems that arise when the

position of the target point on the path is simply defined

by the projection of the actual vehicle on the path. This
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procedure avoids the singularities that occur when the vehicle

is located at the current center of curvature of the path virtual

target location (where the closest point is not unique), and

allows for global convergence of the vehicle to the desired

path. This is in contrast with the results described by Micaeli

et al in [8] for example, where only local convergence is

proven.

Obstacle avoidance strategy is another major issue to

perform reliable applications in the field of mobile robotics,

and underlies two different issues:

• the obstacle detection,

• the computation of the system reaction.

The obstacle detection is an important topic but is not

the subject of this paper. Then, the system is assumed to be

equipped with sensor devices able to estimate the distance

between the robot and the surrounding environment.

The system reaction can be considered at the high level

(Path replanning) or directly in the controller as a reflex

behavior. The reaction quantification is generally made

according to an arbitrary positive potential field functions

attached on obstacles that repels the robot, and an attractive

field located on the goal. The main difficulty of this method

is to design an artificial potential function without undesired

local minima. Elnagar et al, in [5], propose to model the

potential field by Maxwell’s equations that completely elim-

inate the local minima problem, with the condition that an

a priori knowledge of the environment is available. These

methods are generally computationally intensive. Iniguez et

al, in [6], proposes a hierarchical and dynamic method,

that works on a non regular grid decomposition, simple

and computationally efficient, both in time and memory.

Another approach, based on a reflex behavior reaction, is

using the Deformable Virtual Zone (DVZ) concept, in which

a robot kinematic dependent risk zone is located on the robot,

surrounding it. The deformation of this zone is due to the

intrusion of proximity information. The system reaction is

made in order to reform the risk zone to its nominal shape,

implicitly repelling the obstacles. For a clear exposition of

the DVZ principle, please refer to [14].

In this paper we propose to investigate the coupling

between the path following algorithm described in [13] with

a DVZ based reactive obstacle avoidance control. The pro-

posed method consists in a guidance solution that embeds the

path following requirements in a desired proximity function

(with respect to the obstacles) that drives the robot to contour

the obstacles while guaranteeing the path following conver-

gence requirements when there is no obstacle. This approach

is based on the derivation of a Lyapunov function that

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC7.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2617



guarantees the asymptotic convergence to the path without

obstacles, and the boundedness of a variable called intrusion

ratio, that captures the surrounding obstacles proximity and

the current robot situation with respect to the path. The

combination of path following with a reactive - local -

obstacle avoidance strategy has a natural limitation coming

from the situation where both controllers yield antagonist

system reactions. In this proposed method, this situation

leads to a local minimum called the corner situation, where

a heuristic switch between controllers is necessary. The

advantage of the method is that outside this very specific

corner situation, no switch is required.

The paper is organized as follows: section 2 and 3 review

the basic algorithms we will use for path following and

obstacle avoidance. Section 4 shows our solution to combine

both the controllers and section 5 illustrates the results we

have obtained. Finally section 6 presents the conclusion and

further work of this study.

II. BASIC ALGORITHMS: PATH FOLLOWING AND

OBSTACLE AVOIDANCE

A. Path following control

This section briefly reviews a solution for the problem of

steering a unicycle type vehicle along a desired path.

Classic assumptions are made regarding the robot (see

figure 1 and [13] for details). The wheels control provides

the forward force F and angular torque N applied on the

vehicle’s center of mass.
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Fig. 1. Path Following: frames definition and problem pose description.

1) Kinematic equations of motion. The Serret - Frenet

Frame: Motivated by the work developped by A. Micaelli

and C. Samson in [8] a Frenet frame {F} that moves along

the path to be followed is used. The significant difference

with this work of is: the Frenet frame is not attached to

the point on the path that is closest to the vehicle. Instead,

the origin of {F} along the path evolves according to a

conveniently defined function of time, effectively yielding an

extra controller design parameter. This seemingly simple pro-

cedure allows to lift the stringent initial condition constraints

that arise with the path following controlled described in [8].

Consider Figure 1, where P is an arbitrary point on the

path to be followed and Q is the center of mass of the mov-

ing vehicle. Associated with P , consider the corresponding

Serret-Frenet frame {F}. The signed curvilinear abscissa of

P along the path is denoted s. Clearly, Q can either be

expressed as q = (X, Y ) in a selected inertial reference

frame {I} or as (s1, y1) in {F}. Stated equivalently, Q can

be given in (X, Y ) or (s1, y1) coordinates. Let R be the

rotation matrix from {I} to {F}, parameterized locally by

the angle θc. Define ωc = θ̇c. Then,
{

ωc = θ̇c = cc(s)ṡ
ċc(s) = gc(s)ṡ

(1)

where cc(s) and gc(s) = dcc(s)
ds

denote the path curvature

and its derivative, respectively.

The velocity of the unicycle in the {I} frame satisfies the

equation
[

Ẋ

Ẏ

]

= u

[

cos θm

sin θm

]

(2)

where θm and u denote the yaw angle of the vehicle and

its body-axis speed, respectively. The introduction of the

variable θ = θm − θc gives the kinematic model of the

unicycle in the (s1, y1) coordinates as






ṡ1 = −ṡ (1 − ccy1) + u cos θ
ẏ1 = −ccṡs1 + u sin θ

ω = θ̇ = ωm − ccṡ
(3)

where ωm = θ̇m.

2) Dynamics. Problem Formulation: The dynamical

model of the unicycle is obtained by augmenting (3) with

the equations
{

u̇ = F
M

ω̇ = ω̇m − ccs̈ − gcṡ
2 (4)

where ω̇m = N
I and M and I are the mass and the

moment of inertia of the unicycle, respectively. Let FPF and

NPF the path following control inputs.

With the above notation, the problem under study can be

formulated as follows:

Given a desired speed profile ud(t) > umin > 0 for the

vehicle speed u, derive a feedback control law for FPF and

NPF to drive y1, θ, and u − ud asymptotically to zero.

3) Nonlinear Controller Design:

This section introduces a nonlinear closed loop control law

to steer the dynamic model of a wheeled robot described

by (3)-(4) along a desired path. Controller design builds on

previous work by Micaelli et al [8] on path following control

and relies heavily on backstepping technics.

We now state the proposed solution of the problem ex-

posed in section 2.

Proposition 1: consider the kinematic and dynamic mod-

els described in (3) and (4). Let the approach angle δ(y1, u)
be

δ(y1, u) = −sign(u)θa

e2kδy1 − 1

e2kδy1 + 1
(5)

where 0 < θa < π/2 and kδ an arbitrary positive gain.

Assume that ud(t) is a C2 function and that limt→∞ud(t)
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is different from zero. Suppose the path to be followed is

parameterized by its curvilinear abscissa s and assume that

for each s the variables θ, s1, y1, cc and gc are well defined.

The dynamic control law

NPF = I
(

δ̈ − k1(θ̇ − δ̇) − k2(θ − δ) + ccs̈ + gcṡ
)

FPF = M (u̇d − k3(u − ud))
ṡ = u cos θ + kss1

(6)

where k1, k2, k3 and ks are arbitrary positive gains, drives

y1, s1 and θ asymptotically to zero.

Indication of proof. The key steps in the

proof can be briefly described as follows: let

V1 = 1
2

[

(θ − δ)2 + (u − ud)
2 + (r − rd)

2
]

be a Lyapunov

candidate, where rd = δ̇ − k1(θ − δ). The control (6) yields

V̇1 ≤ 0. Since V̇1 is negative semi definite and bounded

below, V1 is bounded and has a limit. Therefore, s1, y1,

θ and u are bounded since δ and ud are assumed to be

bounded. From the equation above, it then follows that ṡ1,

ẏ1, θ̇ and u̇ are bounded as well. It is now easy to compute

the second derivative of V1 and prove it is bounded.

Therefore, V̇1 is uniformly continuous and Barbalat’s

lemma implies that V̇1 → 0 as t → ∞, that induces the

asymptotic convergence of s1, y1, θ and u. Then the vehicle

is asymptotically driven to the path.

Remark. The computation of the second derivative of V1

requires the derivation of the approach angle expression δ,

that is discontinuous around u = 0. A rigorous proof should

consider an approach angle expression as, for instance δ =
−θA tanh kδy1u that is differentiable everywhere. The use of

this previous expression makes the control derivation more

complex, bringing new considerations on the convergence

rate when u is small. For the sake of simplicity, we are

ignoring this discontinuity around u = 0 and consider that

V̈1 is bounded everywhere.

B. Obstacle avoidance algorithm

This section presents an obstacle avoidance algorithm

based on the use of a continuous Deformable Virtual Zone

(DVZ). The main idea is to define the robot/environment

interaction as a DVZ surrounding the vehicle (cf. figure 2).

The deformation of this risk zone Ξ is due to the intrusion of

proximity information and thus control the robot reactions.

This DVZ characterizes the deformable zone geometry, and

depends on the robot velocities (forward and rotational

velocities, u and r). Briefly, the risk zone, disturbed by

obstacle intrusion, can be reformed by acting on the robot

velocities.

1) The undeformed DVZ: In order to acquire an analytical

expression of the polar signature of the undeformed DVZ,

expressed in the robot frame {B}, we consider an elliptic

shape, see figure 3. Straightforward computation yields:

dh(α) = −B+
√

B2−4AC
2A

(7)

where

Fig. 2. Obstacle Avoidance: frames definition and problem pose descrip-
tion.

A = (cy cos (α − γ))2 + (cx sin (α − γ))2

B = 2.(ax cos (α − γ))c2
y + ay sin (α − γ)c2

x)
C = (axcy)2 + (aycx)2 − c2

xc2
y

(8)

Fig. 3. The undeformed DVZ

Moreover, the undeformed DVZ is a function of the

robot velocities. We arbitrarily choose the following guidance

functions.

cx = λcxu2 + cmin
x

cy =
√

5
3 cx

ax = −(2/3)cx

ay = 0

(9)

Considering that the DVZ is rigidly attached to the robot,

oriented in the main direction of the vehicle movement, we

state γ = 0.

2) The deformed DVZ: The deformed DVZ is acquired

from the sensor information, denoted c(α). Since the mean-

ingful information is restricted to the one inside the unde-

formed DVZ, a preliminary test on the sensor information is

necessary.

d(α) = c(α) if c(α) < dh,
= dh(α) elsewhere

(10)
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3) The deformation: The choice of the intrusion infor-

mation variable expression is instrumental in designing the

system reactivity and the closed loop asymptotic system

properties. Let

I =

∫ 2π

α=0

dh(α, u) − d(α)

d(α)
dα (11)

be the intrusion information expression. Note that a null

distance robot/obstacle yields an infinite intrusion infor-

mation. Thus a control that warrants a bounded intrusion

information at any time, induces the system to avoid any

obstacle.

4) System Jacobian functions: The time derivation of the

expression of the intrusion information yields

İ = Ju
I u̇ + Jθ

I r + FRob.velu + FObst.vel (12)

with

Ju
I =

∫ 2π

α=0
1

d(α)

(

1
2A

[

−Ju
B +

BJu
B−2CJu

A−2AJu
C√

B2−4AC

]

−−B+
√

B2−4AC
2A2 Ju

A

)

dα

Jθ
I =

∫ 2π

α=0
−1

d(α)

(

1
2A

[

−Jγ
B +

BJ
γ
B
−2CJ

γ
A√

B2−4AC

]

−−B+
√

B2−4AC
2A2 Jγ

A

)

dα

FRob.vel =
∫ 2π

α=0
dh(α)
d2(α) cos αdα

FObst.vel =
∫ 2π

α=0
dh(α)
d2(α)

(

−[ẋE cos (θm + α)
+ẏE sin (θm + α)]

)

dα

(13)

where

Ju
A = 2(cy

∂cy

∂u
cos2 (α) + cx

∂cx

∂u
sin2 (α))

Jγ
A = 2 cos (α) sin (α)(c2

y − c2
x)

(14)

Ju
B = 2

(

cos (α)[c2
y

∂ax

∂u
+ 2axcy

∂cy

∂u
]

+ sin (α)[c2
x

∂ay

∂u
+ 2aycx

∂cx

∂u
]

)

Jγ
B = 2

(

axc2
y sin (α) − ayc2

x cos (α)
)

(15)

Ju
C = 2







axcy[cy
∂ax

∂u
+ ax

∂cy

∂u
]

+aycx[cx
∂ay

∂u
+ ay

∂cx

∂u
]

−cxcy[cx
∂cy

∂u
+ cy

∂cx

∂u
]






(16)

and ẋE , ẏE define the obstacle absolute velocity. The

assumption of static obstacles yields FRob.vel = 0. For the

sake of simplicity, we consider now only static obstacles.

5) Obstacle Avoidance Control Design: Let the following

Lyapunov candidate VI = I2

2 . The derivation yields

V̇I = I(Ju
I u̇ + Jθ

I r + FRob.velu) (17)

It is straightforward to see that the choice
{

u̇ = −KuJu
I I − F Rob.vel

Ju
I

u

r = −KrJ
θ
I I

(18)

where Ku,Kr are arbitrary positive gains yields V̇I ≤ 0∀t.
Note that tedious but straightforward computation (using for

the sake of simplicity the guidance functions in (9)) shows

that the term F Rob.vel

Ju
I

is a positive function that acts as a non

linear damping term. That confirms the well poseness of the

expression (18).

The control (18) is an hybrid kinematic/dynamic solution.

A Backstepping step is necessary for the torque control. Let

VOA = 1
2 (rd − r)2 be a Lyapunov candidate, where rd =

−KrJ
θ
I I . The choice ṙ = ṙd −Kr(r − rd) yields V̇OA ≤ 0.

Then the dynamic obstacle avoidance control is written as
{

FOA = M
(

−KuJu
I I − F Rob.vel

Ju
I

u
)

NOA = I (ṙd − Kr(r − rd))
(19)

where Kr and Ku are arbitrary positive gains, M and I are

the mass and moment of inertia of the vehicle, and rd =
−KrJ

θ
I I .

III. COMBINING PATH FOLLOWING AND OBSTACLE

AVOIDANCE

A. Mathematical inspiration

The combination of the two algorithms is solved as a

guidance problem. The requirements are:

• the vehicle should remain far from the obstacle, i.e. in

presence of obstacle I has to be bounded at any time,

• when there is no obstacle, the vehicle has to asymptot-

ically converge to the desired path.

To do so, we rewrite the obstacle avoidance control, adding

a desired intrusion information Id = Kd tanh (λd(θ − δ)),
where Kd and λd are arbitrary positive gains, θ and δ
are path following variables defined in the previous chapter

(equations(3) and (5)). Let V2 = (I−Id)2

2 be a Lyapunov

candidate. It is straightforward to see that the choice
{

r = −Kr(I − Id)(J
θ
I − I ′d) + ccṡ + δ̇

u̇ = −KuJu
I (I − Id) −

F Rob.vel

Ju
I

u
(20)

implies that I − Id asymptotically converges to a bounded

set defined as:

|I − Id|t→∞ <
Jθ

I (ccṡ + δ̇)

Kr(Jθ
I − I ′d)

2 + Ku(Ju
I )2

(21)

where I ′d = 2Kdλd

1+(λd(θ−δ)2) . Note that the previous expression

is bounded since (Ju
I )2 > 0 if u 6= 0, I ′d is bounded and

if the quantity ccṡ + δ̇ is assumed to be bounded. This last

requirement is covered by the assumption that the free space

is connected.

Then, contouring the obstacle, the vehicle cannot be driven

infinitely far from the desired path, i.e. ccṡ + δ̇ remains

bounded. Moreover, if there is no obstacle, the Lyapunov

candidate degenerates in VI=0 =
I2

d

2 , and the previous control

choice yields V̇I=0 = −KrI
2
dI ′2d ≤ 0, that induces the

path following asymptotic convergence requirements. The

dynamic control corresponding to the previous solution is
{

FOA = M
(

−KuJu
I (I − Id) −

F Rob.vel

Ju
I

u
)

NOA = I (ṙd − Kr(r − rd))
(22)

where rd = −Kr(I − Id)(J
θ
I − I ′d) + ccṡ + δ̇, Ku and Kr

are arbitrary positive gains. At this stage one should note

ThC7.4

2620



that this solution does not prevent the forward velocity u
to be null, and the poor convergence rate around the path.

Then we propose another control version that avoids these

drawbacks, but by the way loses any mathematical proof of

convergence.

B. Practical solution

The combination of path following and obstacle avoidance

capabilities has a natural limitation coming from the situation

where the both criteria induces antagonist system reactions.

For instance, the obstacle avoidance algorithm may impose

the forward velocity to be reduced to zero or a negative value.

This situation occurs when the deformed DVZ Ξ is sym-

metric with respect to the forward velocity direction. Then

the robot will orient itself to minimize the intrusion, and

regulates its forward velocity to reshape the nominal DVZ Ξh

in order to respect the intrusion requirement, i.e. limt→∞I =
Id. This situation is called corner situation, as described in

the table IV-A b) and c). To avoid this problematic local

minimum, we design the following switching scheme. Let Il

and Ir be the intrusion information on the left (0 < α < π)

and right (π < α < 2π) side, respectively, and umin > 0 be

the lowest admissible forward velocity. The chosen corner

situation detection is made with the following switching

condition. The boolean variable CORNER is initialized to

zero, then

if [(IlIr > 0)&(u < umin)] {CORNER = 1}
if (IlIr = 0) {CORNER = 0}

(23)

The reaction to this situation is to

i)reduce the forward velocity,

ii) rotate until the obstacle is present only on one side,

using the following controllers.

u̇CORNER = −Kuu
rCORNER = rCsign(Id)

(24)

where Ku is a positive gain, and rC the chosen rotational

velocity to operate the corner extraction. The overall control

algorithm is written

if (CORNER = 0)
{N = NOA + f(I)NPF ;F = FOA + f(I)FPF }
else
{N = I (−Kr(r − rCORNER)) ; F = Mu̇CORNER}

(25)

where the selection function is f(I) = 1
1+KII

, with KI a

positive gain. Note that this algorithm imposes the robot to

travel with a positive forward velocity u > umin > 0, outside

the corner situation. This warranties the well poseness of the

expressions (20), (21) and (22). Then the global control (25)

is well posed in any situation.

IV. RESULTS

The previous solution implicitly requires an estimation of

İ in the computation of FOA. The numerically derivation

of the sensors information induces a noise amplification and

KPF
r = 0.1 KPF

u = 1 KOA
r = 0.01 KOA

u = 0.1

Kd = 10 λd = 0.01 KI = 100 ud = 1

λcx = 100 cmin
x = 10 KCORNER

u = 0.1 rc = 1

TABLE I

THE CHOSEN CONTROL PARAMETERS

will not provide an accurate estimation of İ . Therefore, we

degrade the previous solution at a kinematic level.
{

r = rOA + f(I)rpf

u = uOA + f(I)upf
(26)

where






rPF = δ̇ − KPF
r (θ − δ) + ccṡ

uPF =
∫ t

0
(u̇d − KPF

u (u − ud))dt
ṡ = u cos θ + kss1

{

rOA = −KOA
r (I − Id)(Jr − I ′d) + ccṡ + δ̇

uOA =
∫ t

0
(−KOA

u Ju(I − Id) −
F rob.vel

Ju
u)dt

(27)

The chosen DVZ guidance functions are chosen accord-

ing to 9. The other functions are chosen according to the

following equations.

Id = Kd tanh λd(θ − δ)
f(I) = 1

1+KII

(28)

A. Simulation results

We have implemented the algorithm on a unicycle sim-

ulator developed with Matlab. The control parameters are

chosen according to the table I. The results are displayed

in the table 2. The figure 2-a shows the path and obstacles

definitions. The robot is of the unicycle type, on which a 32

proximity sensors belt is mounted, displayed as surrounding

radial rays of length defined by the nominal DVZ. The

figure 2.b indicates a corner situation, on which we see the

reduction of the DVZ due to the decreased forward velocity.

The next figure 2.c shows the system after the switch from

corner situation to nominal control. Then the figure 3-d

displays the global trajectory the system has made.

B. Experimental results

We have implemented the algorithm on the Pekee robot

from the Wany company. This robot is driven with two

independent wheels and carries a 16 Infrared proximity

sensors belt. The figure 4 displays the odometric trajectory

coming from the robot. Since the navigation system is only

based on odometric information, the real trajectory does not

present significant interest to demonstrate the validity of our

approach. The robot clearly avoid obstacle and goes back to

the nominal path without requiring switching control. This

is valid in this particular situation where the corner situation

does not occurs. Some chattering behavior has to be filtered

out with a gain tuning according to the Pekee ((c)Wany)

robot capabilities. The figure 5 shows the evolution of the

forward velocity. The black dots are the desired velocity

when no obstacle is detected, the stars indicates the evolution

of the forward velocity in presence of obstacles.
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a) Path and Obst. Def. b) Corner Situation
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SIMULATION RESULTS
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Fig. 4. Experimental results, trajectories

V. CONCLUSION

We have designed a combined path following and obstacle

avoidance control law for a unicycle type robot based on the

use of the DVZ concept and on the Lyapunov and Backstep-

ping design. The implementation of this solution on the robot

Pekee ((c)Wany) illustrates the interesting performances of

the solution, in order to avoid some unnecessary hot switches

when the vehicles travels with an important forward velocity.

By this way, we are combining the reactivity of the DVZ

principle with a path following control without requiring any

path replanning. The next step of this study is to intrinsically

attribute the reactivity of the guidance system to the path

following virtual target, explicitly controlling the evolution

of an added virtual state of the virtual target, along the y1

direction (see figure (1)). Then the main robot control could

be designed as a tracker of a cooperative virtual target; note

that the system reactivity is then in charge of a new dynamic

guidance system.
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