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Abstract— In the image-based visual servoing framework,
error signals are directly computed from image feature pa-
rameters, thus obtaining control schemes which do not need
neither a 3-D model of the scene, nor a perfect knowledge of
the camera calibration matrix. However, the current value of
the depth Z for each considered feature must be known. We
propose a method to estimate on-line the value of Z for point
features while the camera is moving through the scene, by using
tools from nonlinear observer theory. By interpreting Z as a
continuous unknown state with known dynamics, we build an
estimator which asymptotically recovers the actual depth value
for the selected feature.

I. INTRODUCTION

The introduction of visual information in the control loop

of robot systems has increased the flexibility and the accu-

racy of the tasks commonly performed by these systems [1],

[2], by providing higher position accuracy, robustness to

sensor noise and calibration uncertainties, and reactiveness to

environmental changes. This is especially true for the class

of mobile robots, where the elaboration of visual cues is

often crucial for self-localization and navigation. Another

interesting use of visual feedback is the possibility to specify

a robotic task in terms of some image features extracted from

a target object while the camera/robot is moving through the

scene.

Two basic approaches have been proposed in the past

years to deal with this kind of task, namely position-based

visual servoing (PBVS) and image-based visual servoing

(IBVS) [1]. In PBVS, the image features are processed in

order to estimate the relative 3D pose between the camera

and the target, which is then used as an error signal for

controlling the motion of the robot/camera system toward

its desired goal [3]. In IBVS the error is directly computed

in terms of the features, whose motion on the image plane

is related to the velocity twist of the camera via the inter-

action matrix. The advantages of IBVS over PBVS are the

following: (i) a 3D model of the target is not needed; (ii)

performance is robust with respect to perturbations of the

robot/camera models, in particular to calibration errors [4];

(iii) it is easier to devise feature-based motion strategies

aimed at keeping the target always in the field of view of

the camera [5]. However, there are also some drawbacks to

be considered. Apart from situations where the interaction

matrix loses rank during the motion, local minima of the

task error function [6] may be encountered when trying

to impose an (unfeasible) independent motion to a large

number of image features [7]. Moreover, the feature depths

are unknown in a pure IBVS setting, and must be estimated

during servoing in order to correctly compute the interaction

matrix (a common choice is to simply use their constant

value at the desired pose). Thus, only local stability can be

guaranteed for most IBVS schemes [8].

In this paper, we address the estimation problem of the

unknown depth Z of a static point in an IBVS scheme.

Our starting idea is that, since the motion of the feature on

the image plane depends upon the current value of Z, it is

possible to estimate this value by comparing the measured

motion with the one predicted by using the current estimate

of Z, under the assumption of a perfect knowledge of the

camera 3D motion and of its intrinsic parameters. This is

a typical issue of the more general paradigm of motion

and structure reconstruction, whose purpose is to design an

identification scheme to estimate both the camera motion

and the structure (i.e., the 3D geometry) of the scene. Our

work assumes a known relative motion among the camera

and the target, which can be achieved, for example, if the

point feature is fixed in the world and the camera is mounted

on the end-effector of a robot manipulator.

In the last years, several works have addressed the struc-

ture identification with known motion. Chaumette et al. [9]

propose a general methodology to recover the 3D informa-

tion of several geometric primitives (points, lines, cylinders,

spheres, etc.) by measuring the current values of the features,

of the image motion (the feature time derivatives) and of

the camera velocity twist. However, due to the presence of

noise and discrete sampling, the extraction of the image

motion is not trivial, and some constraints on the allowed

camera motions must be considered. In [10], two Kalman

filter-based algorithms are derived and compared, the first

estimating a continuous depth map of the scene, and the

second extracting the depth of a discrete set of features.

Both methods need the computation of the current image

motion, and impose several constraints on the camera motion

in order to simplify the problem. In particular, the second

method assumes a camera which translates orthogonally to

the optical axis (without rotations), so that the depth of the

features is kept constant and the problem is considerably

simplified. A similar approach is found in [11], where, again,

only lateral camera motions are allowed. Adaptive IBVS
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schemes are devised in [12], [13] for a camera mounted

on a nonholonomic mobile robot via an on-line estimation

of a constant unknown parameter (the height of the object

points and the depth of the target plane at the desired pose,

respectively). In fact, whenever the depth is kept constant

during the camera motion, or the value of Z is related to

any other fixed quantity as in, e.g., [10]–[13], the problem of

depth identification can be formulated in the adaptive control

context, where several tools allow, under suitable hypothesis,

to estimate an unknown constant parameter.

With respect to these works, in this paper we tackle

the problem of depth identification for static features point

without any preliminary constraint on the camera motion, and

without the explicit need for image motion estimation; thus,

the only information used is the current value of the features

measured on the image plane. This is obtained by recasting

the problem into the nonlinear observer framework, which

provides techniques to estimate unmeasurable time-varying

states of known dynamical systems.

The novel contribution of the paper are therefore:

• the derivation of a nonlinear observer built upon the

exact kinematic equations of the camera-target system,

• the elimination of unnecessary hypotheses on the cam-

era motion often present in the past literature, e.g.,

motion along a plane or to keep a constant depth,

• the removal of image motion from the quantities strictly

needed by the depth estimation process.

The paper is organized as follows: in Sect. II we recall

the basic kinematic relationships of the camera/target sys-

tem, while in Sect. III we design a nonlinear observer to

estimate the unknown value of Z. Finally, in Sect. IV some

simulations are presented in order to show the performance

of the proposed method.

II. PERSPECTIVE CAMERA MODEL

An image feature is any real-valued quantity associated to

a selected primitive (e.g., the coordinates of a point, the area

of an ellipse, the angular coefficient of a line, etc.) in the

image plane. Given a vector of features f = [f1 . . . fk]T ∈
R

k, the velocity twist (V, ω) of the camera is mapped to ḟ
by a k × 6 matrix J(f, Z) called interaction matrix

ḟ = J(f, Z)

[
V
ω

]
,

where Z ∈ R
k is the vector of the depths associated

to each feature in f [14]. It is possible to determine the

interaction matrix for many features of interest, see [2] for

the case of points, lines, planes, circles, etc., and [15] for

the set of image moments. Since in this work we address

the depth identification for point features, we will focus on

the interaction matrix linking the camera velocity twist to

the 2D point velocity on the image plane.

With reference to Fig. 1, consider a world reference frame

FO : {O;
−→
XO,

−→
Y O,

−→
Z O} and a pin-hole camera associated

to the moving frame FC : {OC ;
−→
XC ,

−→
Y C ,

−→
Z C} with ZC

coincident with the camera optical axis. The image plane,

XC

YC

ZC

P

p

optical axis

OC projection ray

image plane

Fig. 1. World and camera frame definitions.

perpendicular to the optical axis, lies at a distance λ (the

focal length) from OC , and is endowed with a 2D reference

frame FI : {OI ;
−→u , −→v } with axes parallel to

−→
XC and

−→
Y C ,

respectively.

Consider a fixed 3D point P whose coordinates in the

camera frame FC are (CX, CY, CZ). The velocity of P in

FC is expressed as [14]




CẊ
CẎ
CŻ


 =




−1 0 0 0 −

CZ CY

0 −1 0 CZ 0 −

CX

0 0 −1 −

CY CX 0




[
V
ω

]
.

(1)

In the following, we will drop the dependency on FC since

we will always refer to quantities expressed in the camera

frame, unless otherwise stated.

The pin-hole camera model projects a 3D point P into

the image point p = [f1 f2]
T determined by the intersection

of the projection ray with the image plane (see Fig. 1). A

simple but widely used projection model is [14]:

f1 = λ
X

Z

f2 = λ
Y

Z
.

(2)

By differentiating (2) w.r.t. time and using (1) we get the

well-known relationship

[
ḟ1

ḟ2

]
=



−

λ

Z
0

f1

Z

f1f2

λ
−

(
λ +

f2

1

λ

)
f2

0 −

λ

Z

f2

Z
λ +

f2

2

λ
−

f1f2

λ
−f1



[

V
ω

]

=Jp(f1, f2, Z)

[
V
ω

]

(3)

where Jp(f1, f2, Z) is the 2 × 6 point feature interaction

matrix. Note that, since only the first three columns of Jp

are affected by the value of Z, a pure camera rotation does

not bring any information useful for depth estimation: a

camera translation must be necessarily present. This intu-

itive conclusion, already well known in the context of the

observability of dynamical systems with perspective outputs

(see, e.g., [16]), will be reobtained in Sect. III in terms of

the persistency of excitation condition that will explicitly

characterize which camera motions are useless for the depth

estimation.
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III. DESIGN OF THE NONLINEAR OBSERVER

The purpose of this section is to design a nonlinear

observer which will estimate the value of Z during the

motion of the camera. We will assume a calibrated camera,

i.e., the value of λ is known.

It is convenient to rewrite eqs. (1) and (3) in a more

canonical form. Let x = [f1 f2 Z]T ∈ R
3 be the state vector

and u = [V ω]T ∈ R
6 be the input vector. Hence, using (3)

and the last row of (1), the state dynamics are expressed by

the driftless system

ẋ=




−
λ

x3

0
x1

x3

x1x2

λ
−

(
λ +

x2
1

λ

)
x2

0 −
λ

x3

x2

x3

λ +
x2

2

λ
−

x1x2

λ
−x1

0 0 −1 −
x2x3

λ

x1x3

λ
0




u

y =

[
x1

x2

]
, (4)

where the output vector y ∈ R
2 represents the measurable

variables, i.e., the coordinates of the point p on the image

plane. Consider the change of coordinates

x̃ =




x1

x2

1

x3


 ,

which is globally defined since x3(t) > λ > 0 (i.e., the

point P is supposed to lie always in front of the image

plane, otherwise the visual servoing would fail). In the new

coordinates, system (4) becomes

˙̃x=




−λx̃3 0 x̃1x̃3

x̃1x̃2

λ
−

(
λ +

x̃2
1

λ

)
x̃2

0 −λx̃3 x̃2x̃3 λ +
x̃2

2

λ
−

x̃1x̃2

λ
−x̃1

0 0 x̃2
3

x̃2x̃3

λ
−

x̃1x̃3

λ
0




u

y=

[
x̃1

x̃2

]
. (5)

Since (5) is driftless and the output has dimension smaller

than the state, its linear approximation at any point is

unobservable. This is a consequence of the intrinsic nonlinear

nature of (5) in the sense that any linear time-invariant

approximation will lose the observability property. A suitable

nonlinear observer is then needed in order to correctly

address the problem.

Let x̂ ∈ R
3 be the estimate of the (partially) unknown

state x̃. We seek an update law in the form

˙̂x = α(x̂, y)u + β(x̂, y, u) (6)

which guarantees limt→∞ ‖x̂(t) − x̃(t)‖ = 0, ∀ x̂(t0).
The design of the functions α(x̂, y) and β(x̂, y, u) will be

based upon the following result, known as the persistency

of excitation lemma. For the reader’s convenience, we will

report the full statement whose proof can be found in [17,

Lemma B.2.3].

Lemma 1: Consider the linear time-varying system
{

ξ̇ = Hξ + ΩT (t)z, ξ ∈ R
n

ż = −ΛΩ(t)Pξ, z ∈ R
p (7)

where H is an n×n Hurwitz matrix, P is an n×n symmetric

positive definite matrix such that HT P +PH = −Q, with Q
symmetric positive definite, and Λ is a p×p symmetric posi-

tive definite matrix. If ‖Ω(t)‖, ‖Ω̇(t)‖ are uniformly bounded

and the persistency of excitation condition is satisfied, i.e.,

there exist two positive real numbers T and γ such that
∫ t+T

t

Ω(τ)ΩT (τ)dτ ≥ γI > 0, ∀ t ≥ t0, (8)

then (ξ, z) = 0 is a globally exponentially stable equilibrium

point. ¥

We now perform some manipulation in order to be able to

apply Lemma 1 to our case. Let e = x̃−x̂ be the error vector,

and note that the subvector [e1 e2]
T is directly accessible for

measurements. Thus, if we define the observer as in (6) with

α(x̂, y)=




−λx̂3 0 y1x̂3

y1y2

λ
−

(
λ +

y2

1

λ

)
y2

0 −λx̂3 y2x̂3 λ +
y2

2

λ
−

y1y2

λ
−y1

0 0 x̂2

3

y2x̂3

λ
−

y1x̂3

λ
0




β(x̂, y, u) =




k1e1

k2e2

k3((−λu1 + y1u3)e1 + (−λu2 + y2u3)e2)




(9)

with k1, k2, k3 > 0, we get the error dynamics

ė1 = −k1e1 + (−λu1 + y1u3)e3

ė2 = −k2e2 + (−λu2 + y2u3)e3

ė3 = −k3 [−λu1 + y1u3 − λu2 + y2u3]

[
e1

e2

]
+

(x̃2
3 − x̂2

3)u3 +

(
y2u4 − y1u5

λ

)
e3. (10)

If we set

ξ = [e1 e2]
T

z = e3

H =

[
−k1 0
0 −k2

]

Ω(t) = [−λu1 + y1u3 − λu2 + y2u3]
Λ = k3

P = I,

system (10) is very close to the formulation in (7), the only

differences being the last two terms in the e3 dynamics.

It is worth noting that, when

u3(t) ≡ u4(t) ≡ u5(t) ≡ 0, (11)

the two formulations match exactly and the global exponen-

tial stability of e is guaranteed, as long as the conditions of

Lemma 1 are met. While we will thoroughly discuss such

conditions in the forthcoming analysis, we would like to

emphasize that (11) corresponds to a camera motion which
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keeps the depth Z constant. As explained in Sect. I, in

this case the problem is considerably simplified and can be

attacked with various techniques. The purpose of our analysis

is to show that (10) can converge also when (11) does not

hold.

Proposition 1: Using the observer (6)–(9), the origin of

the error system (10) is exponentially stable as long as the

conditions of Lemma 1 are verified, in particular condition

(8).

Proof: It is useful to rewrite (10) as ė = A(t)e+g(e, t)
with

A(t) =




−k1 0 Ω1(t)
0 −k2 Ω2(t)

−k3Ω1(t) −k3Ω2(t) 0




g(e, t) =




0
0

(x̃2

3 − x̂2

3)u3 +
(

y2u4 − y1u5

λ

)
e3


 =




0
0(

2x̃3u3 +
y2u4 − y1u5

λ

)
e3 − u3e

2

3


 .

(12)

We can consider g(e, t) as a perturbation term of the nominal

system ė = A(t)e which, if (8) holds, is guaranteed by

Lemma 1 to be globally exponentially stable. Note that

g(e, t) is a vanishing perturbation, i.e., g(0, t) = 0, ∀t. Sev-

eral tools are available for the stability analysis of globally

exponentially stable systems with vanishing perturbations

(see [18] for an overview). Generally, if ‖g(e, t)‖ is suffi-

ciently small, the exponential stability is preserved, at least

locally. Due to the boundedness of ‖Ω(t)‖ and ‖Ω̇(t)‖, the

system ė = A(t)e is an exponentially stable slowly varying

linear system, and therefore there exists a suitable Lyapunov

function V (e, t) such that

c1e
T e ≤ V ≤ c2e

T e

V̇ (e, t) =
∂V

∂t
+

∂V

∂e
A(t)e ≤ −c3‖e‖

2

∥∥∥∥
∂V

∂e

∥∥∥∥ ≤ c4‖e‖,

with c1 . . . c4 positive constants. To derive bounds on g(e, t)
note that 0 < x̃3(t) < 1/λ, |y1(t)| ≤ M1 and |y2(t)| ≤
M2 where M1, M2 are the (finite) dimensions of the image

plane1, and, since ‖Ω(t)‖ is bounded, there exists a positive

constant M3 such that |u3(t)| ≤ M3, |u4(t)| ≤ M3 and

|u5(t)| ≤ M3. Finally, by defining E as the maximum value

of |e3(t)|, we have |e2
3| ≤ E|e3| ≤ E‖e‖. Hence,

‖g(e, t)‖ ≤

(
(2 + M1 + M2)

λ
+ E

)
M3‖e‖ = γ‖e‖.

Using the Lyapunov candidate V (e, t) for the perturbated

system (12), we get

V̇ (e, t) ≤ −c3‖e‖
2+

∥∥∥∥
∂V

∂e

∥∥∥∥ ‖g(e, t)‖ ≤ −c3‖e‖
2+c4γ‖e‖

2.

1We are implicitly assuming a camera motion such that the object of
interest is always kept in the field of view.

If γ is small enough to satisfy the bound γ < c3/c4, V̇
is negative definite and system (10) is exponentially stable.

Note that, for given camera parameters (focal length and

image plane size) and motion (u3, u4, u5) the constant γ
only depends on E, i.e., the maximum value of |e3(t)|.
This can be made arbitrarily small by choosing the initial

condition e3(t0) inside a suitable level set Sc = {e ∈
R

3|V (e, t0) ≤ c}, since we have

E ≤ ‖e(t)‖ ≤ ‖e(t0)‖ ≤
V (e, t0)

c1

≤
c

c1

.

Note that the above stability result is of a local nature, since

convergence of the error to zero is only guaranteed in a suit-

able neighborhood of the origin. A less conservative estimate

of this neighborhood may be obtained by considering that

our observer will be obviously initialized with the measured

values of the feature, so that e1(t0) = e2(t0) = 0. This

implies that |e3(t)| ≤ |e(t0)| = E, so that

|e3(t0)| ≤
c3

c4M3

−
2 + M1 + M2

λ

guarantees exponential error convergence.

The conditions of Lemma 1 deserve some additional

considerations. First of all the boundedness of ‖Ω(t)‖ and

‖Ω̇(t)‖ requires that the input signal u(t) is bounded with

bounded derivatives. As for condition (8), it has a deeper

meaning: it essentially states that there must not exist a t
such that ∀t > t, ‖Ω(t)‖ ≡ 0. By direct inspection of the

expression of Ω(t), we can see that this can only happen if

1) ∃ t | ∀ t > t : u1(t) ≡ 0, u2(t) ≡ 0, u3(t) ≡ 0, i.e.,

if no translations are involved in the camera motion;

2) ∃ t | ∀ t > t : λu1 = y1u3, λu2 = y2u3, which is

equivalent to

u1

u3

=
X

Z
,

u2

u3

=
Y

Z
.

This means that the camera is translating along the

projection ray of the selected point p, and, thus, the

projection of P on the image plane is kept constant

during the motion.

It is interesting to note that such persistency of excitation

condition, essential for the estimation convergence, is basi-

cally due to the scale ambiguity present in every perspective

system. Indeed, it is well known (see, e.g., [14]) that within

a perspective system it is impossible to distinguish an object

from the same object twice as big, twice as far and moving

twice as fast. The condition of nonzero (and known) camera

translational velocity introduces a scale information which

is essential to disambiguate among all the equivalent states

and to successfully recover the actual feature depth. A

somehow related excitation condition is also derived in [19]

as a byproduct of the proposed minimum-energy estimator

for perspective systems. It is also worth citing [20], where

a conceptually similar scheme is proposed, although not

directly based on the persistency of excitation principle.
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IV. SIMULATIONS

In this section we will present some simulations in order

to show the performance of the observer (6)–(9) derived

in Sect. III. We begin with the simple case of a camera

performing a sinusoidal motion along the
−→
Z -axis, a case

that, e.g., could not be addressed with the methods in [10],

[11] (see Sect. I). The simulation data are:

x̃(t0) = [24 −5 2]T

x̂(t0) = [24 −5 1]T

u3(t) = 0.5 cos πt
k1 = 20
k2 = 20
k3 = 0.5
λ = 128

.

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

time [s]

e
 [

p
ix

e
l,
 p

ix
e

l,
 m

]

e
1

e
2

e
3

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time [s]

Z
 [

m
]

true Z
est Z

Fig. 2. First simulation. Above: error behaviour. Below: true (solid blue
line) and estimated (dashed red line) Z (we recall that Z = x3 = 1/x̃3).

Note that the first two components of the estimation error

are initially zero because the feature position is measured.

Figure 2 depicts the behaviour of e(t) during the simulation

and shows how the estimate of Z approaches the true value.

Convergence is reached after few seconds of motion.

Our second experiment involves a more complex camera

motion consisting of a translation and a rotation about the
−→
X and

−→
Z axes. We set

x̃(t0) = [10 −10 2]T

x̂(t0) = [10 −10 1]T

u1(t) = 0.1 cos 2πt
u3(t) = 0.5 cos πt
u4(t) = 0.6 cos π/2 t
u6(t) = 1

k1 = 20
k2 = 20
k3 = 0.5
λ = 128

.

Figure 3 shows again a good convergence behaviour even if

in this case the camera motion is quite complex.

As an additional case study, we implemented the

proposed algorithm in the Webots environment [21] by

considering a camera with λ = 128 pixels mounted

on the end-effector of a mobile manipulator made of

a unicycle-like platform carrying a 3R spatial arm (see

Fig. 4). Video clips of this simulation can be found at

www.dis.uniroma1.it/˜labrob/research/depth_est.html

and are also included in the video attachment to this

paper. The idea was to test the performance of the

proposed observer against the command/measurement noise

automatically introduced by the webots engine (roughly

equivalent to a white noise with std. deviation σ = 0.1
pixels added to the extracted feature coordinates). The

objective is to estimate the depth of the target point (the red

dot on the cube in Fig. 4), while the first and second link

of the manipulator move according to the velocity profiles:

q̇1 = 0.2 sin 0.4πt
q̇2 = 0.1 sin 0.8πt.

The initial value of the estimated depth is set at 1/x̂3(t0) =
0.05 and the gains were chosen as k1 = k2 = 10 and

k3 = 0.8. Despite the noise, the observer is able to estimate

accurately the actual value of the depth Z, as shown in Fig. 5.

V. CONCLUSIONS

By borrowing techniques from the nonlinear observer

theory, we were able to design a nonlinear observer which

estimates the unknown depth of a point feature during the

motion of the camera. In contrast with previous works, we

do not need to estimate the image motion of the features,

nor to constrain the camera motion along any particular
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Fig. 3. Second simulation. Above: error behaviour. Below: true (solid blue
line) and estimated (dashed red line) Z.
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Fig. 4. Webots simulation environment with a mobile manipulator carrying
a camera mounted on the end-effector.
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Fig. 5. Webots simulation. Above: true (dashed red line) and estimated
(solid blue line) Z. Below: behavior of e1 (solid blue line) and e2 (dashed
red line) vs time.

direction. Due to the good convergence performance of

the algorithm, it is possible to integrate it into classical

image-based visual servoing schemes. For example, we also

included our depth estimation algorithm in a visual servoing

scheme for a mobile manipulator with a camera on the end-

effector [22]. Video clips of this set-up can be found at the

website www.dis.uniroma1.it/˜labrob/research/NMM_IBVS.html.

In our future developments we will try to remove the

assumption of known camera motion which was needed in

this work. This could be achieved, for instance, by first esti-

mating the relative camera/target motion as in [23], and then

feeding this information to our observer algorithm for scene

structure identification. Finally, we are currently planning to

implement the proposed approach (visual servoing + depth

estimation) on a real mobile robot with a pan-tilt camera

mounted on its top.
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