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Abstract— Localisation is one of the most important tasks
to be accomplished in order to realize the complete autonomy
of a mobile robot. In this paper, a new strategy for global
localisation is proposed. Applying this method a robot is able to
safely initialise its position or relocalise itself in case of recovery
of pose tracking failure. The algorithm presented adopts an
hybrid approach. First a particle filter is used to generate
hypotheses on the possible pose supposing that no movements
are allowed to avoid collisions. Thereafter safe trajectories are
planned and executed to reduce the remaining ambiguities while
the hypotheses are monitored and validated by a set of parallel
Extended Kalman Filters. The novelty of this approach stands
on the ability to generate the pose hypotheses without any
feature- based knowledge. As a consequence, a landmark-based
description of the environment is no longer required for the
algorithm execution.

I. INTRODUCTION

When mobile robots operate in real world environment
they require reliable localisation systems to accomplish their
missions. Therefore a localisation module is always included
in mobile robot control architecture.

Due to the difficulty in obtaining a reliable pose estima-
tion, localisation has been a high active field of research
in the last two decades. Indeed, mobile robots operate in
environments that have not specifically engineered for them
and localisation algorithms have to be able both to cope with
the uncertainty of robot+environment system and to integrate
data from different kinds of sensors.

There are two basic instances of the localisation problem:
when starting a task determine the robot pose in absence
of an initial estimate (global localisation) and during the
motion, maintain a precise estimate of the pose by keeping
track of the robot movements (pose tracking).

Most of the algorithms presented in literature are focused
on the pose tracking, whereas less attention is dedicated to
global localisation. Several research groups address localisa-
tion supposing that a rough knowledge of the initial pose is
supplied to the robot[1], [2]. A widespread approach to face
such instance is based on stochastic estimation theory: the
pose estimation problem is translated in terms of probability
density estimation. In this framework the pose tracking is
solved using a uni-modal probability density, estimated by a
common tool, the Extended Kalman Filter (EKF) [3].

The probabilistic approach can be adopted also to deal
with global localisation, however in this case uni-modal
probability density can not be used as multiple hypotheses
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needs to be handled [4]. As no knowledge about the initial
configuration is provided, a general approach to discover the
current pose consists in comparing the information extracted
from sensor readings with an a priori map in order to
form hypotheses. When absolute sensors (i.e., GPS, active
beacons) are not available, due to the perceptual aliasing,
several candidates are retrieved. In this context multi- modal
probability densities have to be adopted and EKF have to be
replaced with more sophisticated filters, such as grid-based
or particle filters (Markov localisation [5], [6]).

Several solutions based on these classes of filters have
been proposed. In [7] mobile localisation technique is pre-
sented which uses multiple Gaussian hypothesis to represent
the probability distribution of the robots location in the en-
vironment. Moreover, in [8] an active global localisation for
mobile robot using multiple hypotheses tracking is proposed.
Markov localisation and EKF are combined in [9]. In all
these works the key idea is to maintain multiple hypotheses
on the robot pose during the navigation, without any interest
on the trajectory executed by the robot.

This paper addresses global localisation problem when
artificial beacons or GPS are not available. The proposed
algorithm takes advantage of the multi-modal approach to
generate the set of the most likely hypotheses when the
robot is still, while during the robot motion the hypotheses
are propagated and eliminated by a set of parallel Extended
Kalman Filter [10], [11]. In addition, a strategy for planning
safe trajectory is also implemented in order to minimise the
risk of collision during the navigation.

The paper is organised as follows. Section II presents the
theoretical background, section III describes the case study
investigated, section IV details the proposed algorithm, and,
finally, some simulation results and conclusion are reported
in section V and VI respectively.

II. PROBABILISTIC FRAMEWORK

The localisation problem, i.e., the problem of estimation
the robot’s pose given noisy measurements, can be described
as a stochastic estimation problem. In such framework
localisation can be formulated in terms of estimating the
probability density over the state space of the robot poses.
In literature such probability density is called Belief and is
defined as

Bel(xk) = p(xk | Uk, Zk), x ∈ Ξ. (1)

i.e., the probability to have the robot at location xk at
time k, given all the history of the proprioceptive (Uk) and
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Fig. 1. Bayesian filter

exteroceptive (Zk) measurements up the time, where Ξ is the
set of the robot poses.

Most of the localisation algorithms proposed in literature
are based on the well known predictor – corrector structure
of Bayesian filter. The last extends the Bayes rule to temporal
estimation problems: the key idea is to recursively maintain
a probability distribution ( Belief ) over all poses (state space
points) in the environment integrating information coming
from proprioceptive sensors and exteroceptive sensors in two
different steps (see Fig. 1).

Two different kinds of Belief can be distinguished regard-
ing to this measurements classification: the Prior Bel−(xk)
and the Posterior Bel+(xk). The former defined as

Bel−(xk) = p(xk | Uk, Zk−1) (2)

is the Belief of the robot after the integration of the control
data uk, and before it receives the perceptual data zk. The
latter defined as

Bel+(xk) = p(xk | Uk, Zk) (3)

is the Belief of the robot when the perceptual data zk is also
integrated. Using the Total Probability theorem the Bel−(xk)
can be rewritten as

Bel−(xk) =
∫

Ξ

p(xk | xk−1, Uk, Zk−1)×
p(xk−1 | Uk−1, Zk−1)dxk−1.

(4)

The equation states that the Prior of being in xk is given
by the sum of the probabilities of coming from xk−1 to xk

conditioned on all the measurements so far. The second term
of the integral represents the Posterior at time (k−1), as the
robot pose at generic step k does not depend on the action
that is performed at the same step. This equation can be
further simplified by means of the Markovian assumption, i.e.
the assumption of having the past independent of the future
and vice-versa, relying on the knowledge of the current state,
as follows

Bel−(xk) =
∫

Ξ

P (xk | xk−1, uk)×
Bel+(xk−1)dxk−1.

(5)

Moreover, applying the Bayes rule the Posterior can be
expressed as

Bel+(xk) = p(zk | xk, Uk, Zk−1)×
p(xk | Uk, Zk−1)
p(zk | Uk, Zk−1)

.
(6)

The equation states that the Posterior is the conditional
probability of observing zk, weighted by the ratio of the

prior belief of being in xk , Bel−(xk), and the probability of
observing measurement zk conditioned on all information
so far. Introducing the Markovian assumption again the
Posterior can be rewritten as

Bel+(xk) =
p(zk | xk) Bel−(xk)

p(zk | Uk, Zk−1)
. (7)

The localisation formula resulting from the combination of
such equations is

Bel+(xk) = ηP (zk | xk)×∫
Ξ

P (xk | xk−1, uk−1)Bel+(xk−1)dxk−1,
(8)

where η represents P (zk | Uk−1, Zk−1) and can be viewed
as a normalisation factor.

Localisation equations (4) and (8) cannot be implemented
on a digital computer in their general form stated above, as
the Belief over the space of robot poses is a density over
a continuous space, hence has infinitely many dimensions.
Therefore, any working localisation algorithm has to resort
to additional assumptions.

For example in pose tracking a common approach is
represented by the use of Kalman filter. In this context the
Belief is modelled by a unimodal Gaussian density over the
three-dimensional state space of the robot. The mode of
this density yields the current position of the robot, and the
variance represents the current uncertainty. As only these two
parameters have to be computed to propagate uncertainty,
there is no need to discretise the state space. The advantage
of Kalman filter based techniques lies in their efficiency and
in the high accuracy that can be obtained. However, the
restriction to an unimodal Gaussian density is prone to fail
if the pose of a robot has to be estimated from scratch, i.e.,
without knowledge about the starting position of the robot.
Furthermore these techniques are typically unable to recover
from localisation failures.

Several probabilistic global methods have been proposed
to overcome the disadvantages of Kalman filter based tech-
niques, relaxing Gaussian assumption and introducing the
discretisation of the space state.

For instance, Monte Carlo Integration methods adopt a
sampling-based approach to describe the probability distri-
bution Bel(xk) as follows

Bel(xk) ≈ {x(i)
k , w

(i)
k }, i = 1, . . . , N (9)

where x
(i)
k is the i-th particle, w

(i)
k represents its the weight

and N is the number of particles.
Using such approach, the sampling strategy is crucial.

A widespread sampling strategy is the Sequential Impor-
tance Sampling, where a normalised sampling distribution
π(xk | dk), which support includes the one of the posterior
Bel+(xk), is used to draw samples from. The resulting
approximation is

Bel+(xk) ≈
N∑

i=1

w
(i)
k δ

x
(i)
k

(xk − x
(i)
k ), (10)
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where w
(i)
k is the importance weight and gives an evaluation

of the quality of the solution x
(i)
k . In the prediction step only

an evolution of the particle is considered without any change
of the weights, as shown in Algorithm 1.

Monte Carlo methods have the great advantage of allowing
an approximation for a significant variety of probability
distributions, such as multi-modal ones. Therefore, they turn
out to be very useful to deal with the global localisation
problem. However Monte Carlo methods suffer from great
computational load, as a large number of samples has to be
considered in order to maintain an accurate approximation
of the Belief.

III. PROBLEM SETTING

In this work an active localisation and safe planning algo-
rithm for mobile robots navigating in a known environment
is considered.

Although, the proposed algorithm could be generalised for
robots having different kinematic models and equipped with
different sensory systems, here a particular set up is studied.

The test bed adopted is a mobile manipulator, composed
by a mobile base carried a vertical articulated manipulator
with 5 DoF. The mobile base has the kinematic model of a
unicycle,

xk = f(xk−1, uk)

= xk−1 +


 cos φ̃k−1 0

sin φ̃k−1 0
0 1


uk (11)

where xk = (px, py, φk) is the pose of the robot, φ̃k =
φk−1 + δφk/2 is the average robot orientation during the
k-th sample time interval, and uk = [δdk, δφk]T are the
displacement and the rotation of the robot during the same
sample interval.

The sensory system is composed by encoders, as propri-
oceptive sensors, and a sonar rangefinder as exteroceptive
sensor. Encoders are used to determine the pose of the mobile
base and the posture of the tip of the manipulator. The
ultrasound sensor is mounted on the end-effector of the arm,
and can be panned to explore the surroundings. Its model
depends on the way the environment is described by the
map M. As in this work the map is represented by a list of
segments, the observation model can be written as

zk = h(xh,M) =
| ajs

x + bjs
y + cj |√

a2
j + b2

j

. (12)

where (aj , bj, cr) are the coefficients of the j-th segment and
(sx, sy) is the configuration of the ultrasound rangefinder
computed applying the well-known direct kinematics equa-
tions of the manipulator, not reported here due to lack of
space.

As the ultrasound sensor can be moved in the workspace
of the arm, several measurements can be retrieved at each
sample interval, and composed to form a pattern as shown
in Fig. 2.

Fig. 2. Same pattern of ultrasound measurements (dashed line) in an office
like environment retrieved by two different robot poses (triangle) . Here the
stroboscopic view of the arm is not report.

Notice that, even using a predefined set of sonar positions,
the same pattern can be produced by different robot pose, due
to the perceptual aliasing.

IV. ACTIVE LOCALISATION ALGORITHM

The algorithm for global localisation proposed in this work
can be broken down into two step:

• Hypothesis generation
• Safe planning and tracking

During the first step the robot does not know its pose in
its working area and is still in order to avoid collisions.
However, the robotic arm is able to safely explore the envi-
ronment moving the ultrasound sensor on the end effector.
The pattern retrieved by sonar measurements is used to
generate hypotheses about the possible pose of the robot in
the environment by means of a particle filter.

Due to perceptual aliasing several hypotheses are retrieved
and the residual ambiguity has to be reduced adopting a
different strategy. For this reason, in the second step safe
path are planned and executed by the robot. During the
navigation the hypotheses are tracked using Kalman filters in
order to monitor their reliability. When an hypothesis looses
its reliability is discarded until the real position of the robot,
otherwise a restart of the algorithm is required.

In the sequel the steps will be detailed.

A. Hypotheses generation

The algorithm, proposed to face the pose recovery problem
for a mobile manipulator, is based on a particle filter. A
possible implementation for the k-th iteration, in which the
Bayesian Importance Sampling approach has been adopted,
is shown in the pseudo-code Algorithm 1.

Several differences between the classical implementation
and the presented one can be singled out. These differences
mainly concern the assumption of stillness that has been done
for the mobile base. From this point of view the algorithm
can be considered as an optimisation algorithm, where some
interesting aspects of a multi-modal filter still remain.

At the first time a uniform probability distribution, cover-
ing the entire environment, is considered, as global localisa-
tion problem comes without any knowledge about the initial
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Algorithm 1: Particle Filter

Data: Bel(xk−1) , zk

Result: Bel(xk)

/* Importance Sampling */

for i=1 to Ns do

Particle evolution Bel−(xk−1) ∼ {x(i)
k , w

(i)
k−1}

Weights update Bel+(xk−1) ∼ {x(i)
k , w

∗(i)
k }

Normalisation w̃
(i)
k = w

∗(i)
k∑

Ns

j=1
w

∗(i)
k

end

Evaluate Neff = 1∑Ns

i=1
(w

(i)
k

)2

/* Resampling */

if Neff ≥ Nthres then

Bel(xk) = {x̃(i)
k , w̃

(i)
k }

else
Bel(xk) = Resampling({x̃(i)

k , w̃
(i)
k })

end

pose of the robot. At this stage, the number of particles has
to be carefully fixed in advance, in order to guarantee the
coverage of the state space.

At k-th sample interval a particles evolution and a weights
update have to be computed. In this context, in which
the mobile base is motionless, there is no proper particles
evolution. Therefore, the localisation problem is based only
on the data coming from the ultrasound rangefinder which the
arm has been equipped with. This consideration points out an
interesting aspect: the temporal step k-th can be considered
as the k-th iteration of an optimisation algorithm as well.

In order to update the weights of the particles, a suitable
computation strategy has to be adopted. Here, the quadratic
error between the ultrasound rangefinder measures, coming
from the mobile base, and the expected ones, coming from
the i-th particle, is computed using eq. 12

v
(i)
j,k = (zj,k − z

(i)
j,k)2, (13)

where zj,k represents the k-th sensor reading related to the
j-th configuration of the robotic arm and z

(i)
j,k is the expected

observation.
Consequently, the weight is updated has:

w
(i)
k =

β
Npos∑
j=1

v
(i)
j,k

, (14)

where β is a scaling dimensional factor, whom nominal value
is negligible because of 15.

Resampling Radius

Resampling Area

Particle

1

iω

Fig. 3. Choice of resampling area for mutation

Finally, in order to obtain the following approximation for
the Belief a normalisation has to be performed to satisfy the
constraint:

N∑
i=1

w
(i)
k = 1. (15)

Notice that previous weights are not taken into account
for the computation of the actual weights. These choices
are explained with the fact that the robot is still. As a
consequence, the same pattern is available at each iteration.
Therefore the algorithm iteratively improves the solution in
order to find out the most likely hypotheses.

The resampling step has been introduced to overcome
the depletion problem, i.e., the problem of having most of
particles with a negligible weight after few steps. To this aim,
all the particles except the very best ones, are discarded and
new ones are generated by resampling.

In literature, several strategies have been proposed to deal
with this problem. Here, the availability of observations is
limited by the motionless state of the mobile base and an
evolutionary approach is suggested, in order to find out the
most likely hypotheses.

Particles are regarded as elements of a population, whose
chromosoma is represented by the space state vector. The
evolutionary resampling is performed by means of a mutation
strategy and an additional random action, called randomisa-
tion.

The former draws new particles within a fixed circular
area, whose boundary are described in Fig. 3, to reinforce
the presence of particles where the probability to find the
mobile base is higher.

The latter spreads a fixed percentage of particles within
the whole environment, to mitigate the centralising effect
of the mutations and guarantee a minimal coverage of the
environment.

The recovery algorithm stops when a stable solution is
reached. The stable solution is detected monitoring a fixed
percentage of the most likely hypotheses. These last will be
used in the trajectory planning and tracking step.

B. Trajectory planning and tracking

After the generation of the hypotheses, the robot moves
in the environment along safe path in order to reduce the
residual ambiguity.

At each planning step a via point is generated in the prox-
imity of the nearest obstacle: in this way a path generated
for a candidate is safe for all, as shown in Fig.4.
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Fig. 4. Via point selected (x) using the nearest obstacle technique.

The robot is driven towards the via point by means of the
control law proposed in [12] and not reported here for lack
of space.

During the navigation each candidate is monitored by a
Extended Kalman Filters. The EKF uses the kinematic model
of the robot to form a prediction estimate of a candidate pose
x

(i)
k :

x
(i)
k|k−1 = f(x(i)

k−1|k−1, uk)

Pk|k−1 =Jf
x Pk−1|k−1 (Jf

x )T + Jf
u C (Jf

u )T + Q.
(16)

Here, Jf
x and Jf

u are the Jacobian matrices of f(·) with
respect to x

(i)
k−1 and uk, Pk−1|k−1 is the covariance matrix at

time instant k − 1, C is the covariance matrix of the Gaussian
white noise which corrupts the input measure and Q is the
covariance matrix of the Gaussian white-noise which directly
affects the state in the kinematic model.

The correction estimate is obtained comparing the mea-
surements available at k-th sample time:

x
(i)
k|k = x

(i)
k|k−1 + Kk[zk − h(x(i)

k|k−1)]
Pk|k = Pk|k−1 − Kk Sk KT

k .
(17)

where Kk is the Kalman gain matrix

Kk = Pk|k−1(Jh
x )

T
S−1

k (18)

and Sk is covariance matrix associated to the innovation

v
(i)
k = zk − h(x(i)

k|k−1). (19)

In order to determine the correspondence between the real
pattern retrieved by the ultrasound rangefinder and the ones
generated by the hypotheses a data association test is set up,
using Mahalanobis metric and χ square test

v
(i)
k S−1

k (v(i)
k )T ≤ χ2 (20)

where χ is a threshold that validate the candidates.
Due to the perceptual aliasing a complete disambiguation

is not always possible. Indeed, as explained above the sym-
metry of the environment should not produce the expected
disambiguation: for example in an environment having the
shape of a Greek cross it is difficult to retrieve less than four
hypotheses at the end of the trajectory planning and tracking.
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Fig. 5. Trend of convergence for an initial set of 1000 particles averaged
over 50 runs.

V. SIMULATION RESULTS

The algorithm has been tested in simulated environments
in order to validate its effectiveness. Such simulations have
been performed exploiting a framework, developed by the
authors, able to provide several kinematic models as well
as an emulation for several kinds of sensors, such as laser
rangefinders. The robot configuration used for such simula-
tions is shown in table I:

TABLE I

SETUP CONFIGURATION

Parameter Description Value
N Number of Particles 200 ÷ 1000

Npos Pattern Beams 16
H Selected Hyp. [%] 20
χ Validation Gate [%] 40

Two indexes of quality have been taken into account to
evaluate the performance of the algorithm :

• Percentage of successful trials
• Convergence trend.

The first index gives a measure of the efficacy of the propose
active localisation algorithm. In order to provide an accurate
analysis, the algorithm has been run 50 times for each fixed
number of particles, and mean values have been considered.
Therefore, in Tab. II is shown the percentage of successful
trials considering a variable number of particles, ranging
from 200 to 1000.

TABLE II

PERCENTAGE OF SUCCESSFULLY TRIALS

Number of Particles 200 300 500 700 1000
Successfully Trial [%] 65 80 90 95 100

On the other hand, the second index provides a statistical
law for the prediction of the algorithm convergence time.
For this purpose, the algorithm has been run several times
with a fixed number of particles. Afterward, a normalised
temporal axis has been computed in order to compare the
trials. Finally, a common convergence law has been retrieved
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Fig. 6. Example of presence of multiple likely hypotheses.

respect to the number of remaining hypotheses. According
to this, Fig. 5 shows the trend of convergence when con-
sidering an initial set of 1000 particles averaged over 50
runs. An additional exponential interpolation has been done
to better understand the convergence velocity trend. The
figure proves the efficacy of the proposed planning strategy
to disambiguate as only 25% of hypotheses are considered
after 30% of the overall planning iterations. Note that once
the algorithm stops, there is no guarantee that the solution
retrieved is represented by a unique pose. This behaviour can
arise because of two different conditions:

• Hypotheses overlapping
• Environmental structural ambiguities.

Fig. 6 shows an example when both of these conditions
arise. In particular, four hypotheses remain when the algo-
rithm stops, according to the structural ambiguities of the
environment. In this case, the algorithm is unable to discern
the real robot pose relying only on the simple proposed
planning approach, therefore a random path generation can
be added in order to overcome such limitation.

VI. CONCLUSION

In this paper, a hybrid approach to solve the active localisa-
tion problem, without a global positioning devices, has been
proposed. The algorithm relies on two steps: hypothesis gen-
eration and safe planning and tracking technique. The former
exploits a particle filter to find out the most likely hypotheses
with the assumption of stillness of the robot. The latter plans
safe trajectories to reduce the remaining ambiguities using an
extended Kalman filter for each hypothesis when the robot is
moving. The novelty of this algorithm is related to the ability
to localise the robot without any feature-based knowledge of
the environment, consequently a more general use of this
approach is possible.

An extensive analysis has been performed in order to
validate the proposed algorithm. In particular, two indexes of
quality have been adopted to study the convergence velocity
to the real robot pose (first index) as well as to verify

its efficacy (second index). According to the simulation
results, the algorithm is able to localise the robot with a
reasonable level of reliability. Moreover, the simple plan-
ning strategy has proved to be useful to quickly remove
unlikely hypotheses that had been generated because of the
environmental similarities. Some interesting challenges still
remain for future work, among them an implementation of
the proposed algorithm on a real robot.
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