
Complex Packaging Line Modelling and Simulation

Andrea Grassi, Elisa Gebennini, Gabriele Goldoni, Cesare Fantuzzi, Rita Gamberini,

Robert Nevin and Bianca Rimini

Abstract— The paper presents advanced issues in modelling
and simulation of complex packaging line. In particular, we
developed a theoretical model of a line with two machines and
a buffer, which is a simplified version of a real packaging
line from Tetra Pak company. The paper reports also about
simulation results that confirm theoretical supposals.

I. INTRODUCTION

In recent years increasing competition in global markets

has pushed industries to adopt innovative production systems,

targeting improved production quality at reduced cost. In par-

ticular high volume production, demands a highly automation

and organisation in production lines.

Production lines are an assembly of automated machines

that work in a productive chain, each machine being tailored

to perform specific operations on the raw material at the

highest possible speed.

Since the machines in a production line are closely coupled

to each others, the performance of the whole line depends

strongly on both the performance of single machines and

on how they are linked. Thus to optimize line performance,

several aspects should be taken in account at the design stage.

The key issue concerning the line production efficiency is

in the identification of key factors in the design of the single

machine and in their assembly in the production line. An

aspect which is generally acknowledged in the literature is

that the machines interact with each other, and a machine

blocking will produce a general failure of all of the other

machines. To decrease this vulnerability, it is common to

introduce a production decoupling buffer following most

critical machines.

However, the correct choice of the buffer position and

size depends on the production goal and on the machine

characteristics. For example in a Tetra Pak production line,

the filling machine has a critical behaviour as a stoppage

because of a downstream line fault produces product waste

and possibly a longer time to restoration with respect to

nominal MTTR.

Continuous production lines design is a typical industrial

problem which attracted, and currently attracts, the interest

of scientists. When machines are connected each other in

a continuous line, the performance of a generic machine
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is not only determined by its behavior, but only by the

interactions with the other machines immediately located in

the upstream and downstream. Hence, a repaired machine

(that is, a machine able to perform operations on products)

could be found in idle state as a consequence of failures

occurred

– in the upstream, determining an interruption of the

ingoing product flow, thus causing a starvation;

– in the downstream, determining a stop of the outgoing

product flow, thus a block of the machine as a conse-

quence of the impossibility to discharge products.

To mitigate the effects of such harmful interactions, buffers

are allocated along the line to act as decoupling points to

sustain the flow for a determined time span, when failures

on machines occur.

Hence, the main concern in the design of continuous

production lines is the determination of the right position

and capacity of the buffers, these consistently affecting the

overall throughput of the line itself, as can be seen in

[2][3][4].

Scientists and technicians have addressed this problem in

several ways, but the most attractive and promising approach

is probably the mathematical modeling. By means of math-

ematical models, an analytic relation between the buffers

structuring and the throughput of the line can be established,

thus precise and useful insights can be obtained to address

the optimal dimensioning (see [1] for a comprehensive

representation).

One of the most important methodologies adopted to

mathematically represent the behavior of the line is obtained

considering that the line behaves as a continuous time

Markov process. In this way, also inhomogeneous lines (i.e.

those in which machines can have different productivities)

can be addressed.

Nevertheless, deriving a model of a line as a whole is a

very complex task. Hence, decomposition techniques have

been developed in such a way as to allow the line to

be fractionized in a sequence of bi-machine sub-problems,

being these latter solvable in analytic terms. Once analytic

models for each bi-machine sub-problem are obtained, the

performance parameters of the whole line can be computed

by means of iterative procedures.

Several works have been proposed in this direction, as can

be noted by the wide literature produced [5][6][7][8][9][10].

As pointed up before, decomposition techniques fraction-

ize the whole line in a sequence of sub-problems charac-

terized by two-machines connected each other by means of

a buffer, this latter modeling the accumulation capabilities
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Fig. 1. Two machines system

of the transportation system (storages and/or accumulating

conveyors).

Hence, the importance to have well performing mathe-

matical models to correctly represent the behavior of each

two-machines sub-system is emphasized.

The basic two-machines system, modeled as a continuous

time Markov process, was developed in [11]. This model

considers two machines, with equal or different speeds,

continuously operating on a flow of products, while a storage,

with a finite capacity N , is introduced to mitigate the harmful

interactions that can be generated in case of machines fail-

ures. This model can be effectively adopted to represent the

most cases findable in practice, such as automatic assembly

lines.

Nevertheless, there are also manufacturing systems in

which machines are subject to product wasting at each

restart, as the filling machine of Tetra Pak. The filling

machine is the first machine in a packaging line, and its goal

is to fill the packages with the liquid product and to seal the

package. Because process characteristics at each restart the

filling machine has to waste some packages.

At the best of authors’ knowledge, in the current literature

there are none theoretical results that deals with this prob-

lems. Our approach is to define a buffer control algorithm

that seek to prevent filling machine stoppage.

This system mathematical model is presented in Section II,

while Section III describes the simulation results.

II. SYSTEM MODEL

The two machine finite buffer problem, with M1’s restart

controlled by buffer level, is modeled as a continuous time,

mixed state Markov process. The system is depicted in

Figure 1.

The variables µi, pi, and ri represent the production rate,

the failure rate, and the restoration rate, respectively, ∀ i =
1, 2. As emphasized in Section I, in such a system µ2 > µ1

since the main issue is to prevent stops in M1.

The system state is defined as

S =
(

x, β, α1, α2, t
)

, (1)

being x the buffer level, β = {0, 1} a binary parameter

identifying the forced block state of the first machine, α i =
{0, 1} the repair state of the machine i = {1, 2}, and t the

time variable.

In a generic time interval δt, the variation in the

buffer level involved by the machines behaviour is
(

(1 − β)α1µ1 − α2µ2

)

δt, if x is far enough to its boundaries

0 and N .

When the buffer reaches the level N , the first machine

can not discharge products and consequently goes blocked,

that is, it could process units (α1 = 1) but it has to stop

production as a consequence of the impossibility to send

products in the downstream. Moreover, as said in Section I,

to reduce the number of stops of M1, an immediate restart

is prevented by putting M1 in the forced block state (β = 1)
and maintaining it blocked until the buffer level decreases to

a predefined value L ∈ [0, N ]. As an additional consequence,

while β = 1, M1 can not go down since operational

dependent failures are assumed. While β = 0, the probability

of failure of M1 at time t + δt, provided that α1(t) = 1, is

p1δt.

On the other side, M2 can consume products at its nominal

rate µ2 only if the buffer is not empty, otherwise it is forced

to slow down its speed to µ1 (remeber the hypothesis µ2 >
µ1). In this case the probability of failure of M2 at time

t + δt, provided that α2(t) = 1, is pb
2δt, where

pb
2 =

µ1

µ2

p2 , (2)

since a failure rate proportional to machine operating speed

is assumed. When the buffer is not empty, such a probability

is p2δt.

Finally, the probability to have a restoration at time t+ δt
of a machine i failed in t

(

αi(t) = 0
)

is riδt.

The model comprises a set of equations that represent the

behavior of the system. It is advisable to distinguish two

groups of equations, the one related to the boundary states

(when the buffer is empty or full) and the other related to

the intermediate buffer levels.

A. Boundary behavior

There are twelve boundary states: (0, 0, α1, α2) where

α1 = 0 or 1, α2 = 0 or 1 and (N, β, α1, α2) where β =
0 or 1, α1 = 0 or 1 α2 = 0 or 1. Let us examine the

equations to represent the probability of finding the system

in a given boundary state.

Lower Boundary: x = 0: The equations that describe the

behavior of the system at the lower boundary are very similar

to those investigated in the previous literature. In this case

the parameter β is included in the definition of the system

state nevertheless its value is fixed to zero when the buffer

is empty.

Hence the equations related to the lower boundary are only

stated and not derived in the following (the reader is referred

to [1] for more details).

• Boundary-to-Boundary Equations

d

st
p(0, 0, 0, 0) = −(r1 + r2)p(0, 0, 0, 0) , (3)

p(0, 0, 1, 0) = 0 . (4)

ThD6.3

2947



• Interior-to-Boundary Equations

d

dt
p(0, 0, 0, 1) = r2p(0, 0, 0, 0)− r1p(0, 0, 0, 1)+

+ p1p(0, 0, 1, 1) + µ2f(0, 0, 0, 1) , (5)

d

dt
p(0, 0, 1, 1) = −(p1 + pb

2)p(0, 0, 1, 1)+

+ r1p(0, 0, 0, 1) + p1p(0, 0, 1, 1)+

+ (µ2 − µ1)f(0, 0, 1, 1) . (6)

• Boundary-to-Interior Equations

µ1f(0, 0, 1, 0) = r1p(0, 0, 0, 0) + pb
2p(0, 0, 1, 1) . (7)

Upper Boundary: x = N: It is important to note that the

variable β changes instantaneously from 0 to 1 when the

buffer level reaches the value N . This implies that, when

x = N , all the states with β = 0 are coincident with the

corresponding states having β = 1.

(N, 0, α1, α2) ≡ (N, 1, α1, α2) , ∀ α1, α2 = {1, 2} . (8)

• Boundary-to-Boundary Equations

The probability of finding the system in some boundary

states is equal to zero. In particular the system can not

get to the states (N, 0, 0, 0) and (N, 1, 0, 0) because the

buffer can not reach level N if M1 is down.

p(N, 0, 0, 0) = p(N, 1, 0, 0) = 0 . (9)

Moreover, as a consequence of the hypothesis µ2 > µ1,

it follows that

p(N, 0, 1, 1) = p(N, 1, 1, 1) = 0 , (10)

since, if the second machine is working, the buffer level

can only decrease.

• Interior-to-Boundary Equations

To be in state (N, 1, 1, 0) (or equally in state

(N, 0, 1, 0)) at time t + δt the system could have been

only in one of two sets of states at time t. It could

have been in state (N, 1, 1, 0) (or (N, 0, 1, 0)) with no

repair of the second machine (the first could not have

failed since it was blocked) or else in any interior state

(x, 0, 1, 0), where N − µ1δt ≤ x < N , if repair of the

second machine or failure of the first did not occur.

Symbolically, ignoring the second order terms,

p(N, β, 1, 0, t + δt) = (1 − r2δt)p(N, β, 1, 0, t)+

+

∫ N

N−µ1δt

f(x, 0, 1, 0, t)dx , ∀ β = 0, 1 .

It is not necessary to consider transitions directly from

states like (x, 0, 1, 1), since, if the second machine is

working in t, the buffer level cannot reach N in t + δt.
As δt → 0, the equation becomes

d

dt
p(N, β, 1, 0) = −r2p(N, β, 1, 0) + µ1f(N, β, 1, 0) ,

∀ β = 0, 1 . (11)

• Boundary-to-Interior Equations

The only possible internal states reachable from the

upper boundary are those with β = 1 and α1 = 1
because the first machine is forced to be blocked and

can not fail. In addition, it is possible to leave the upper

boundary x = N only by repairing the second machine,

then it results α2 = 1 and the buffer level decreases

according to the productivity of the second machine

(µ2). To be in the state (x, 1, 1, 1) at time t + δt the

system can have been at the boundary state (N, 1, 1, 0)
some time during the time interval (t, t + δt), then

∫ N−µ2δt

N

f(x, 1, 1, 1,t + δt)dx =

∫ t+δt

t

r2p(N, 1, 1, 0, s)ds .

Letting δt → 0, the equation becomes

µ2f(N, 1, 1, 1) = r2p(N, 1, 1, 0) . (12)

B. Intermediate buffer level

The transition equations represent the behavior of the

system at intermediate storage levels, that is, when the buffer

is neither empty nor full. The set of equations reported below

characterizes the system when the forced block state in M1 is

not reached. This is the case in which the parameter β equals

0, thus those equations are the same as the ones reported

in [1].

∂f

∂t
(x, 0, 1, 1) = − (p1 + p2)f(x, 0, 1, 1)+

+ (µ2 − µ1)
∂f

∂x
(x, 0, 1, 1)+

+ r1f(x, 0, 0, 1) + r2f(x, 0, 1, 0), (13)

∂f

∂t
(x, 0, 0, 0) = − (r1 + r2)f(x, 0, 0, 0)+

+ p1f(x, 0, 1, 0) + p2f(x, 0, 0, 1), (14)

∂f

∂t
(x, 0, 0, 1) =µ2

∂f

∂x
(x, 0, 0, 1)+

− (r1 + p2)f(x, 0, 0, 1)+

+ p1f(x, 0, 1, 1) + r2f(x, 0, 0, 0), (15)

∂f

∂t
(x, 0, 1, 0) = − µ1

∂f

∂x
(x, 0, 1, 0)+

− (p1 + r2)f(x, 0, 1, 0)+

+ p2f(x, 0, 1, 1) + r1f(x, 0, 0, 0). (16)

In the estimate case other equations are needed to model

the entire behavior of the system. In fact, when the buffer

level is between L and N , M1 could be or not in the forced

block state, hence there is another set of transient equation

in which β = 1. Such equations are defined for x ∈
[

L, N
]

.

When β = 1, M1 is operational but in the forced

block state, thus failures can not occur. Hence, the only

transient states available in such a situation are (x, 1, 1, 1)
and (x, 1, 1, 0).

Let us consider the first state (x, 1, 1, 1) representing the

situation in which the machine M2 is operational. The prob-

ability of finding such a state with a storage level between x
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and x + δx at time t + δt is given by f(x, 1, 1, 1, t + δt)δx,

where:

f(x, 1, 1, 1, t + δt) =(1 − p2δt)f(x + µ2δt, 1, 1, 1, t)+

+ r2δtf(x, 1, 1, 0, t) + ◦(δt) .

This derives from the following considerations:

1) If M2 is operational at time t and the buffer level is

x + µ2δt (with δx = µ2δt), then, at time t + δt, the

storage level will be x if failures do not occur in M2

during δt, thus involving probability
(

1 − p2δt
)

.

2) If M2 is down at time t, it can be up at time t + δt
if it will be repaired in δt, thus implying probability

r2δt. Moreover, there is not variation in the buffer level

since M1 is in the forced block state.

3) States characterized by α1 = 0 (M1 is down) are not

possible since, being M1 in the forced block state, it

can not fail.

With few steps the derivative form can be obtained.

f(x, 1, 1, 1, t+δt) − f(x, 1, 1, 1, t) =

(1 − p2)f(x + µ2δt, 1, 1, 1, t)+

− f(x, 1, 1, 1, t) + r2δtf(x, 1, 1, 0, t) ,

lim
δt→0

f(x, 1, 1, 1, t + δt) − f(x, 1, 1, 1, t)

δt
=

lim
δt→0

(

−p2f(x + µ2δt, 1, 1, 1, t)
)

+

+ lim
δt→0

(

r2f(x, 1, 1, 0, t)
)

+

+ lim
δt→0

(

f(x + µ2δt, 1, 1, 1, t)− f(x, 1, 1, 1, t)

δt

)

,

∂f

∂t
(x, 1, 1, 1, t) = −p2f(x, 1, 1, 1, t) + r2f(x, 1, 1, 0, t)+

+ µ2 lim
δx→0

(

f(x + δx, 1, 1, 1, t) − f(x, 1, 1, 1, t)

δx

)

.

The final equation is here reported, where the t argument

is suppressed.

∂f

∂t
(x, 1, 1, 1) = − p2f(x, 1, 1, 1) + r2f(x, 1, 1, 0)+

+ µ2

∂f

∂x
(x, 1, 1, 1) . (17)

The same reasoning is adopted to obtain the other transient

equation, reported in the following.

∂f

∂t
(x, 1, 1, 0) = −r2f(x, 1, 1, 0) + p2f(x, 1, 1, 1) . (18)

C. Normalization and flow conservation

The normalization equation must be satisfied to assure that

the sum of the probabilities of all possible states (transient

and boundary) is 1.

1
∑

α1=0

1
∑

α2=0

[

∫ N

0

f(x, 0, α1, α2)dx + p(0, 0, α1, α2)

]

+

+

1
∑

α2=0

[

∫ N

L

f(x, 1, 1, α2)dx

]

+ p(N, 1, 1, 0) = 1 . (19)

Moreover, the flow conservation must be established. The

flow conservation is expressed by the following equality

P1 = P2 , (20)

where Pi is the throughput of the machine i, ∀ i = 1, 2.

Material leaves the second machine at rate µ2 only if the

buffer level is different from zero, otherwise the rate is equal

to µ1. Consequently,

P2 = µ2

[

∫ N

0

(

f(x, 0, 0, 1) + f(x, 0, 1, 1)
)

dx+

+

∫ N

L

f(x, 1, 1, 1)dx + p(N, β, 1, 1)

]

+

+ µ1p(0, 0, 1, 1) .

According to (10), p(N, β, 1, 1) goes to zero, then

P2 = µ2

[

∫ N

0

(

f(x, 0, 0, 1) + f(x, 0, 1, 1)
)

dx+

+

∫ N

L

f(x, 1, 1, 1)dx

]

+ µ1p(0, 0, 1, 1) . (21)

For what concerns the expression of P1, it is necessary to

consider also that material can not enter the first machine if

the machine is forced to be blocked. Thus,

P1 = µ1

[

∫ N

0

(

f(x, 0, 1, 0) + f(x, 0, 1, 1)
)

dx+

+ p(0, 0, 1, 1)

]

. (22)

Subtracting (22) from (21) yields

P2 − P1 =

∫ N

0

[

(µ2 − µ1)f(x, 0, 1, 1) + µ2f(x, 0, 0, 1)+

− µ1f(x, 0, 1, 0)
]

dx +

∫ N

L

µ2f(x, 1, 1, 1)dx ,

or

P2 − P1 =

∫ N

0

[

(µ2 − µ1)f(x, 0, 1, 1) + µ2f(x, 0, 0, 1)+

− µ1f(x, 0, 1, 0)+

+ Φ(x)µ2f(x, 1, 1, 1)
]

dx , (23)

where Φ(x) is defined as

Φ(x) =

{

0 if 0 ≤ x < L ,

1 otherwise .
(24)

The integrand of the (23) can also be obtained by adding

the steady state versions
(

∂f
∂t

= 0
)

of the internal differential

equations (13)–(18). It follows that, when the steady state is

reached,

(µ2 − µ1)f(x, 0, 1, 1) + µ2f(x, 0, 0, 1)+

−µ1f(x, 0, 1, 0) + Φ(x) µ2f(x, 1, 1, 1) = 0 ,

0 ≤ x ≤ N . (25)

Equation (25) implies that the integral in the (23) vanishes

and therefore the flow conservation equation (20) is proved.
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III. SIMULATION RESULTS

In this section a simulation model for the non-

homogeneous-two-machine line is presented. Such a model

is used to asses the expected improvements that should be

achieved by introducing a restart level for the filler machine.

According to results shown in Section II, three scenarios

have been evaluated by changing the ratio µ1/µ2 as shown

in Table I:

Scenario µ1 µ2 µ1/µ2

1 20.000 22.000 0.91

2 20.000 21.500 0.93

3 20.000 21.000 0.95

TABLE I

SIMULATION SCENARIOS

The inputs of the model are shown in table II :

Parameters Value

MTBF2 20 min

MTTR2 4 min

waste 100 items

fillerRestartPoint 4.000 items

TABLE II

INPUT OF THE MODEL

Note that the reliability of the first machine is set equal

to 1, thus it can be in the down state only if it is blocked.

It should be outlined that at each restart one hunderd of

packages should be withdraw because machine process char-

acteristics. The operational model has been implemented on

Flexsim c©simulation platform.

The simulations were performed changing the value of L
in the interval [N, 0] for each scenario. Figure 2 shows the

result of the simulation campaign.

In particular throughput performance over different value

of the ratio L/N for each scenario is depicted. The three

throughput curves have a similar shape: they present a

maximum value somewhere in the 0 − 1 range. This result

underlines the advantage of introducing a level policy on the

buffer that delays the restart of the filler machine in case the

buffer has reach the maximum value N . In particular it is

clear that it can be identified a level for ratio L/N which

maximize the productivity level for each scenario, that fulfill

the target of this study.

IV. CONCLUSIONS

The paper presented some issues in the modelling and

simulation of complex packaging line. In particular a theo-

retical model of a line with two machines and a buffer has

been presented, starting from a real case stay from Tetra

Pak company. Simulation results proved effectiveness of the

proposed solution.
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