
 
 

 

  

Abstract—In this paper we propose the progressive clamping 
method to better model the kinematic anisotropy of joint limits 
for virtual mannequins or robots. Like recent approaches our 
method damps only the joints’ variation component heading 
towards the limits. In addition we propose to dynamically 
express the corrective joint variation as a highest priority 
constraint that naturally extends the management of inequality 
constraints. This process is iterative within linear computing 
cost of the number of independent joints. We present how our 
approach is exploited for the major classes of rotation joints 
from one and up to three degrees of freedom. A comparison 
with other joint limit avoidance methods is given. We 
demonstrate the validity of our approach on various 
experiments targeting on the control of virtual mannequins. 

I. INTRODUCTION 
OINT limit avoidance is a critical task to achieve to safely 
control robots. Researchers have regularly proposed 

control laws combining the correct achievement of desired 
manipulation tasks together with maintaining the joints as 
far as possible from the joint limits [11][13]. More recently 
the slightly relaxed problem of damping only the joint 
variation towards the limits has been addressed [5][6]. We 
have adopted this less constraining context as we mostly aim 
to interactively control 3D characters [8] or virtual 
mannequins [12]. Indeed, a control law that maximizes the 
distance of the joints to their limits is not suitable for 
modeling realistic human-like postures as some joints are 
often exploited near their limit range (e.g. knee in the 
standing posture). We now review the prior contributions 
achieved within the framework of the Gradient Projection 
Method (GPM) [11] and outline our contribution. The GPM 
has been widely used to solve the joint limit avoidance 
problem. It defines a performance criterion as a function of 
the joint limits. The gradient of this function is projected 
onto the null space of the main task. Due to this projection, 
the joint limit avoidance has no effects on the main task. For 
example Liégeois introduced a simple penalty function that 
attracts the joints to its midrange center [11]. However, by 
construction strict joint limit avoidance is not guaranteed. 
Nelson and Khosla [13] have used a method that minimizes 
an objective function to find a compromise solution between 
the main task and the joint limit avoidance. Chang and 
Dubey [5] have proposed a method using a weighted least-
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norm solution for a redundant joint manipulator to strictly 
guarantee the joint limit avoidance. This method does not try 
to maximize the distance of the joints to their limits. Instead 
only the motion in the direction of the joint limit is damped. 
Chaumette and Marchand presented a more efficient joint 
limit avoidance method than the classical GPM [2][3]. Their 
method consists of generating motions by iteratively solving 
a linear system of equations that is compatible with the main 
task. They stop any motions that move the joints in the 
neighborhood of their joint limits. The GPM has been 
generalized to an arbitrary number of strict priority levels by 
Siciliano and Slotine [14] and its computation has been 
made less expensive by Baerlocher [7] under the name of 
Prioritized Inverse Kinematics (PIK). To avoid the joint 
limits, this latter has exploited a mechanism called clamping 
which strictly guarantees joint limit avoidance by adding 
dynamic constraints with the highest priority level. 
However, such a strict enforcement may lead to undesired 
discontinuity in the postural control. In addition we have 
observed that this technique may also converge to a non-
optimal final state in singular contexts despite the use of the 
damped least squares inverses [10]. For these reasons we 
propose the progressive clamping technique which smoothly 
enforces a damping towards the joint limits and searches for 
an optimal task achievement within the remaining joint 
variation sub-space so that proposed method helps to avoid 
the solution to convergence to non-optimal final-states in 
singular contexts. 
In this paper we first briefly describe the PIK algorithm 
including the clamping mechanism for handling joint limits. 
Then we describe how we smoothly enforce joint limits for 
revolute, swing and ball-and-socket joints that are frequent 
for modeling 3D characters and virtual mannequins. We 
illustrate the interest of the proposed approach on a simple 
kinematic chain and a virtual mannequin and show that, in 
some cases, using joint limit avoidance with GPM or 
clamping does not lead to an optimal solution while our 
method succeeds. 

II. CLAMPING FOR JOINT LIMIT AVOIDANCE 
We provide here only a very brief overview of the PIK 

algorithm that handles an arbitrary number of priority levels 
and avoids joint limits for the purpose of controlling virtual 
mannequins or robot manipulators [1][7]. In this approach 
the controlled articulated structure is organized as a tree of 
chains, each consisting of an arbitrary number of revolute 
joints (1 degree of freedom rotation joint).  

The general PIK algorithm relies on an efficient 
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computation of projection operators enforcing the 
constraints grouped into an arbitrary number of strict 
priority levels (Fig. 1). This is only valid within the small 
region of the current state. For this reason the norm of any 
constraint variation is limited to a maximal value. The 
corresponding joint variation solution resulting from the 
inner priority loop, noted qΔ , is checked for the joint limit 
violation within the clamping loop. In the approach 
described in [1][7] all joints are one degree of freedom (dof) 
revolute joints with a range of motion [Min, Max]. These 
joint limits are handled as inequality constraints. Whenever 
the next configuration 1+kq  (defined as the sum of the 
current configuration and the computed solution qqk Δ+ ) 
violates a joint limit, a new equality constraint is 
dynamically inserted at the highest priority level into to 
constraints list to clamp the corresponding joint on its limit. 
Afterwards the prioritized solution is re-evaluated as long as 
no additional joint limit is violated. This loop is necessary to 
guarantee the constraints’ error minimization. The cost of 
the clamping loop is linear to the number of recruited joints 
(the number of joints taken into account for the prioritized 
solution computation). In the worst case each joint would be 
clamped individually at each successive clamping iteration. 
However, this is seldom the case as more than one joint 
generally violate their limits simultaneously, or even more 
frequently no joint violates its limits at all. 
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Fig. 1: The Prioritized Inverse Kinematics 
convergence loop (outer loop) highlighting 
the construction of the joint variation 
solution for multiple priority levels (inner 
loop) and the management of the joint limits 
through inequality constraints (clamping 
loop). Once the prioritized joint variation is 
obtained as the output of the inner loop, the 
updated configuration is checked for joint 
limit violation. Any detected subset of 
violating variations leads to the introduction 
of temporary equality constraints that clamp 
the corresponding joints on their respective 
limit. The prioritized solution is re-evaluated 
with this updated context as long as 
additional limit violation is detected 
(clamping loop). 

III. JOINT MODELS 
The purpose of a joint model is to represent the translational 
and rotational dof of a joint. In our context it is necessary to 
represent precisely enough the non-linearities at human joint 
limits. Combining two (resp. three) revolute joints to mimic 
the swing joint (resp. ball-and-socket) leads to a reachability 
cone with pyramidal basis that is not acceptable for our 
needs, especially when targeting on the evaluation of human 
tasks in Virtual Prototyping. Thus, in addition to the simple 
one dof revolute joint, we rely on explicit two dofs (swing) 
and three dofs (ball-and-socket) joint types for which we 
can exploit two types of joint limit models (elliptical cone 

and spherical polygon). More precisely the swing joint 
model allows a spherical motion of a limb without axial 
motion (e.g. the palm movement w.r.t. radius bone, or the 
lumbar vertebrae mobility [8]). The articulated structure of 
the virtual mannequin used in the present study can be seen 
in Figure 2. The humanoid root joint has six dof (three for 
translation and three for rotation). 
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Fig. 2 : Considered degrees of 
freedom for our virtual 
mannequin model. 

IV. PROGRESSIVE CLAMPING FOR JOINT LIMIT AVOIDANCE 

A. Motivation 
We define for each joint type a progressive clamping 

function that behaves like the standard clamping at the limit 
(cf. section II) and has a continuously decreasing influence 
until it vanishes at a certain distance to the limit. In addition, 
only a variation towards the limit is processed, nothing is 
performed otherwise similarly to [2][5]. Our function is 
generalized to two and three dofs joints as it only damps the 
joint variation component that brings the joint towards the 
limits, leaving orthogonal components unaltered. One of our 
critical requirements is to prevent the joint limit violation 
and to reduce the joint variation discontinuities near the 
limits. Therefore we advocate the extension of the strict 
clamping presented in section II to a smooth progressive 
clamping where each joint variation component towards the 
limits is increasingly damped as it happens closer to the 
limit. The resulting alteration of the joint variation is 
enforced with highest priority equality constraints leading to 
the construction of a null space on which the tasks 
constraints are achieved. This is the opposite of prior 
approaches that first build the task solution and then 
evaluate a compatible joint variation contribution to handle 
the behavior on or before the joint limit [2][5][11]. 

B. Joint models 
1) Revolute joint 

For simplicity, we use the same notation as Chaumette 
and Mansard [2]. Let us denote minq  and maxq  the lower 
and upper limits that are not to be crossed. We define two 
damping activation thresholds min

~q  and max
~q  (Fig. 3) 

respectively for the lower and upper limit. Now we want to 
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find a function h , defined over the damping intervals and 
null outside, that has a minimal value of 0 at min

~q  (resp. at 

max
~q ) and a maximum value of 1 at minq  (resp. maxq ). Such 
a function is best expressed through the normalized damping 
activation distance d defined as: 

qqqqd k −−= ~/~                (1) 

where kq  is the current joint value. 
A quadratic function could be used but our experience has 

shown that a cubic step function is more advantageous as it 
grows faster as a function of d , hence making it possible to 
keep the damping intervals smaller for a similarly smooth 
clamping behavior. Indeed it its preferred to minimize the 
size of the progressive clamping regions as our algorithm 
causes a re-evaluation of the PIK solution each time some 
joint variations are clamped (cf. section II and IV C). 

 

min

~
q

min
q

max

~
q

max
q

damping direction damping direction  
Fig. 3: Joint limits q , damping activation thresholds q~ , damping functions 
varying from 0 to 100% (red) and damping directions. 

 
Let qΔ  be the joint variation proposed by the PIK 

algorithm. The progressive clamping algorithm first 
evaluates whether the candidate new joint state 1+kq , 
defined as qqk Δ+ , is to be altered or not. For this we 
evaluate the damping function defined as follow: 

1=h      if min1 qqk <+  or 1max +< kqq     (2) 
23 32 ddh +−=  if min1

~qqq kk <<+  or 1max
~

+<< kk qqq (3) 
0=h       otherwise             (4) 

A null value of h  leaves the joint variation unaltered 
while an exact unit value requires to adjust the joint 
variation so that the joint is exactly clamped on the limit (as 
already described in section II). Otherwise, the new joint 
value '1+kq  is given by: 

qhqq kk Δ−+=+ )1('1              (5) 
We now examine the additional differences for other joint 

types prior to provide an overview in subsection C.  
 
2) Swing joint 

The joint of the two dofs are coupled. The variation of the 
first dof may limit the possible variation of the second dof. 
So instead of acting independently on the two rotation 
dimensions, we act in a two stage process: 

• First, we damp only the component of the joint 
variation that brings the joint towards its nearest 
limits. 

• Second, an additional clamping check is made to 
ensure that the damped state is within the valid 
joint domain. 

So first, any joint variation orthogonal to and heading 
towards the limit has to be damped while any variation 
parallel to the limit is kept unchanged. In our 
implementation, the 2D swing joint is parameterized by an 
exponential map vector belonging to a plane. An elliptical 
joint limit domain centered on the origin in that plane builds 
an elliptical cone limit in 3D space. We have chosen to 
perform the damping over an uniform thickness q)  along the 
border of the ellipse in the exponential map (Fig. 4).  

qq

q
q

q

q

q

q

 

 
 
 
 
Fig. 4: Uniform activation thickness q)  
inside an elliptic joint limit domain for 
the progressive clamping of a 2D swing 
joint. 

 
The damping function is acting only along the 

unidimensional axis passing through the point defining the 
current state kq  and orthogonal to the closest point on the 
ellipse kcp . With such conventions, the normalized 
damping activation distance kd  is given by: 

( ) qqcpqd kkk
)) /−−=             (6) 

The same cubic step function of kd  is then used to damp 

the orthogonal component ⊥Δq  of the 2D joint variation 

vector qΔ . The parallel component ||qΔ  is left unchanged. 
This decomposition is valid as long as the joint variation 
norm is small compared to the damping region thickness q) . 
We have: 

1=h       if 1+kq  is outside the limit    (7) 
23 32 kk ddh +−=   if 01 >> +kk dd        (8) 

0=h       otherwise          (9) 
where 1+kd  is defined with equation (6) with the 

candidate state 1+kq  and the corresponding closest point on 
the ellipse 1+kcp  (Fig. 5).  

kcp

'1+kq

1+kq

1+kcp

kq

q

q ⊥Δq
||qΔ

⊥Δ− qh)1(

 
Fig. 5: Damping the joint variation for a 2D elliptical limit. Only the 
variation component orthogonal to the limit is damped. Please note that the 
joint variation should be small compared to the damping region thickness; 
the correct proportion is not respected here for the sake of clarity. 

 
A null value leaves the joint variation unaltered like in the 

revolute joint case. On the other hand we process differently 
the case of the unit value which is treated in the second stage 
as an additional clamping check. For intermediate values of 
h  the damped joint state '1+kq  is computed as: 
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||
1 )1(' qqhqq kk Δ+Δ−+= ⊥

+           (10) 
The second stage consists simply in an additional 

clamping check that process a possible violation detection of 
the first stage ( 1=h ) and a (less frequent) limit violation of 
the resulting damping state due to the non-linear joint limit. 
In case a violation is detected the joint state is clamped to its 
nearest valid position as seen in Fig. 6. This mechanism 
allows the joint state to slide as much as possible on the 
limit instead of getting stuck or slowed down by a more 
restrictive approach. 

kcpkq =

1+kq

'11 ++ = kk qcpq

q

 
Fig. 6: Computation of the next joint state if the current state is exactly on 
the limit and the joint variation is heading outside the validity domain. 

The limits of a swing joint can also be modeled as 
spherical polygons (Fig. 7). This is especially useful for 
complex human joints such as the shoulder or the hip. The 
same damping approach can be exploited for this type of 
validity domain too. Similarly the thickness q)  is defined as 
the orthogonal distance to the limit as seen in Fig. 7 and 
only the joint variation orthogonal to the limit is damped. In 
this context however the points delimitating the spherical 
polygon lie on a sphere, so arcs and 3 dimensional points 
have to be used for the computations of the damping. 

q

q

q

q

q
q

q

 

 
 
 
 
 
Fig. 7: Joint limit modeled as a spherical 
polygon with highlighting the damping 
region with constant thickness. 

3) Ball-and-socket joint 
The ball-and-socket joint is modeled as a combination of 

a swing (2 dofs) and an additional axial rotation (one dof 
revolute joint). Thus, for the damping we just combine the 
damping of a swing joint and the one of a revolute joint. 

 

C. Putting all together 
The progressive clamping has been integrated in the 

Prioritized Inverse Kinematics architecture as a 
generalization of the existing clamping loop (cf. II). It takes 
place just after the computation of the solution qΔ . 
Whenever triggering the damping conditions the solution is 
altered into a damped variation 'qΔ . The final stage is the 
same as in the strict clamping architecture, i.e. enforcing the 
inequality constraints such as joint limits. 

The detailed steps of the complete algorithm can be 
summarized as follows (Fig. 8): 

1. Compute the solution qΔ . 
2. Check if there are any joints to be damped (cf. IV A 

and B). Output the potentially altered variation 'qΔ . 
3. Check whether 'qq Δ+  violates any joint limit or not. 

If it is the case, determine for each violating joint, the 
variation that clamp it on its limit. 

4. If any joint variation has been damped or clamped, add 
a new temporary equality constraint per detected joint. 
These will be achieved at the highest priority level to 
strictly enforce the correspondingly altered joint 
variations. Goto (1) to re-evaluate the solution with the 
updated equality constraint set. 

5. Otherwise, if no joint is damped or clamped, update the 
articulated structure state with the joint variation and 
remove the temporary equality constraints. 

6. If the task constraints are not met, goto (1) to compute 
a new convergence step. 

 
The double stage of damping and clamping allows to 

correctly handle complex joint limit shapes as often used in 
human articulated structures. The cost of our approach is the 
same as for the clamping loop. In the worst case each joint 
would be individually submitted to the progressive clamping 
at each successive iteration of the clamping/progressive 
clamping loop. That is why we have chosen a cubic 
damping function to minimize the size of the progressive 
clamping regions hence reducing the number of re-
evaluations of the PIK solution. 
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Fig. 8: The Prioritized Inverse Kinematics 
convergence loop together with the 
progressive clamping. Once the prioritized 
joint variation is obtained as an output of the 
inner loop, the resulting configuration is 
updated according to our progressive joint 
clamping. Afterwards the updated 
configuration is checked for joint limit 
violation. Any detected subset of 
progressive clamping or violating variations 
leads to the introduction of temporary 
equality constraints. The prioritized solution 
is re-evaluated with this updated context as 
long as additional progressive clamping or 
limit violation is detected 
(clamping/progressive clamping loop). 

V. EXPERIMENTAL RESULTS 
Three types of end effector controls have been exploited 

in the following experiments: position and/or orientation 
control, and the position control of the center of mass (given 
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the mass distribution of the articulated structure). The latter 
is especially useful for ensuring the balance of virtual 
mannequins. 

A. Kinematic chain 
This experiment highlights the behavior of our proposed 

approach with multiple conflicting tasks. Each joint can 
rotate clockwise or counterclockwise (+/- 1rd). We have 
defined three positional tasks to be achieved by three 
effectors distributed on the chain (Fig. 9 left). Each effector 
positioning task has a distinct priority. The behavior of the 
kinematic chain during the convergence with progressive 
clamping is illustrated in Fig. 9 middle and right. 

Joint1

Joint3

Joint2

Goal endeffector
high priority

Goal Joint3
middle priority

Task Joint2
low priority

Endeffector

initial configuration final configuration  
Fig. 9: Goal definitions with different priority levels for a simple kinematic 
chain and the behavior over time of our progressive clamping method. The 
strength of the red color indicates the value of our damping cost function 
(green = no damping, red = full damping). 

For a comparison with other approaches we have 
performed this experiment also for the clamping approach 
and the GPM. For the GPM the joint limit avoidance has the 
lowest priority among all other tasks. Figure 10 depicts the 
behavior of the joints and the decrease of the error during 
convergence for these three methods. 

The joint2_GPM and the joint3_GPM violate their limit 
as the null space dimension is insufficient to achieve this 
additional optimization. The progressively clamped joints 
produce the smoothes curves values (e.g. compare 
joint3_progressive_clamped with joint3_clamped). The 
“over swing” observed for the other approaches is not 
present for progressive clamping which is an advantage 
especially for the animation of virtual mannequins. The error 
convergence of these three methods is almost the same as 
seen in Fig. 10 (the final error is not null due to the 
conflicting tasks). 
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Fig. 10: Comparison of the error convergence. Joint limits are [-1, 1], the 
activation damping thresholds are for each joints set to –0.5 resp. 0.5. 

B. Virtual mannequin 
We consider now the virtual mannequin presented in Fig. 

2. The virtual mannequin has to achieve a balanced posture 
requiring a high suppleness. The toes of the right foot and 
the hand of the right arm have to reach the same position in 
its back as if to remove a thorn from the foot. This is 
achieved with two middle priority positional tasks. We use 
an orientation low priority task to turn the head so that the 
virtual mannequin can see his hand and foot behind him. 
During the whole motion the left foot has to stay on the 
ground which is reflected by the two highest priority tasks 
(one for the toes and one for the heel). During the whole 
sequence the virtual mannequin has to keep its balance; this 
is done by proejction the center of mass over the left foot 
with a higher priority than the other reaching tasks. 

Right foot and 
hand position 
goals; Head 
orientation goall

Center of Mass 
vertical line goal

left foot position 
goals

 
Fig. 11: The first posture of the virtual mannequin on the upper left states 
the initial configuration including the different task definitions. The 
evolution over time of the progressive clamping is seen from the left to the 
right. As seen in this sequence the virtual mannequin achieves the different 
goals. 

We executed this experiment twice, once with our 
progressive clamping approach and once with the classical 
clamping. The visual behaviors and the final stable states of 
these two experiments are similar. In Fig. 11 successive 
postures adopted during the progressive clamping are 
displayed.  

Although both methods are visually similar there are 
some important differences to note. The progressive 
clamping approach is particularly well suited to redistribute 
the PIK solution among joints by damping the joints that are 
close to their limit and moving toward it, and by requesting 
a greater contribution from the other joints that are moving 
in their “free” undamped region. We can see this 
phenomenon on the knee of the right leg. Our knee joint 
model for the virtual mannequin consists of two independent 
on dof revolute joints allowing an independent flexion and 
twist rotation of the knee. Thus, for each dof the progressive 
clamping is evaluated indendently. Fig. 12 illustrates the 
evolution of the total error between progressive clamping 
and clamping. Also the values for our progressive clamping 
function (continous within [0,1]) and classical clamping 
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(either 0 or 1) are given in Fig. 12 for the two dofs. The 
error decrease of our progressive clamping approach is 
higher. This means that we reach the final stable 
configuration within less iterations of the PIK algorithm. 
The progressive clamping reaches a total error of 0.1 within 
393 iterations while the classical clamping method requires 
455 iterations. The reason for this better error convergence 
is the progressive damping of the twist dof leading to an 
early transfer of the solution to the flexion dof. Thus, the 
right knee flexes faster with this approach which leads to a 
faster convergence in that case. In general, such a behavior 
represents better the kinematic anisotropy of joint 
movements as the joint mobility is more and more hindered 
by resistive soft tissues or bone to bone impingement as its 
state gets closer to its limit value. Fig. 12 also highlights the 
progressive clamping of the right knee flexion joint starting 
around the end of the convergence. 
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Fig. 12: The evolution of the errors for progressive clamping and clamping 
over the number of iterations. The values of our progressive clamping 
function for the two independent dof have two lie between [0,1], where 0 
means no damping and 1 full damping. The values of the two dof of the 
knee joint for clamping can either have the discrete values of 0 resp. 1 to 
indicate “no clamping” resp “clamping”. 

 
The increasing “viscosity” introduced by the progressive 

clamping is also rather useful to prevent the kinematic 
singularity that occur close to the joint limits (e.g. knee or 
elbow full extension) which is a general problem of the 
clamping technique described in [10]. By reducing 
variations towards and allowing variations away from such 
singular postures the progressive clamping is an additional 
factor of convergence stability, in additon to the damping 
factor λ  described in [10]. It is difficult to find a general 
compromise between the definition of the progressive 
clamping regions and the damping factor λ . On the one 
hand, if the progressive clamping regions are too big, the 
process may take too long as progressive clamping causes 
re-evaluations of the PIK solution. On the other hand, if the 
damping factor λ  is large the convergence time is too 
prohibitive. We have often set the activation thresholds 
between 0.1 rd and 0.3 rd which has worked well for the 
majorities of the examples we have tested. A compromise 
solution would be to use progressive clamping only for the 
joints that may lead to kinematic singularities while using 
simple clamping for the remaining joints. 

VI. CONCLUSION 
In this paper we have proposed a method to better model 

the kinematic anisotropy of joint limits that damps only the 
part of the motion that bring the joints towards their limit 
based on a progressive damping function. Our integration 
into the PIK algorithm still guarantees the arbitrary number 
of priority levels and the strict joint limit avoidance. 
Experiments were made on simple kinematic chain and a 
virtual mannequin. The experimental results are convincing. 
We also verified that our method is helpful in kinematic 
singularity avoidance which generally occur with fully 
extended articulations. 
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