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Abstract— This work treats the problem of modeling and
identification of the structural damping of the flexible link of
a rigid-flexible manipulator. Besides dissipating energy due
to the joint friction, like in rigid robots, flexible robots also
dissipate energy due to structural damping that results in
the time amplitude decay of the flexible arms oscillations.
This behavior is traditionally tackled recurring to viscous,
fractional Voigt-Kelvin or hysteretic models. In this paper, for
the latter two approaches, numerical approximations are used
for their numerical implementation. Furthermore, a heuristic
method based on the joint and flexible arm time responses
is applied and compared with other methods, like recursive
least-squares, to identify the large set of parameters of a
flexible manipulator, including the inertial and joint friction
parameters.

Index Terms — flexible manipulators, joint friction, struc-
tural damping, parameter identification.

I. INTRODUCTION

The importance of the dissipative components in the

dynamic behavior of robot manipulators is such that any

valid simulation model must include them. In the case of

flexible robots there is energy dissipation due to the joints

friction and energy dissipation due to internal friction in the

flexible arms, generally known as structural damping.

The modeling of joints friction is complicated by the

complexity of the phenomenon at low velocity and of the

stick-slip process. Piedbœuf et al. [1] developed an algorithm

that simulates the frictional behavior observed in experi-

mental robot manipulators. This algorithm is based on a

modification of the classical Coulomb model to include a

stick-to-slip transition in a non-zero velocity necessary to

prevent numerical problems. A standard static model is used

to represent the friction in the slip phase while the stick

phase is implemented as a joint-level constraint. Results of

the identification and implementation of this friction model

were presented in [2] and the model is further used in this

work.

The majority of the bibliography dealing with the mod-

eling of structural damping uses one of three models: the

hysteretic model, the viscous and the fractional Voigt-Kelvin

models. For the fractional model, Valério [3] describes a
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fractional derivative obtained by transfer function approxi-

mation which we use in this work. The structural damping

components are included in the dynamic equation of the

model by applying the Virtual Power Principle.

The parameters identification for the inertial, the joint

friction and the damping models, reveal to be quite difficult.

The most used method for identification of rigid robots

parameters is the recursive least-squares method [4] but it

becomes complicated to find exciting trajectories when iden-

tifying the parameters of flexible manipulators. Dépincé [5]

proposed an heuristic method to find the exiting trajectories

based on identification by sets.

In this paper the recursive least-square method is used to

identify only a set of the parameters that we are looking

for. Other specific approaches are used to identify all the

parameters including an heuristic approach that is developed

based on the time response of the manipulator.

The paper is organized as follows: section 2 presents

the dynamic model of the 2 joints flexible manipulator

used in this work, section 3 describes the modeling of the

structural damping components of a flexible beam. Section 4

describes the identification method implemented and presents

the parameters identified. Validation results are presented

in section 5 where the models are implemented in Mat-

lab/Simulink to perform the simulation of a planar 2 joints

flexible manipulator.

II. DYNAMIC MODEL OF THE FLEXIBLE MANIPULATOR

In this section we describe the manipulator dynamics

equations [6]. For this work a two joints planar manipu-

lator constituted by a rigid and a flexible link was used.

A schematic representation of it is presented in Fig. 1.

The flexible link is assumed as a Rayleigh beam clamped

to the second joint, therefore with clamped-free boundary

conditions. The dynamics equations were formulated using

the Rayleigh-Ritz method and truncated in the third mode.

The position of an infinitesimal element of the flexible link

is obtained considering quadratic deformation.

The vector of generalized coordinates is defined as

q =
[

θ1 θ2 η1 η2 η3

]T
=

[
qT

θ qT
η

]T
, (1)

where θi are the rigid coordinates and ηi are the elastic

coordinates defined as the time varying part of the Rayleigh-

Ritz approximation of the bending deflexion. The dynamics

equation of the flexible manipulator has the form

M(q)q̈ + N(q̇, q) + B(q̈, q̇, q) = τ (2)
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Fig. 1. Schematic representation of a planar 2 joint rigid-flexible manipu-
lator

where M(q) is the inertial matrix of the system, N(q̇, q) is

the vector of the stiffness, centrifugal and Coriolis forces.

B(q̈, q̇, q) is the vector of the dissipation forces of the

system and τ is the vector of external forces.

III. MODELING OF THE DISSIPATIVE COMPONENTS

In this section we further describe the dissipation term of

the dynamic equation of a flexible manipulator, B(q̈, q̇, q).
This term includes dissipation components due to the rigid

part of the robot represented as Bθ(q̈, q̇, q) and components

due to the flexible part represented as Bη(q̇η, qη). The

former is the friction in the joints of the robot, that was

modeled and identified in [2] for this manipulator, and the

latter is the damping in the flexible link characterized by an

attenuation of the tip displacement in time when the link

is in free vibration. Notice that q̈ appears in Bθ due to

the modeling of stiction as a joint level constraint [1]. The

dissipation vector has the form:

B(q̈, q̇, q) =

[
Bθ(q̈, q̇, q)
Bη(q̇η, qη)

]
. (3)

A. Structural damping

1) Principle of Virtual Powers: To include the damping

effect in the dynamic equation we apply the Principle of

Virtual Powers or Jourdain’s Principle to the fractional Voigt-

Kelvin model. This model gives a good representation of

systems with a low or high level of internal damping.

Moreover, the equations developed for this model can be

particularized to obtain the viscous damping model. The

development is here described for the general 3D case of a

Timoshenko beam and then particularized for the case study.

Hooke’s law for the fractional Voigt-Kelvin model is written

as follows

σ11(t) = Eε11(t) + EkeD
αε11(t)

τ12(t) = Gγ12(t) + GkgD
αγ12(t)

τ13(t) = Gγ13(t) + GkgD
αγ13(t)

(4)

where the subscripts 1, 2 and 3 represents, respectively,

the x, y and z frame directions on a beam cross section,

E is the Young’s modulus, G is the shear modulus given

by G = E/2 and kg,e are the damping coefficients. The

fractional derivative operator, also designated by noninteger

order derivative, Dα(·) is defined according to the Riemann-

Liouville definition as

Dαε(t) =
1

Γ(1 − α)

d

dt

∫ t

0

ε(τ)

(t − τ)α
dτ (5)

where Γ(·) is the Gamma function and α is the order of the

derivative that varies between zero and one. For α equal to

one the fractional derivative becomes the first time-derivative

and the Voigt-Kelvin model reduces to the classical Voigt-

Kelvin model.

Writing (4) in matrix form yields

σ = EG + KEDαG (6)

where KE = diag(Eke, Gkg, Gkg), G is the strain vector

given by

G = Γ + K̃Y p. (7)

Γ represents the shear strains in the beam neutral axis:

Γ = [Γ1 Γ2 Γ3]
T = [0 ϕ12 ϕ13]

T (8)

with ϕ12 and ϕ13 being the shear angles as defined in

the classical theory of elasticity. K̃ represents the skew

symmetric matrix whose off-diagonal terms are the bending

curvatures, i.e. K = [K1 K2 K3]
T . Y p = [0 X2 X3]

T is the

position of a material point p of the beam in a certain cross

section, relative to the origin of the cross section reference

frame.

The virtual power of the internal elastic stress defined

in (6) is stated as follows
∫

B

δĠ
T
σdB =

∫

B

δĠ
T

(EG + KEDαG) dB (9)

where B represents the body of the beam in the undeformed

configuration.

Considering that the beam cross sections are symmetric

and remain plane after deformation, making some matrix

manipulations and assuming a Rayleigh-Ritz expansion of

the elastic variables, the elastic dissipative term reduces to [7]

Bη(Dαqη) =

∫ L

0

[
KK 0
0 Kγ

]
dX1D

αqη. (10)

with X1 being the position of a cross section along the beam

neutral fiber,

KK =

[
EkeI3υ

′′
2xυ′′

2x
T

0

0 EkeI2υ
′′
3xυ′′

3x
T

]
(11)

and

Kγ =




GkgJα′
xα′

x
T

0 0

0 GkgAγ′
2xγ′

2x
T

0

0 0 GkgAγ′
3xγ′

3x
T




(12)

where υ2x, υ3x, αx, γ
2x and γ

3x are vectors of

shape functions for the elastic deflections and qη =
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[υ2t υ3t αt γ
2t γ

3t]
T

is the vector of the generalized elastic

coordinates [8].

Equation (10) is valid for the general Timoshenko 3D case.

For our case study where we have a 2D Rayleigh flexible

beam, described in section II, (10) is simplified as follows:

the planar configuration implies that v3t = 0; due to the

flexible beam geometry the torsion in the x axis vanishes

resulting in αt = 0; and neglecting shear strain, γ2t = γ3t =
0. The elastic coordinate vector reduces to the matrix block

element that defines the beam deflection relative to the y
axis, and (10) can be written as

Bη(Dαqη) =

∫ L

0

[
EkeI3υ

′′
2xυ′′

2x
T

]
dX1D

αqη (13)

where υ2t = qη = [η1 η2 η3]
T

.

2) Viscous damping: The viscous damping is defined as

a function of the first derivative of the generalized elastic

coordinates, i.e. when α equals to one. Equation (13) is

rewritten as

Bη(q̇η) =

∫ L

0

[
EkeI3υ

′′
2xυ′′

2x
T

]
dX1q̇η (14)

3) Fractional damping: The fractional model gives a

better approximation to the real behavior of the damping

at low and high frequencies. This model is obtained con-

sidering a value for the order of the derivative α between

zero and one in (13). It is then necessary to calculate

the fractional derivative. One of the ways to calculate the

derivative is through (5). This expression is difficult to

deal with mathematically because it yields a very complex

numerical implementation. Another option for the calculation

of the fractional derivative is through an approximation in the

frequency domain given in [3] as

G(s) = sα. (15)

The Bode diagram of this function has a slope between 0

and 20dB/dec in the gain curve. The approximation is made

considering a high order integer transfer function, with a

behavior close enough to the one desired, but much easier

to handle.

4) Hysteretic damping: The constant hysteretic damping

model is often used to describe the dynamic behavior of

structures undergoing various loading conditions. In order to

introduce this model, textbooks usually start with the more

conventional viscous damping model for a single-degree-of-

freedom system

mẍ + cẋ + kx = f(t) (16)

where m, c and k represent the mass, viscous damping

coefficient and stiffness, respectively, and f(t) the exciting

force. This equation is an ordinary second order differential

equation with constant coefficients. When excited by a

harmonic force at frequency ω, it can be proven that for each

vibration cycle the system dissipates, through its viscous

damper, a quantity of energy directly proportional to the

damping coefficient, the excitation frequency and the square

of the response amplitude, i.e.,

Wdiss. =

∫
2π/ω

0

fẋdt = πcωX2, (17)

that is the area of the ellipse defined by the force-

displacement plot. However, experimental results from tests

performed on a large variety of materials show that damping

due to internal friction is nearly independent of the forcing

frequency but still proportional to the square of the response

amplitude, i.e.,

Wdiss. ≃ αX2. (18)

Therefore, from (17) and (18) an equivalent viscous damping

coefficient may be defined as

ceq =
α

πω
=

h

ω
(19)

and the equivalent damping force given by h
ω ẋ. In such

conditions, (16) becomes the equilibrium equation of a

single-degree-of-freedom system with hysteretic damping

formulated as [9]

mẍ +
h

ω
ẋ + kx = Feiωt (20)

where h is the hysteretic damping coefficient and F and ω
are the amplitude and exciting frequency of the harmonic

load, respectively. Making ẋ = iωx, we can rewrite (20) in

the form [10]

mẍ + k(1 + iηH)x = Feiωt (21)

where ηH = h/k is the hysteretic damping ratio. Although

good for harmonic motion, (21) is invalid for free vibration

since, when the excitation force, Feiωt, doesn’t exist, the

presence of ω in the denominator of (20) does not make

any physical sense. Therefore, only the steady-state solution

can be obtained. In other words, the hysteretic damping is

focused on the frequency domain model as follows [11]

−mω2x + k(1 + sign(ω)iηH)x = F (22)

where sign(ω) is +1 when ω > 0 and -1 when ω < 0. The

time-domain approach was obtained by taking the inverse

Fourier transform of (22) resulting in

mẍ(t) −
kηH

π

∫ ∞

−∞

x(τ)

(t − τ)
dτ + kx(t) = F (t) (23)

with the conditions at t = −∞ being

x(t)|t=−∞ = 0, ẋ(t)|t=−∞ = 0 (24)

If the excitation load F (t) in (23) vanishes, the solution x(t)
becomes the free vibration response of the system.

The problem with (23) is its numerical implementation.

Since it is a non-causal equation, its solution must be

obtained iteratively [11], which is not compatible with a

simulation environment such as Simulink. An alternative

approach is to use a describing function, such as in the

work of Symens et al. [12] where the free vibration response

is obtained by substituting the hysteretic term in (22) by a
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Fig. 2. Example of a hysteresis trajectory.

displacement depended function that represents the hysteretic

trajectory. This function depends on the previous history of

the movement. Thus, referring to Fig. 2, if there has never

been a relative movement before, the friction force follows

a virgin curve f(x)

Ffric = f(x) (25)

with f(x) =

{
y(x) , x ≥ 0

−y(−x) , x < 0

If the motion direction changes at x = xm the friction force

becomes:

Ffric = Fm + 2f

(
x − xm

2

)
(26)

with Fm = Ffric(xm)

If the movement reverses again, before x = xm the same

reversal rule (26) is used for the force. If, on the contrary,

the direction of the movement at x = −xm has not reversed,

friction force follows rule (25) again. A reasonable and

analytically tractable form for the “virgin curve”, derived

from experiments is

y = h0

[
1 −

(
δ

δ + x

)2]
(27)

with h0 and δ being characteristic scale factors for force and

displacement.

IV. IDENTIFICATION

After determining the model equation we have now to

identify its parameters. The parameters are here divided into

two sets described as follow:

Inertial and stiffness model parameters: the rotation inertia

of link 1 and the inertia of joint 2 relative to joint 1 axis of

rotation, IR0 + mHL2

r; rotation inertia of joint 2 relative to

its center of mass, IH ; the cross section mass of the flexible

link, ρA; the cross section moment of inertia of the flexible

link, ρI3; the elastic stiffness of the flexible link, EI3.

Structural damping model parameters: damping coeffi-

cient for the viscous model, ke; damping coefficient and

fractional derivative order for the fractional model, ke and

α, respectively; damping coefficient ke, and the characteristic

scale factors h0 and δ of the hysteretic model.

Fig. 3. Experimental 2 joint planar rigid-flexible robot manipulator

A. Identification of the dynamic model parameters

The inertial and stiffness parameters can still be divided

in rigid parameters, IR0 + mHL2

r and IH , and elastic

parameters, ρA, ρI3 and EI3. The a priori numerical values

of these parameters, determined by geometrical measures

and material characteristics, are given in Table I. These

parameters are not the real ones because they do not include

the mass of the cables and sensors installed in the robot (see

Fig. 3), nor the motors rotation inertia.
TABLE I

A priori VALUES OF THE DYNAMICAL PARAMETERS

IR0 + mHL2
r IH ρA ρI3 EI3

[kg.m2] [kg.m2] [kg/m] [kg.m] [Nm2]
0.298 13.22E-4 0.1570 1.31E-8 0.3490

1) Recursive least-squares method: The least-squares al-

gorithm based on the dynamic model of the system (2) is

the most used method to identify the standard parameters

of a model. To make the process of identification faster

and more efficient computationally, we apply the recursive

least-squares (RLS) method that permits the online identifi-

cation [4]. The model is linear with respect to the following

standard set of parameters: IR0 + mHL2

r , IH , ρA, ρI3 and

EI3. [5] proposed some heuristic methods that allow us to

find the exciting trajectories to identify parameters of flexible

robots. One of the methods consists in applying an input

torque in the frequencies of the first two modes of the flexible

arm, but experimental results show that, due to the coupling

in our system, we have to find a combination of the two

joint torques that permits to identify the rigid and elastic

parameters simultaneously. To verify the significance of the

identified parameters we calculate the relative contribution

of each parameters to the total force of the system, given

by [5]

Cr(i) =
||Hiθi||∑
||Hiθi||

(28)

where Hi is the column i of the regression matrix and θi

is the component i of the parameter vector (θi should not

be confused here with the joint coordinates). The regression

matrix is obtained by differentiating (2) with respect to the

standard parameters.

The identified parameters through RLS are in Table II

where we show the error relative to the a priori parameters,
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eap. The results presented in Table II show that the contribu-

tion of the parameter ρI3 is not significant, and therefore the

flexible link may be assumed as an Euler-Bernoulli beam.

Furthermore, for this system, it is shown in [2] that joint

friction torque represents more than 50% of the total joint

torque.

TABLE II

DYNAMIC PARAMETERS ESTIMATED BY RLS

θ̂ap θ̂ Cr (%) eap (%)

IR0 + mHL2
r 0.298 0.3428 24.33 15.00

IH 13.22E-4 0.0297 6.85 2148.6
ρA 0.1570 0.1891 8.95 20.45
ρI3 1.31E-8 1.77E-4 0.13 1.36E6
EI3 0.3490 0.3677 6.82 5.36

2) Identification of the elastic inertial parameters through

static deflections: Even if results of the RLS identification

are correct, we apply other identification methods as a way

of comparison. The identification of the elastic parameters

EI3 and ρA, can be done by measuring the static deflection,

ν, of the flexible beam due to applied loads, F , at the free

end. With this data, EI3 and ρA can be identified by linear

regression from the following equation [13]

ν =
L3

EI3

(
F

3
−

ρAgL

8

)
(29)

where L is the length of the flexible beam. The results for

the identification of the elastic parameters are presented in

Table III.

TABLE III

ESTIMATED ELASTIC PARAMETERS BY STATIC DEFLECTIONS.

θ̂ap θ̂ eap (%)

ρA 0.1570 0.1685 7.3
EI3 0.3490 0.3122 10.5

3) Identification of the rigid inertial parameters with

heuristic method: The heuristic method consist in change

the parameters values in the simulation model to minimize

the quadratic error between the model response and the pre-

viously acquired real robot response to a same torque input.

To do this we use the function for constrained minimization

fmincon, of MATLAB. The function to be minimized accepts

a parameter vector generated by the fmincon, simulates the

model with this parameters and returns the quadratic error

between the model and real response in each iteration. The

fmincon upper limits was defined after various tested values,

with lower limits close to zero and initial values based on

the a priori values. The tolerances was very low to achieve

the better approximation. To make easy the method-name

connection this method is hereafter designated as fmincon

optimization. With this method we can identify the rigid

dynamic parameters, IR0 + mHL2

r and IH (presented in

Table IV) and the structural damping parameters, α, ke,

h0 and δ (section IV-B). The fmincon optimization doesn’t

achieve good results when trying to obtain the rigid and

elastic parameters at the same time.

TABLE IV

fmincon ESTIMATED RIGID PARAMETERS

θ̂ap θ̂ eap (%)

IR0 + mHL2
r 0.298 0.3894 30.7

IH 13.22E-4 0.0268 1927.2

B. Identification of the damping parameters

For the identification of the damping parameters we apply

a method proposed in [13] based on the beam frequency

response. The damping coefficients ke, and the fractional

derivative order α are identified using the following expres-

sion [13]:

ζ + keω
α

(
ζ cos

(πα

2

)
− sin

(πα

2

))
= 0 (30)

where ω is the natural frequency associated with each beam

mode and ζ is the modal damping parameter. We use the

information of the first two modes to obtain the damping

coefficient ke and the fractional derivative order α. The two

equations resulting from using (30) are squared, summed

and minimized for the variables ke and α using the function

fminsearch of MATLAB. For the viscous damping model, the

order of the derivative is 1. Thus, we get from (30)

ζ − keω = 0 (31)

and ke is readily isolated using the information from the first

mode.

We can also use the fmincon function to identify the

damping parameters. The cost function in this case is the

mean square error between the tip displacement obtained

experimentally and the one obtained by simulation. The tip

displacement obtained by simulation uses information of the

elastic parameters that were obtained by two methods, RLS

and static deflections. Experimental results show that the

frequency response is better when using elastic parameters

obtained by static deflection. Table V show the results for

ke and α obtained from the modes parameters and using

fmincon function, and the hysteretic parameters obtained by

fmincon.

TABLE V

STRUCTURAL DAMPING MODEL PARAMETERS.

Modes parameters fmincon optimization

Viscous Fractional Viscous Fractional Hysteretic

ke 3.46E-4 0.010 7.04E-4 0.028 0.020
α – 0.218 – 0.185 –
h0 – – – – 0.189
δ – – – – 4.884E-4

V. VALIDATION

The results presented are obtained with the rigid inertial

parameters, the structural damping parameters and the vis-

cous friction parameters identified by fmincon optimization

and the elastic inertial parameters identified by RLS. Fig. 4

show the power spectrum of the real robot comparing it with

the three models, where we can see that the viscous model
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just capture the first two vibration modes being the worst

damping model.

Fig. 5 compares the trajectory followed by the real robot

to the model trajectory with the same controller. Fig. 6 shows

the tip displacement where the increasing in time of the error

is due to the error accumulated during the calculation of the

displacement in the model.
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Fig. 4. Spectrum.
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VI. CONCLUSIONS

In order to obtain a robot model with a behavior similar

to the real robot, this research performs a compilation of

the methods used for formulation and parameters identifi-

cation of a 2 joints flexible robot model that includes the

structural damping in the flexible link. For the modeling

of the structural damping the hysteretic model reveals to

be more accurate than the viscous and fractional model in

both frequency and time response. In terms of identification,

the elastic parameters identified through static deflections

achieve a more accurate frequency response than the ones

identified by RLS method. The last one obtains better results
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−0.05
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Fig. 6. Tip displacement

for the time response. The damping parameters obtained by

the heuristic method produce better results than the ones

obtained analytically. Therefore, the results reveal that one

method is not better than the other in every situation.
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