
Brick&Mortar: an on-line multi-agent exploration algorithm

Ettore Ferranti Niki Trigoni Mark Levene

Abstract— When an emergency occurs within a building, it
is critical to explore the area as fast as possible in order to find
victims and identify hazards. We propose Brick&Mortar, an
algorithm for the autonomous exploration of unknown terrains
by a team of mobile nodes, referred to as agents. Because of
the unreliability and short range of wireless communications
in an indoor environment we suggest that agents communicate
indirectly with each other by tagging the environment. Agents
have no prior knowledge of the terrain map, but are able
to coordinate in order to explore a variety of terrains with
different topological features. In our experimental evaluation,
we show that Brick&Mortar significantly outperforms the
competing algorithms, namely Ants and Multiple Depth First
Search, in terms of exploration time. The observed performance
benefits suggest that our algorithm is suitable for safety-critical
applications that require rapid area coverage for real-time event
detection and response.

I. INTRODUCTION
Chemical, biological, radiological, nuclear and explosive

(CBRNE) events refer to the uncontrolled release of chemi-
cals, biological agents or radioactive contamination into the
environment or explosions that cause widespread damage.
CBRNE events can be caused by accidents or by terrorist
acts. Although an event of this type could take place almost
everywhere, the most challenging environment (and the one
with the highest probability to occur) is on indoor environ-
ments, in a building or another highly frequented public
place, such as a train station or the underground, as sadly
demonstrated by the recent terrorist attacks in New York,
Madrid and London.

Exploring all the area in the minimum amount of time and
reporting back to the human personnel outside the building
is an essential part of rescue operations. Such operations,
however, may be obstructed by a number of limitations,
e.g. the possible lack of a terrain map (the environment
could anyway be heavily changed after a disaster), the failure
of previously established networks, and the short-range and
often unreliable wireless indoor communication. In addition,
it might be difficult to use GPS positioning inside a building,
so an agent cannot rely on knowledge of its exact location
in the terrain, even if it were able to keep memory of its
previous steps. In this paper, we take into account these
limitations, and assume that agents can only rely on local
information that is sensed in their vicinity (which other
agents have left as a trace behind them), before making the
next exploration step.

In this paper, we first analyze the functionality of two
existing approaches to terrain exploration, namely Ants [1],

E. Ferranti, N. Trigoni and M. Levene are with the School of Computer
Science and Information Systems, Birkbeck College, University of London,
UK { ettore | niki | M.Levene }@dcs.bbk.ac.uk

[2] and Depth First Search (DFS) [3], [15], [4], [10], which
we modified to handle multiple robots (MDFS), and highlight
their limitations. On the one hand, agents running the Ants
algorithm cannot determine when the exploration task is
completed. Moreover, whilst the first few agents are rapidly
discovering new terrain, most of the remaining agents dwell
on already explored network areas, leading to inefficient use
of agent resources. On the other hand, agents running MDFS
know when the exploration task terminates, but we show that
they equally lack in coordination skills and often make poor
use of resources.

Our novel algorithm, Brick&Mortar, overcomes the limi-
tations of existing approaches, and offers significant perfor-
mance gains in terms of exploration time for a variety of
terrain topologies. Our experimental results allow us to un-
derstand the impact of several parameters on the performance
of the three algorithms, including the number of agents,
the terrain size, the numbers of rooms and the number of
obstacles (e.g. desks or hazards in the middle of rooms).

The rest of the paper is organized as follows. Section II
presents the assumptions of our model, and Section III pro-
vides a brief description of existing exploration algorithms
and discusses their limitations. Section IV presents the new
Brick&Mortar algorithm and discusses how it addresses
the problem of agents traversing the same areas in loops.
Section V presents a thorough experimental analysis of the
three algorithms. An overview of related work is provided
in Section VI, followed by conclusions and directions for
future work in Section VII.

II. MODEL

In this section, we describe the model used by the
proposed algorithm, Brick&Mortar, and the two competing
approaches, Ants and Multiple Depth First Search, which
we present in detail in Section III. We consider the task of
exploring a hazardous terrain using a group of autonomous
agents. The overall area is divided into square cells, some
of them representing walls. In our model, walls are used
to identify both real brick walls that constitute the building
itself, and obstacles (e.g. victims) that agents cannot cross
during their exploration phase.

A cell can be in one of the following states:
• Wall: The cell cannot be traversed by an agent because

it is blocked by an obstacle, and any free space in it is
not big enough to let an agent go past it.

• Unexplored: No agent has been in the cell yet.
• Explored: The cell has been traversed at least once, but

the agents might need to go through it again in order
to reach unexplored cells.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC1.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 761

• Visited: The agents have already explored the cell, and
they do not need to go through it again to reach other
cells. Conceptually it is equivalent to a wall cell, in that
no agent is allowed to traverse it.

Agents are initially deployed in one of the boundary cells
and, in each step, they are able to move from the current
cell to one of the four adjacent cells in the North, East,
South or West directions. As they move to an unexplored cell,
they deploy a miniature device (e.g. mote or RFID) capable
of storing small amounts of information about the state of
the local cell. They also update the direction of this device,
with respect to previously installed devices in adjacent cells.
In indoor environments where GPS cannot be used, agents
do not rely on knowledge of their exact location; once they
find themselves within a cell, they can turn towards one of
the four directions until they reach the next cell. Moreover,
in emergency situations, long-range wireless communication
may be intermittent and unreliable, so we assume that agents
are able to communicate only by reading and updating the
devices installed in the local and adjacent cells.

If agents are displaced from their current location, they
are able to resume their operations in the new area where
they land. We consider distributed exploration algorithms,
in which agents make independent decisions about how to
navigate through the terrain based on local state. When
agents move from one cell to another, they annotate the
device of the target cell with information that the traversed
link is accessible by robots or humans. They also update the
cell device with the length of the shortest accessible path
(known so far) from a boundary cell to the current cell. When
an agent discovers an event of interest in a cell, it sends this
information wirelessly back to the human respondents via the
shortest accessible path of cell devices; human respondents
can then traverse the reverse path to reach the cell of interest.

III. EXISTING ALGORITHMS

Prior to presenting our Brick&Mortar algorithm, we give
a brief description of two existing algorithms - Ants and
Multiple Depth First Search - against which we test its
performance in Section V. We also discuss some of their lim-
itations that motivated us to design our new Brick&Mortar
algorithm. To our knowledge, these are the only competing
algorithms that do not rely on agents knowing their locations
and the area map, and being able to establish reliable
communication with each other. A detailed review of related
techniques with slightly different assumptions is provided in
Section VI.

A. Ants

We first discuss the behaviour, strengths and limitations of
the Ants algorithm proposed in [1], [2]. This is a distributed
algorithm that simulates a colony of ants leaving pheromone
traces as they move in their environment [2]. Initially all cells
are marked with value 0 to denote that they are unexplored.
At each step, an agent reads the values of the four cells
around it and chooses to step onto the least traversed cell
(the one with the minimum value). Before moving there, it

updates the value of the current cell, for example by incre-
menting its value by one. The authors discuss a few other
rules that could be used instead to mark a cell and navigate
to the next one, but they all exhibit similar performance in
terms of exploration time. Hence, we select the above variant
of the Ants algorithm (move to the least visited cell) as a
basis for comparison. The authors provide a proof that the
agents will eventually cover the entire terrain (provided that
it is not disconnected by wall cells).

The first advantage of the algorithm is its simplicity:
agents do not require memory or radio communication,
but only one-cell lookahead. Since they are easy to build,
many of them can be used to shorten the coverage process.
Secondly, there is no map stored inside the agents: if one of
them is relocated (accidentally or on purpose) it will not even
realize it and it will continue to do its work as if nothing
happened. This means that the whole system is flexible and
fault tolerant, and the area can be covered even if some
markings or agents are lost. At the storage device of each
cell, we only need to store an integer counting the number
of times that agents have visited the cell.

The main limitation of the Ants algorithm is that the
visited state is not used to mark the cells, so there is no
way to tell when the environment is fully explored, and the
agents continue the exploration phase until they run out of
energy. Thus, this approach is not suitable in an emergency
scenario, in which the primary consideration is to cover the
overall area as soon as possible, and be notified immediately
after the task is completed. Another limitation concerns the
inadequate use of agent capabilities: in a scenario with many
rooms most of the agents are busy sweeping the first few
rooms repeatedly while only a few of them set out to explore
new areas.

Fig. 1. The Ants algorithm is not efficient in a scenario with many rooms,
because most of the agents explore the first rooms repeatedly, while only
few of them set out to discover new areas.

B. Multiple Depth First Search

In order to address the limitations of the Ants algorithm,
we consider a Depth First Search (DFS) approach to travers-
ing the unknown terrain. DFS was first introduced in [3], and
used for terrain exploration in [10], [4], [15]. In particular,
in [15] the area is divided in smaller regions and a tree is
built with each region as a node. The robots explore the
tree using a centralized DFS algorithm. In [4] the authors
propose an algorithm in which the area (with no obstacles

WeC1.2

762

in it) is divided in cells and a single robot explores each cell
using DFS. Finally, in [10] an algorithm is proposed in which
multiple robots explore an area which is divided in cells. In
this work, a DFS-like procedure is used by each robot to
build spanning trees which are needed by the exploration
algorithm.

In this section, we describe a concrete implementation of
the algorithm for a scenario with many agents (Multiple
Depth First Search, MDFS). Unlike Ants, MDFS allows
agents to mark cells as visited, so that agents do not need to
traverse them in the future. An agent knows that its task is
completed if its four adjacent cells are either visited or wall
cells.

The challenge in using more than one agent with this
algorithm is to ensure that they can efficiently collaborate
to explore the area. As each agent builds its own exploration
tree, it marks unexplored cells as explored when it traverses
a branch downwards, and it marks them as visited when
it traverses a branch upwards (Algorithm 1). Each agent
tries not to interfere with the trees of the other agents by
marking explored cells with its own agent ID. When an agent
finds itself at a cell surrounded by explored cells marked by
another agent’s ID (besides wall and visited cells), the current
agent traverses the corridor of these explored cells trying to
find an unexplored neighboring cell. If it finds one, it uses it
as the root of a brand new tree that it starts covering with its
own ID. Otherwise, if it becomes surrounded by visited or
wall cells it terminates. MDFS requires O(N) storage space
at each cell, where N is the number of agents.

Using this algorithm the agents are typically able to
explore the area in less time than using the Ants algorithm,
and more importantly, each agent knows exactly when to
stop its exploration task. Hence, the algorithm terminates
when all agents stop moving, since when that happens all
cells are marked as visited or walls.

Although the Multiple Depth First Search addresses some
of the weaknesses of the Ants algorithm, it is still not
very efficient in terms of exploration time. By definition it
traverses each cell at least twice, thus resulting in a long
exploration time even in open areas without walls where a
single traversal would suffice. Another limitation of MDFS
is that some of the agents may become surrounded by visited
cells and stop exploring the area before the whole area has
been covered, thus resulting in a waste of available resources.

IV. THE BRICK&MORTAR ALGORITHM

Our novel algorithm, named Brick&Mortar, is designed to
address the weaknesses of the existing algorithms. Unlike the
Ants algorithm, agents using Brick&Mortar know when the
exploration task is completed and they do not spend much
time revisiting the same cells. Unlike MDFS, they typically
traverse each cell less than twice and they never get trapped
within boundaries of visited cells.

The main idea behind Brick&Mortar is that of thickening
the existing walls by progressively marking the cells that
surround them as visited. Note that visited cells are equivalent
to wall cells in that they can no longer be accessed. In the

Algorithm 1 Multiple Depth First Search
1: if the current cell is unexplored then
2: mark it as explored
3: annotate the cell with your ID and the direction of the

previous cell (parent cell)
4: end if
5: if there are unexplored cells around then
6: go to one of them randomly
7: else
8: if the current cell is marked with your ID then
9: mark it as visited

10: go to the parent cell
11: else
12: go to one of the explored cells randomly, avoiding

selecting the cell from which you are coming unless
it is the only candidate.

13: end if
14: end if

description of Brick&Mortar, we refer to wall and visited
cells as inaccessible cells, and to unexplored or explored
cells as accessible cells. Brick&Mortar aims to progressively
thicken the blocks of inaccessible cells, whilst always keep-
ing accessible cells connected. The latter can be achieved
by maintaining corridors of explored cells that connect all
unexplored parts of the network. The main rule that an agent
must obey locally is never to mark the current cell as visited
if, by doing so, it blocks the path between two accessible
cells.

Like Ants and MDFS, Brick&Mortar does not require
agents to know their location in the building. A relocated
agent can simply navigate randomly until it finds an ac-
cessible cell and then continues the exploration from there.
Brick&Mortar makes the blocks of inaccessible cells thicker
until the entire terrain is converted to a large block of
inaccessible cells. In a rectangular terrain without wall cells,
agents starting from border cells always succeed in visiting
the entire area. In more complex topologies with many rooms
and obstacles, agents may be faced with a loop closure prob-
lem described below. We are now in a position to introduce
the details of the proposed Brick&Mortar algorithm with and
without loop closure.

A. Brick&Mortar without loop closure

The states of a cell are exactly the same as the ones used
in the Multiple Depth First Search Algorithm and described
in Section II. Brick&Mortar consists of two discrete steps
detailed in the pseudocode below (Algorithm 2). In the
marking step, the agent marks the current cell choosing
between the explored and visited states. In the navigation
step, the agent decides which cell to go to next giving priority
to the unexplored cells around it.

In the marking step the agent updates the state of the
current cell, choosing between the explored and visited states.
The cell is marked as visited only if it is not blocking the way
between two accessible (explored or unexplored) cells (say A

WeC1.2

763

and B) located in the North, East, South or West directions.
In other words, the current cell is marked as visited, if there
is an alternate path of accessible cells connecting A and
B. Such alternate paths are easy to compute locally, because
they are strictly confined to the 8-cell perimeter of the current
cell. If such a path does not exist, the current cell is marked
as explored, meaning that this or another agent can still move
to it in the future.

In the navigation step the agent tries to move to an
unexplored cell which is likely to be marked as visited in
the next marking step, so that there will be no need for this
or other agents to come back to it in the future. The best
candidate is the unexplored cell with the greatest number
of inaccessible (visited or wall) cells in its four directions.
If there is no such candidate, the agent goes to one of the
explored cells. If all four cells are inaccessible, it means that
the terrain exploration has been completed. Details of the
two steps are provided in the pseudocode below:

Algorithm 2 Brick&Mortar Without Loop Closure
1: Marking Step
2: if the current cell is not blocking the path between any

two explored or unexplored cells around then
3: mark the cell as visited
4: else
5: mark the cell as explored
6: end if
7: Navigation Step
8: if at least one of the four cells around is unexplored

then
9: for each of the unexplored cells see how many wall

or visited cells are around it, then go to the cell with
most of them, which is most likely to be marked as
visited in the marking step

10: else if at least one of the four cells around is explored
then

11: go to one of them. Avoid selecting the cell where you
came from unless it is the only candidate. Instead se-
lect the first explored cell in an ordered list of adjacent
cells, e.g. [North,East,South,West] {The order of cells
in the list depends on the agentID, so that different
agents disperse in different directions}.

12: else
13: terminate {All adjacent cells are inaccessible, i.e.

visited or wall cells}
14: end if

B. Brick&Mortar with loop closure

The simple version of Brick&Mortar, described in the
previous subsection, terminates successfully if agents do not
encounter loops during the exploration process. Informally,
a loop occurs when an agent traverses the same sequence of
explored cells multiple times without being able to mark any
of the cells as visited. Loops are encountered when there are
clusters of wall cells in the middle of an area. For example,
in Figure 2a, an agent on cell C1 of the figure will start

building a corridor of explored cells traversing cell C2 and
then finding itself back at cell C1 again. According to the
rule in the marking step of Algorithm 2 every cell blocks
the path between the previous and the following one, and is
thus repeatedly marked as explored. The loop problem is well
known in the literature, but usually the proposed algorithms
either ignore it [4] or need an external human operator to
solve it [5]. In emergency scenarios, the team of agents
might be inside a building or underground far away from
the rescue team, and it should still be able to accomplish its
exploration mission. For this reason we extend the original
version of Brick&Mortar algorithm to enable loop closure
without human intervention.

Fig. 2. The loop problem.

To make the algorithm capable of closing loops, we make
an additional assumption: an agent is able to mark a cell
with its ID (a simple number identifying the agent) and the
directions (North, East, South or West) in which the agent
is moving in and out of the cell. This assumption is not
too strong because each agent can be equipped with a small
and inexpensive electronic compass that detects and controls
the direction of its movement. An agent detects the presence
of a loop when it traverses the same explored cell twice
in the same direction. If only one agent is performing the
exploration task, it can easily break the loop by marking
one of the cells as visited and then resuming its original
wall-extension strategy (i.e. the marking and navigation steps
described in Section IV-A).

However, if the terrain is explored by multiple agents,
independent attempts to close the same or overlapping loops
may result in agents being trapped within inaccessible areas
and being unable to help with the remaining exploration task.
For example, two agents A1 and A2 can traverse the loop of
Figure 2a once starting from cells C1 and C2 respectively
and moving in opposite directions. As they traverse the loop,
they mark each cell as explored. Once agents A1 and A2

reach cells C1 and C2 respectively they detect the presence
of a loop. To resolve the loop, they mark C1 and C2 as
visited, and continue to move towards each other marking
all cells in their way as visited (Figure 2b). Once they meet,
they get trapped because they are surrounded by inaccessible

WeC1.2

764

(visited or wall) cells without having succeeded in marking
the entire loop as visited. In order to avoid being trapped,
loop resolution is performed in four phases discussed below:

• Loop detection: Initially, an agent follows the marking
and navigation steps described in Section IV-A leaving
a trace in each cell that it traverses (how it moved out of
it), until it detects a loop. This happens when it moves
into the same explored cell a second time (but not in the
opposite direction than the one used previously to move
out of that cell). Upon detecting a loop, the agent moves
to the loop control phase. The loop detection phase
requires O(N) storage capacity at each cell, where N
is the number of agents.

• Loop control: To take control of the loop, an agent
A starts traversing the loop a second time in the same
direction, trying to take control of each cell by annotat-
ing it with its own agent IDA (this requires logN bits,
where N is the number of agents). It is possible only if
the cell is explored and it is not already annotated with
another agent’s ID (say IDB). Agent A knows that it
has succeeded in taking control of all cells in the loop
when it steps again on a cell that is already annotated
with the same ID. In this case, it immediately switches
to the loop closing phase.

• Loop closing: The agent is now in a position to break
the loop by marking the current cell as visited, and
continuing to do so until it reaches the first intersection
(the cell with at least one explored neighbor cell that
does not belong in the loop). The agent then switches
to the loop cleaning phase.

• Loop cleaning: The agent removes any traces of the
loop control phase, by moving backwards in the loop,
removing its ID from the cells that it previously an-
notated, and resetting the direction in which the agent
moved out of the cells to null.

It remains to describe in detail what happens in the loop
control phase when an agent A is not able to take control of
a cell, either because the cell is already visited, or because
it is being controlled by another agent B. To deal with
this scenario, we allow agents to interrupt the loop control
phase, either permanently or temporarily. In the former case,
an agent literally quits the loop resolution mechanism and
moves to the loop cleaning phase. In the latter case, the agent
can wait at a cell, as a standby agent, until the state of the
cell is changed. In what follows, we provide specific rules
that define how an agent decides whether to continue, quit
or stall controlling cells with its ID during the loop control
phase. Let agent A try to move to the next cell in order
to control it (i.e. to annotate it with IDA). The decision it
makes depends on the state in which it finds the cell:

control cell, if cell explored without control
start loop cleaning, if cell visited
start loop cleaning, if B controls & (IDB > IDA)
start loop cleaning, if C standby & (IDC > IDA)
become standby, otherwise

We finally need to define how, a standby agent (which

waits at a cell as a result of following the last branch above),
reacts to changes in the cells state. The rules that determine
its behavior are:

start loop cleaning, if replaced by another ag.
start loop cleaning, if cell becomes visited
continue loop control, if cell is cleaned
remain standby, otherwise

An agent that manages to complete its loop control phase
has succeeded in controlling all common cells with other
interfering loops. It performs loop closing, and then cleans
all common cells, before another interfering agent gets the
opportunity to take control of them. Hence, although in
general loops are handled concurrently, agents are able to
detect when their loops interfere, and in this case, they
resolve them in a sequential manner. The loop control phase
has a similar role as locks in database systems, i.e. it
allows concurrent operations whilst leaving the system in
a consistent state. In our case, consistency means that all
explored and unexplored cells remain connected, and no
agent is trapped within visited cells.

Using the rules above we can prove that when agents try
to resolve overlapping loops, they never cause a deadlock,
they never get trapped within visited areas, and they always
terminate (the proof is omitted for space reasons). However,
to ensure this we require memory capacity at each cell that
grows linearly in the number of agents (similar to MDFS
storage requirements). In the future, we plan to investigate
ways of adjusting our algorithm to require a fixed amount
of storage space (like Ants).

V. SIMULATION RESULTS

We developed a simulation tool to test the performance
of Brick&Mortar and the competing algorithms (Ants and
MDFS), which allows us to automatically generate terrain
maps with different topological features (by changing input
terrain size, number of rooms, number of obstacles, etc.).
The tool can be instructed to run any of the algorithms with
different numbers of agents on a variety of maps.

In the results presented below, we study the impact of i)
the number of agents, ii) the terrain size, iii) the number
of rooms, and iv) the number of obstacles (that generate
loops) on the performance of the three algorithms. Each
point in the graphs is the average of running an algorithm
20 times, each time with a different map that satisfies the
input topological features. In each experiment we vary the
values of one parameter, and assign default values to the
remaining ones. The default values are: a map of 2500 (50
by 50) cells with 30 obstacles and 36 (6x6) rooms, which is
explored by 20 agents. The agents are deployed from the top
left cell of the area. We consider two performance metrics:
i) the exploration time (black lines), i.e. the number of steps
it takes for the agents to traverse all cells of the map at least
once, which can be measured for all three algorithms; and
ii) the visiting time (grey lines), i.e. number of steps that it
takes for all agents to determine that they have completed
the exploration task. The latter can only be measured for

WeC1.2

765

Fig. 3. Effects of changing the number of agents in the team

Fig. 4. Effects of changing the size of the map

Brick&Mortar and MDFS, since agents runnings the Ants
algorithm cannot determine when they terminate.
Effect of agents: Figure 3 shows that Ants always underuti-
lizes agent resources compared to Brick&Mortar, but as the
number of agents increases it becomes faster than MDFS.
The MDFS algorithm is the least sensitive to varying the
number of agents, which is owed to the fact that agents
become trapped early on within visited cells and are unable
to help cover new areas. Brick&Mortar uses efficiently up
to 15 agents, beyond which point it does not improve much,
owing to the fact that agents interfere with each other trying
to resolve the same loops. Observe that the gap between the
exploration and visiting time of Brick&Mortar increases with
the number of agents. When more agents are available, they
manage to speed up traversing the cells at least once, but they
cannot do much to speed up loop closure and terminate early.
In the future, we plan to study how we could achieve better
load balancing by dispersing agents to enter the network from
different cells.
Effect of area size: Figure 4 shows that Brick&Mortar scales
gracefully as the area size increases. For areas of up to 4,900
cells, MDFS is 8 times slower and Ants 6 times slower than
Brick&Mortar in terms of exploration time; similarly, MDFS
is 4 times slower in terms of visiting time.
Effect of rooms: Figure 5 shows that as we increase
the number of rooms the exploration time of the Ants
and Brick&Mortar algorithms are not significantly affected,
whereas the exploration time of MDFS becomes 2 times

Fig. 5. Effects of changing the number of rooms in the map

Fig. 6. Effects of changing the number of obstacles in the map

slower from 4 to 64 rooms. For an area of 40 rooms the
exploration time of Brick&Mortar is half its visiting time,
which means that the task is completed way before the agents
know it. In all cases, Brick&Mortar outperforms the two
competing approaches by factors of 3 or 4, both in terms of
exploration and visiting time.
Effect of obstacles (wall cells that cause loops): Figure 6
demonstrates the impact of obstacles (and therefore loops)
on the performance of the three algorithms. We observe
that Ants and MDFS are not particularly affected by the
presence of loops, whereas the visiting time of Brick&Mortar
increases linearly in the number of obstacles. Hence in
certain environments with a very large number of obstacles, it
might be worth using one of the competing approaches, or a
hybrid algorithm in which an agent starts with Brick&Mortar
and switches to Ants or MDFS upon detecting a loop. We
leave the study of hybrid algorithms to future work.

VI. RELATED WORK

Choset [6] provides a survey of coverage algorithms and
distinguishes them into off-line and on-line. In the former
the agents are previously provided with a map of the area
to explore, while in the latter, also called sensor-based,
no assumption is made concerning the availability of an
environmental map for the agents. Zheng et al. [7] prove
that the original problem is NP-complete, and propose a
polynomial algorithm that yields a solution at most eight
times slower than the optimal solution. Agmon et al. [8]

WeC1.2

766

propose a faster tree construction algorithm, while Hazon et
al. [9], [10] focus on the robustness of the solution, so that
even if only one robot remains in operation, it will be able to
carry and complete the exploration task. Our Brick&Mortar
algortihm differs from these approaches because it considers
the on-line problem, i.e. it does not rely on the knowledge
of the terrain’s map. The ants-inspired algorithm [1], [2]
divides the area into square grid cells on which the exploring
agents leave traces of their passage, similarly to real ants
leaving pheromone. This algorithm is already described in
detail in Section III. A similar approach to the Ants algorithm
uses a sensor network infrastructure to provide agents with
information about the visited areas and direct them to the
least recently visited direction [11]. Kong et al. [12] propose
an algorithm that explores an area in forward and reverse
phases. The idea is to gradually build a graph of the environ-
ment which is shared by all the robots of the team. Yamauchi
presents a frontier-based exploration algorithm [13], where
the agents explore the environment, represented by a regular
grid of cells, keeping in their memory a map of the area
and always directing themselves “to the boundary between
open space and uncharted territory”. A depth first search
algorithm is used to move from the current position to the
next frontier. The algorithm also makes the same strong as-
sumptions as in [12], namely perfect localization and reliable
communication among agents. Burgard et al. do not assume
that the environment is divided into grid cells [14]. Agents
compute a utility function to go to the next “frontier” in
order to maximize the explored territory. Rekleitis et al. [15]
try to improve the exploration by mapping the environment
while the area is covered by two robots. Batalin et al. [16]
focus on agent dispersion and propose two algorithms to
make the agents move away from each other when they
are in sensing range. Finally, Howard et al.[5] present a
general approach to exploring a building, finding objectives
and reporting them back to the human personnel outside.
However, it requires human support to solve problems like
loop closures or map merging between the agents so it does
not satisfy the requirements for autonomous area coverage.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new algorithm called
Brick&Mortar, for the multi-agent exploration of unknown
terrains. Agents running our algorithm can easily determine
when the exploration task is completed. Our algorithm avoids
exploring the same areas multiple times, it makes good
utilization of all agents and it is capable of resolving loops.
The experiments show that our algorithm is significantly
faster than the two competing algorithms, Ants and Multiple
Depth First Search, in a variety of scenarios.

In the future we would like to explore in detail how to
use cell devices as a network infrastructure, in order to
communicate interesting events back to human responders
and assist them in finding the cells where events were
detected. Another challenge is to cope with unexpected
events like collapsing walls that block some of the cells,
or relocation of agents to different parts of the terrain (e.g.

by the rescue team). Finally, mobile nodes could leverage
their limited storage capabilities to maintain partial views
of the terrain’s map in their memory. Once they are within
communication range, they could collaborate by carefully
merging their inaccurate and possibly inconsistent maps.

VIII. ACKNOWLEDGMENTS

Thanks to Elisa Rondini, Sven Helmer and Andrea Ciresa.
Effort sponsored by the Air Force Office of Scientific

Research, Air Force Material Command, USAF, under grant
number FA8655-06-1-3003. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purpose notwithstanding any copyright notation thereon.

REFERENCES

[1] S. Koenig and Y. Liu, “Terrain coverage with ant robots: a simulation
study,” in AGENTS01: Proceedings of the fifth international conference
on Autonomous agents. ACM Press, 2001, pp. 600–607.

[2] J. Svennebring and S. Koenig, “Building terrain-covering ant robots:
A feasibility study.” Auton. Robots, vol. 16, no. 3, pp. 313–332, 2004.

[3] G. Tarry, “Le problème des labyrinthes,” Nouvelles Annales de
Mathématiques, vol. XIV, pp. 187–90., 1895.

[4] C. Icking, T. Kamphans, R. Klein, and E. Langetepe, “Exploring
simple grid polygons,” in COCOON 2005: Proceedings of Computing
and Combinatorics: 11th Annual International Conference. Springer
Berlin / Heidelberg, 2005.

[5] A. Howard, L. E. Parker, and G. S. Sukhatme, “Experiments with
a large heterogeneous mobile robot team: Exploration, mapping,
deployment and detection,” The International Journal of Robotics
Research, vol. 25, pp. 431–447, 2006.

[6] H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, pp. 113–126, 2001.

[7] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-robot forest
coverage,” in IROS05: Proceedings of the International Conference
of Intelligent Robots and Systems. IEEE press, 2005.

[8] N. Agmon, N. Hazon, and G. A. Kaminka, “Constructing spanning
trees for efficient multi-robot coverage,” in ICRA06: Proceedings of
the 2006 IEEE International Conference on Robotics and Automation.
IEEE press, 2006.

[9] N. Hazon and G. A. Kaminka, “Redundancy, efficiency, and robustness
in multi-robot coverage,” in ICRA05: Proceedings of IEEE Interna-
tional Conference on Robotics and Automation. IEEE press, 2005.

[10] N. Hazon, F. Mieli, and G. A. Kaminka, “Towards robust on-line
multi-robot coverage,” in ICRA06: Proceedings of the 2006 IEEE
International Conference on Robotics and Automation. IEEE press,
2006.

[11] M. A. Batalin and G. S. Sukhatme, “The analysis of an efficient
algorithm for robot coverage and exploration based on sensor network
deployment,” in ICRA05: Proceedings of IEEE International Confer-
ence on Robotics and Automation. IEEE press, 2005.

[12] C. S. Kong, N. A. Peng, and I. Rekleitis, “Distributed coverage
with multi-robot system,” in ICRA06: Proceedings of the 2006 IEEE
International Conference on Robotics and Automation. IEEE press,
2006.

[13] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Agents98: Proceedings of the Second International Conference on
Autonomous Agents. ACM press, 1998.

[14] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collab-
orative multi-robot exploration,” in ICRA00: Proceedings of the 2000
IEEE International Conference on Robotics and Automation. IEEE
press, 2000.

[15] I. Rekleitis, G. Dudeck, and E. Milios, “Multi-robot exploration of
an unknown environment, efficiently reducing the odometry error,”
in Proceedings of the International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, 1997.

[16] M. A. Batalin and S. G. Sukhatme, “Spreading out: A local approach
to multi-robot coverage,” in DARS02: Proceedings of the 6th Interna-
tional Symposium on Distributed Autonomous Robotics Systems, 2002.

WeC1.2

767

