
 
 

 

  
Abstract—This paper presents a simple stabilizing control 

scheme for the rolling sphere. A tracking control problem with 
respect to a “virtual moving trajectory” is first solved. Then, it 
is used to achieve  practical stability for the regulation problem. 
The derived controllers have a simple form and can guarantee 
fast convergence. To verify the effectiveness of the proposed 
results, an interesting simulation result is presented. 

I. INTRODUCTION 
VER the last decades, the stabilization problem of  
nonholonomic systems has been extensively studied by 
many researchers [4-8, 12, 14, 16-27]. See the survey 

paper [14] for numerous references before 1995 and the 
book [1] for further discussions. According to Brockett’s 
necessary condition, the stabilization problem for such 
systems usually is not solvable by employing continuous 
static state feedback controllers [2]. Instead, it has been 
found that time-varying feedback and discontinuous 
feedback methods can be employed to address the 
stabilization problem [5, 21]. However, most of existing 
literature focused on the nonholonomic systems that can be 
described or transformed into the chained form systems [7, 8, 
11, 12, 18, 19, 20, 22]. For general nonholonomic systems, 
there are still many important systems the stabilization 
problems of which deserve further study.  
    Among these, an interesting example is the rolling sphere. 
The rolling sphere has important applications to space 
multi-body systems [6] and multi-fingered manipulation 
[13]. Recently, it attracts more attentions [4, 6, 17, 23, 24]. 
Particularly, its controllability was proven in [24]. Based on 
this fact and due to [5], there exists an implicit controller to 
stabilize the rolling sphere. Finding an explicit stabilizer of 
rolling sphere is then the next pursuit target. Generally, the 
rolling sphere has two special properties such that it is not 
trivial to find a stabilizer explicitly. One is the non-flatness 
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and another is that it cannot be transformed into a chained 
form system [17] by employing the condition proposed in 
the paper [15]. To overcome such obstacle, an iterative 
control scheme was employed to robustly stabilize the 
rolling sphere [17]. Based on a discontinuous control 
strategy, a novel exponential convergence result for some 
regulation problem of the rolling sphere was established in 
the paper [6]. In the case studied in that paper, they only 
need to stabilize four partial state variables rather than all 
state variables. Quite recently, a time-switching control 
method was used to guarantee asymptotic stability of the 
origin [4]. In [26, 27], several more general approaches were 
proposed. 
    This paper continues this research line. Our approach is 
based on a motion planning method to study the regulation 
problem. A similar ideal was proposed in [20] for mobile 
robots and demonstrated by an example in the paper [19]. 
Another interesting approach can be found in [23]. Recently, 
[12] proposed a more general framework. Based on this 
framework, we will first study a special tracking control 
problem with respect to a periodic “virtual moving 
trajectory” (i.e., to-be tracked signals.) The virtual moving 
trajectory will be designed such that it has zero value at some 
points and satisfies a persistent excitation condition. 
Uniform global asymptotic stability as well as a local 
exponential convergence result will then be established for 
the error model. Simultaneously, as soon as the norm of the 
original state is less than a pre-assigned error bound at some 
time instant, the controllers will be set as the zero value. In 
this way, a practical stabilization with fast convergence can 
be achieved based on our approach. The derived controllers 
will be very simple but guaranteeing fast convergence. 
Moreover, an interesting simulation will be presented to 
verify the effectiveness of the proposed controllers.  

II. A TRACKING CONTROL DESIGN WITH EXPONENTIAL 
CONVERGENCE    

In this paper, we study the asymptotic stability problem 
of the rolling sphere modeled by [3, 4] 
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where 5
321 ),,,,( ℜ∈Tzzzyx  is a state vector and 

2),( ℜ∈Tvu  is a control vector.  
Remark 1. Based on the condition proposed in [15], it can be 
seen that (1) cannot be transformed into a chained form 
system [4]. Thus, the existing controllers derived for the 
nonholonomic chained form systems cannot be used here.■ 
Remark 2. Equation (1) is only an approximating model of 
rolling sphere under some proper coordinate transformations. 
For example, consider the nilpotent approximation model 
(20) derived in [17] (via the method developed in [25]). 
Then, equation (20) in that paper can be transformed into (1) 
by using the following coordinate transformations: 

)6/ˆˆˆˆ),ˆˆˆ(2,ˆ,ˆ,ˆ(),,,,( 3
3134325312321 zzzzzzzzzzzzzyx +++=  

and   ).,(),( 21 wwuv =  
    Although (1) is not an exact model of rolling sphere, it is 
hoped that the method proposed here can yield further 
insights into the design of complete model.                        ■ 
    In this section, we will first consider a special tracking 
problem. Toward this end, let us recall a class of periodic 
functions defined in [12] as follows. 
Definition 1.  For any positive constant M, let SM be the set 
of all continuous real-valued periodic functions h defined on 

),0[ ∞ that satisfy the following conditions: 

1) 0)(
0

=∫ dtthT , where T is a period of h. 

2) There exist two constants t0 and s0 such that h(t0)= M and 
h(s0)= M− .                                                                           ■ 
    Let Mrr Svu ∈,  be the desired control signals for some 
positive constant M with the same period T, and  

ττ dutx t

rr )()(
0∫=  and 0,)()(

0
≥∀= ∫ tdvty t

rr ττ     (2)  

be the (virtual) tracking signals with respect to the state 
variables x and y, respectively.. By their definitions, we have  
               )()( tutx rr =&  and 0),()( ≥∀= ttvty rr& .              (3) 

Let us further assume that  
.0,0)()( ≥∀= ttvtx rr                                (4) 

Notice that, there are many possible choices to match these 
conditions. For instance, let ru  and rv  be two periodic 
functions with the same period T and over a period, they can 
be described as follows: 
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From (2), it can be checked that 
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In view of (5)-(8), it can be seen that Mrr Svu ∈,  and (4) 
holds.  

Define an error state vector and new control variables 
as follows: 
                        

T
rr

T
ee zzzyyxxzzzyxx ),,,,(),,,,(~

321321 −−==         (9) 
                             ),()~,~( rr vvuuvu −−= .                      (10) 
By employing (1) and (4), the following error model can be 
derived: 
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Let 2/~ 2xV =  be a Lyapunov candidate. Using direct 
computation, it can be checked that  
 )].([~)](~[ 321321 yzxzzxyvyzxzzvuxV ere +++++++=&    (12) 
This suggests that the following controllers should be 
chosen: 
                           eur xkyzxzzvu −++−= )(~

321                 (13) 
and                     )]([~

321 yzxzzxykv ev +++−= ,             (14) 
with ku and kv being any positive constants. According to 
LaSalle invariance principle [9], the following result can be 
proposed. It will be used to derive a fast regulator in next 
section.  The proof is postponed to appendix.  
Theorem 1. Consider rolling sphere system (1) and its error 
model (11). With the controllers chosen as (13)-(14), 0~ =x  
is uniformly globally asymptotically stable and locally 
exponentially stable.                                                           ■ 
Remark 3. By using a result from [22], it can be concluded 
that the origin is globally K-exponentially stable.               ■ 
Remark 4. Equation (4) is a technique condition that was 
used to simplify the form of error model (11) as well as the 
design of the controllers.                                                            ■ 
Remark 5. It should be noticed that we just solved a tracking 
control problem with respect to a special trajectory in 
Theorem 1. It is interesting but not easy to attack the general 
tracking control problem. For our purpose, a partial solution 
is enough to be used in the regulation problem.                        ■ 
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III. FAST REGULATION OF THE ROLLING SPHERE 
In this section, Theorem 1 is used to derive fast regulation 

of the rolling sphere by employing the control scheme 
proposed in [12]. Indeed, by the facts that 

0)()(
0

== ∫ ττ dukkTx T

rr  and 0)()(
0

== ∫ ττ dvkkTy T

rr  

for all }0{∪ℵ∈k , it can be seen that  
.))(),(),(),(),(()(~

321
TkTzKTzkTzkTykTxkTx =        (15) 

Since the tracking signals are both bounded (by the periodic 
and continuity properties), it can also be seen that all 
solutions Tzzzyxx ),,,,(ˆ 321= of the closed-loop system are 
uniformly globally bounded. Thus, the following result is a 
consequence of Theorem 1. We refer readers to [12] for 
more related discussions.  
Proposition 1. Consider rolling sphere system (1) where the 
controllers are chosen as (13)-(14). Then, all solutions 

Tzzzyxx ),,,,(ˆ 321= of the closed-loop system are uniformly 
globally bounded. Furthermore, for any 0>ε  and 0>r , 
there exists a large 0),( >rT ε such that if rx ≤)0(ˆ , then 

.)(ˆ ε<Tx                                                                               ■ 
Notice that, (1) is a driftless system. Thus, the state vector 

will keep the same value under the condition 0== vu . 
Based on this observation and Proposition 1, for any given 
error bound ε , the final stabilizer can be modified as  
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with ku and kv being any positive constants. Based on 
Theorem 1 and Proposition 1, a practical and fast 
stabilization of the rolling sphere can be achieved by 
employing controllers (16)-(17). Particularly, we have the 
following result. 
Theorem 2. Consider rolling sphere system (1). Let 0>ε  
be any given error bound and the controllers be chosen as 
(16)-(17). Then, all solutions Tzzzyxx ),,,,(ˆ 321= of the 
closed-loop system are uniformly globally bounded and for 
any r>0, there exists a large 0),( >rT ε such that if 

rx ≤)0(ˆ , then .,)(ˆ Tttx ≥∀< ε                                              ■ 
Remark 6. It can be seen that controllers (16)-(17) take a 
simple form and is easily implemented. Moreover, a fast 
convergence result can be guaranteed by employing the 
exponential convergence result provided in Theorem 1.      ■ 
Remark 7. In theorem 1, exponential convergence was 
achieved by employing (13)-(14). This fact can be used to 
guarantee certain robustness results, see [11]-[12] for some 
related discussions. Based on different approaches, several 
robustness results were also proposed in present literature 

[17, 26]. Since this is not main concerned issue in this paper, 
the detailed comparison and discussion are omitted here.   ■ 

IV. SIMULATION RESULTS 
In this section, simulation results are presented. For 

simulations, the initial condition is set 
as )1,1,0,0,0(),,,,( 321 −=zzzyx  that is the same as [4]. 
Other parameters are chosen as follows: 

.05.0,4,3,6,5.1 ===== εvu kkTM           (18) 
The reference signals are given as (5)-(8). Simulation results 
are presented in Figures 1-3 where Figure 1 shows that a fast 
convergence result is achieved. 

V. CONCLUSIONS 
In this paper, we have proposed a new solution to the 

stabilization of the rolling sphere. A key idea behind our 
controller design is to invoke the framework proposed in 
[12]. The proposed controllers have a simple form and 
achieve a fast convergence result. Our future work will be 
directed at extending the proposed result to more general 
nonholonomic systems.   

APPENDIX: A PROOF OF THEOREM 1 
In view of (12)-(14), the following inequality holds: 

{ } .0)]([ 2
321

2 ≤++++−= yzxzzxykxkV eveu
&        (A1) 

Additionally, V is positive and proper. From the standard 
Lyapunov argument, it is easy to see that the origin is 
Lyapunov stable and all solutions are uniformly globally 
bounded [9]. To guarantee uniform global asymptotic 
stability, it remains to check attractivity. Since all tracking 
signals are continuous and periodic with the same period, the 
closed-loop system is also continuous and periodic. Thus, 
the well-known LaSalle invariance principle can be used to 
check attractivity. Indeed, let .0≡V&  From (A1), it can be 
seen that  

0≡ex  and .0)( 321 ≡+++ yzxzzxye      (A2) 
This results in  

0~ ≡v  and 0~ ≡= exu & ,                         (A3) 
by (13)-(14). This implies that x~  is a constant function in 
view of (11). Again by (13), we also have  

.0)( 321 ≡++ yzxzzvr                           (A4) 
By the choices of rv  and ru , there exist a 0≥vt  and 0≥ut  
so that 0)( ≠vr tv  and 0)( ≠ur tu . Since rv  and ru  are both 
continuous, there are also two open intervals vv It ∈  and 

uu It ∈  satisfying  
            ,,0)( vr Ittv ∈∀≠  and ur Ittu ∈∀≠ ,0)( .         (A5) 

According to (4), this implies  
.,0)( vr Ittx ∈∀=          (A6) 

Since 0)()( == txtx er and ,,0)( vr Ittv ∈∀≠  we have 
0)()()( =+= txtxtx re , ,vIt ∈∀  and ry  is not a constant 
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function on vI .  In view of (A2), we also have 
that rer yyyy =+=  is not a constant function on vI . Since 
x~  is a constant function, it can be derived from (A4) that  
                                  .031 ≡= zz                                      (A7) 
Since urr Ittutx ∈∀≠= ,0)()(& , there exists a non-empty 
open interval ux II ⊆  such that rx  is not a constant function 
and takes no zero value on xI . Again by (4), it can be seen 
that .,0)()( xrr Ittvty ∈∀==&  Notice that, ey  is a constant 
function and thus, er yyy +=  is also a constant function on 

xI . From (A2), it can be seen that for each 
,xIt ∈ )()()()( txtxtxtx rer =+= is a root of a fixed second 

order polynomial. Since rx  is continuous and is not a 
constant function on xI , this implies that the coefficients of 
the polynomial are all equal to zero. Particularly, 

.,0)()()()()( 231 xe Ittztztytzty ∈∀==+=  
Again using the fact that x~  is a constant function, it can be 
seen that  
                                  .02 ≡= zye                                    (A8) 
From (A2), (A7) and (A8), we conclude that 0~ ≡x  
whenever 0≡V& . Thus, the origin is uniformly globally 
asymptotically stable by LaSalle invariance principle or 
Krasovskii-LaSalle Theorem [9].  
    Now, let us show that the origin is locally exponentially 
stable. Consider the linearized system of the closed-loop 
system. It is not difficult to see that the linearized system 
takes the same form as the original system with the variables 
x and y replaced by xr and yr, respectively.  Thus, all previous 
arguments can be repeated with a minor modification to 
show that the origin of the linearized system is uniformly 
globally asymptotically stable. A detailed proof is omitted to 
save space. From this, the origin is locally exponentially 
stable [9]. This completes the proof of the theorem.           ■ 
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Figure 1: Time history of the state vector.  
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Figure 2: Time history of the velocities.  
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Figure 3: Displacement variations of the rolling sphere.  
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