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Abstract— In this paper, supply chain nodes are considered,
with the aim of optimizing the production of parts belonging
to different classes (the case of two classes is here taken into
account). The production node is modelled by a discrete-event
model, being the system state, consisting of the continuous level
of input and output inventories, affected by the asynchronous
processes relevant to part arrivals and product departures.
Moreover, also the resource capacity of the node is represented
by a continuous variable (to be shared among the two classes).
In the paper, two optimization problems are proposed: the
former is only stated due to its intrinsic complexity, whereas the
latter (a simplified version of the former) is stated and solved.
In the latter problem, an optimization is performed each time
an event occurs, in order to determine which the next event is,
when the next event will occur, how many raw parts/products
will arrive/depart, and which portions of production capacity
are assigned to the two classes.

I. INTRODUCTION

In the last years, a growing attention of different groups

of researchers and practitioners has been attracted by issues

concerning distributed production systems. In particular, the

“supply-chain” model has been widely considered [1], [2]. A

supply-chain model is mainly characterized by the presence

of several production centers (usually distributed over the

territory) which interact with raw material and part suppliers

and with logistic service providers, in an integrated environ-

ment in which co-ordination aspects as well as competitive

issues may take place. Different decisional agents coexist

within such a model, each one associated with a particular

production (or service) unit and characterized by its own set

of information and objectives.

In this work, an innovative model for a single node of

a supply chain is proposed together with an optimization

approach representing the decisional part of such a node.

More specifically, a node relevant to a production plant will

be taken into account. Owing to the intrinsic complexity

of the whole system, the single production plant has to

be analytically represented at a quite aggregate level of

detail. A variety of models representing production plants

can be found in the literature, and they can be classified into

three main modelling categories. In the first class of models,

both resources and materials are represented by continuous

variables [3]; in the second case, a fluid model is adopted,

in which material flow is still represented by continuous

variables, whereas resources are separately considered and

represented by discrete variables. Finally, in the third class
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of models, mainly adopted for scheduling problems [4], both

resources and materials are represented by discrete variables.

None of the above defined modelling categories actually

fits the characteristics of the production plant here consi-

dered. What is needed when dealing with complex pro-

duction networks is, actually, a very aggregate model for

the production process, that can be represented as a set of

continuous resources to be shared among different product

classes. Moreover, specific attention has to be posed on the

interactions among the considered node and the rest of the

network (as regards, for instance, the arrivals and departures

of materials, the issuing of orders, etc.), thus requiring a

discrete dynamics for the arrival and departure processes

involving the production node. The resulting model which

will be detailed in the present paper turns out to be a

hybrid model combining continuous dynamics (representing

the production process) with discrete–event ones (modelling

the arrival/departure processes).

A preliminary version of the present work is reported

in [5] and [6]. In such papers, a simplified model for

a production node with only one product class has been

proposed, together with an approach for the optimal control

of the considered production nodes. Both the modelling

methodology and the optimization approach has been here

extended to consider a wider class of nodes and optimization

problems. Specifically, in the model here proposed, the single

production node is supposed to manufacture different classes

of products by means of a single production resource. The

production process for each product class is quite simple

and consists of a single operation transforming raw materials

into finite products (with no assembly operations). Moreover,

the overall available amount of production capacity in the

plant is fixed, and the decision variable is relative to the

resource share for the various product classes. In this case,

the state variables, whose evolution has to be represented in

the single plant model, are continuous-valued and represent

the inventory levels of raw materials and finished products.

Finally, the processes characterizing the flow of parts into

the node and the departure of finite products from the plant

are sequences of instantaneous and asynchronous events.

In regard to the decision process of the production node,

the performance objectives are related to production costs,

purchase costs, inventory costs, and costs relevant to the

timeliness of the satisfaction of production demand. A sui-

table optimization problem relevant to the minimization of

such costs, with respect to the parameters of the arrival and

departure processes and to the production effort dedicated

to the different product classes, is stated in the paper. Also,

a “one-step” solution approach to the overall optimization

problem is proposed.
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Suppliers Producers Retailers

Fig. 1. Schematic representation of a supply chain

II. THE SINGLE NODE MODEL

A supply chain is generally defined as a complex pro-

duction network, characterized by a multiplicity of sites

(belonging to one of the three following classes: suppliers,

producers, and retailers), which can be modelled as different

nodes of the network (Fig. 1). At the operational level, a

discrete-event model of the single node is usually adopted.

In particular, with reference to producers, relevant events are

those concerning the arrival of a raw part to manufacture

and those concerning the departure of a product towards

other nodes of the network. The state of the node can be

represented by means of a set of inventory levels: one for

each class of raw parts and one for each class of products.

In this paper, a single production node is considered, which

is able to manufacture parts belonging to two classes (it is

worth noting that the choice of considering two classes is

only driven by the need of clarity in writing problems and

equations; however, the same approach can be also adopted

in the case of J classes). Moreover, the proposed model may

be also applied to suppliers and to retailers, as they can be

considered as specific instances of producers.

z1(t)
ξ1(t) x1(t)

y1(t)

z2(t)
ξ2(t) x2(t)

y2(t)

Fig. 2. Model of the single production node

Consider the model of the single production node in Fig. 2.

Raw parts arrive from either suppliers or upstream production

nodes. One raw part entering the node is processed by a

single operation in order to be transformed into one product

of the same class (that is, no assembly operation is present in

the considered model). Once manufactured, products leave

the node towards either downstream production nodes or

retailers. In this connection, let zj(t), j = 1, 2, represent

the arrival process of raw parts, for the j-th class and yj(t),
j = 1, 2, represent the departure process of products, for

the j-th class. Arrival and departure processes are supposed

to be independent, and each class of raw parts/products is

characterized by its own flows.

The arrival process zj(t), j = 1, 2, is modelled as a

finite (and discrete) sequence of arrivals (Fig. 3). An arrival

concludes the transportation of a finite amount of raw parts

...

δj,1 δj,2 δj,3 δj,Γj

Θj,1

Θj,2

Θj,3

Θj,Γj

zj(t)

t

Fig. 3. The arrival process

from outside to the production node. In the arrival process

of raw parts belonging to class j, Γj , j = 1, 2, is the number

of arrivals within the considered time horizon; δj,i, j = 1, 2,

i = 1, . . . ,Γj , is the time instant at which the i-th arrival

takes place; Θj,i > 0, j = 1, 2, i = 1, . . . ,Γj , is the amount

of raw parts entering the node at time instant δj,i.

In an analogous way, the departure process yj(t), j = 1, 2,

is modelled as a finite and discrete sequence of departures

(Fig. 4). A departure has to be intended as the starting time

of a transportation of a finite amount of products from the

production node to any other node in the network. Such a

process is characterized by the following quantities: Nj , j =
1, 2, is the number of departures (that is, products requests),

for the j-th class of products, within the considered time

horizon; tj,i, j = 1, 2, i = 1, . . . , Nj , is the time instant

at which the i-th departure of products of class j occurs,

Qj,i > 0, j = 1, 2, i = 1, . . . , Nj , is the amount of products

of class j leaving the system at time instant tj,i. Note that

arrivals and departures are here modelled as asynchronous

processes, in which the time interval between one event and

the subsequent one is not constant.

...

tj,1 tj,2 tj,3 tj,Nj

Qj,1

Qj,2

Qj,3

Qj,Nj

yj(t)

t

Fig. 4. The departure process

When two classes of products are considered, the model of

the production node is mainly characterized by the presence

of four inventories: two relevant to the considered classes of

raw parts, and two relevant to the classes of products. In this

connection, let

• ξj(t), j = 1, 2, model the inventory level of raw parts

of class j (input inventory);

• xj(t), j = 1, 2, model the inventory level of products

of class j (output inventory).

Each class has its own input and output inventories. Raw

parts arriving from the outside are initially inserted into

the relevant input inventory; then, after the manufacture,

the resulting products are inserted into the relevant output

inventory (from which they leave the node). Inventories
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are independent for each class; the only dependence is

represented by the whole production capacity of the node,

that must be appropriately shared. In this connection, let

• K be the overall work-capacity of the production node;

• kj(t), j = 1, 2, be the portion of K which is assigned

to the production of the j-th class of products at time

instant t;

• q be the number of products that the node can manu-

facture in a time unit (production rate).

Of course, it must be:

0 ≤ kj(t) ≤ K j = 1, 2 0 ≤ t ≤ tj,Nj
(1)

0 ≤ k1(t) + k2(t) ≤ K 0 ≤ t ≤ min {t1,N1
, t2,N2

} (2)

The external demand of products of class j consists of Mj

orders, and each order is characterized by the due-date and

the amount of required products. In this connection, let t⋆j,i,

j = 1, 2, i = 1, . . . ,Mj , be the due-date of the i-th order of

products of class j, and let Q⋆
j,i, j = 1, 2, i = 1, . . . ,Mj , be

the amount of products required at t⋆j,i.

The system state variables are ξj(t) and xj(t), j = 1, 2,

whereas the decision variables are Γj and Nj , j = 1, 2,

δj,i and Θj,i, j = 1, 2, i = 1, . . . ,Γj , kj(t), j = 1, 2,

tj,i and Qj,i, j = 1, 2, i = 1, . . . , Nj . On the basis of the

above variables, it is possible to define the state equations

for the proposed single production node of a supply chain.

In particular, the state equations of the two input inventories

for raw parts are:

ξ1(δ1,i+1) = ξ1(δ1,i) − q

∫ δ1,i+1

δ1,i

k1(t) dt + Θ1,i+1

i = 0, . . . ,Γ1 − 1 (3)

ξ2(δ2,i+1) = ξ2(δ2,i) − q

∫ δ2,i+1

δ2,i

k2(t) dt + Θ2,i+1

i = 0, . . . ,Γ2 − 1 (4)

whereas the state equations of the two output inventories for

products are:

x1(t1,i+1) = x1(t1,i) + q

∫ t1,i+1

t1,i

k1(t) dt − Q1,i+1

i = 0, . . . , N1 − 1 (5)

x2(t2,i+1) = x2(t1,i) + q

∫ t2,i+1

t2,i

k2(t) dt − Q2,i+1

i = 0, . . . , N2 − 1 (6)

being ξj(0) and xj(0), j = 1, 2, the initial inventory levels

of the j-th class, and δj,0 = 0 and tj,0 = 0, j = 1, 2, the

initial time instants (note that, δj,0 and tj,0 do not correspond

to an arrival of raw parts or a departure of products and are

not decision variables). On the whole, the proposed model is

a hybrid model, as it combines some continuous processes,

such as the production process, together with discrete-event

dynamics, such as the arrivals of raw parts and the departures

of products.

Furthermore, in the proposed model, it is assumed that

each order is associated with one and only one departure

of products. Then, Nj = Mj , j = 1, 2. Moreover, due-

dates are assigned to the departures sequentially, that is, the

earliest due-date is assigned to the lot of products which

is completed first (and then departs first), the second earliest

due-date is assigned to the lot of products which is completed

second (and then departs second), and so on. In the literature,

this situation is referred to as the case of generalized due-

dates [7], [8]. Of course, the model is appropriate only when

the serviced jobs (of a certain class) have to be assigned

to the various due-dates (of that class), i.e., to the various

waiting customers, according to a strict due-date ordering,

for some technical or commercial/legal reasons.

III. THE OPTIMIZATION PROBLEM

The optimization of the dynamic behaviour of the produc-

tion site, subject to the external demand, needs the definition

of a suitable cost function. An overall optimization problem

can be defined taking into account the cost due to the

acquisition of raw parts from suppliers/upstream production

nodes, inventory costs, production costs, and the cost related

to the non-fulfillment of external demand requisites (in terms

of tardiness and difference between the actual amount of

delivered products and the required one).

The cost due to the acquisition of raw parts from sup-

pliers/upstream production nodes can be stated as:

CA =

Γ1
∑

i=1

(

cf
1 + cv

1 · Θ1,i

)

+

Γ2
∑

i=1

(

cf
2 + cv

2 · Θ2,i

)

(7)

where cf
j and cv

j , j = 1, 2, are the fixed and variable unitary

order costs, respectively.

The cost due to the inventory occupancy is:

CI = H in

(

∫ δ1,Γ1

0

ξ1(t) dt +

∫ δ2,Γ2

0

ξ2(t) dt

)

+

+ Hout

(
∫ t1,M1

0

x1(t) dt +

∫ t2,M2

0

x2(t) dt

)

(8)

being H in and Hout the unitary inventory costs for raw parts

and products, respectively.

The production cost can be stated as:

CP = γ

(
∫ t1,M1

0

k1(t) dt +

∫ t2,M2

0

k2(t) dt

)

(9)

where γ is a suitable coefficient weighting the production

cost.

Finally, the cost term relevant to the deviations from the

due-dates and from the required products quantities is:

CD = α

(

M1
∑

i=1

(t1,i − t⋆1,i)
2 +

M2
∑

i=1

(t2,i − t⋆2,i)
2

)

+

+ β

(

M1
∑

i=1

(Q1,i − Q⋆
1,i)

2 +

M2
∑

i=1

(Q2,i − Q⋆
2,i)

2

)

(10)

being α and β suitable weighting coefficients.
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The overall optimization problem can be stated as follows.

Problem 1: Given the initial conditions δj,0 = 0, tj,0 = 0,

ξj(0) ≥ 0, and xj(0) ≥ 0, j = 1, 2, find

min
Γj , j=1,2

δj,i , Θj,i , j=1,2 , i=1,...,Γj

tj,i , Qj,i , j=1,2 , i=1,...,Mj

kj(t) , j=1,2 , 0≤t≤tj,Mj

C1 = CA + CI + CP + CD (11)

subject to (1), (2), (3), (4), (5), (6), and

Γj ≥ 0 j = 1, 2 (12)

δj,i+1 ≥ δj,i j = 1, 2 , i = 0, . . . ,Γj − 1 (13)

tj,i+1 ≥ tj,i j = 1, 2 , i = 0, . . . ,Mj − 1 (14)

ξj(t) ≥ 0 j = 1, 2 , 0 < t ≤ δj,Γj
(15)

xj(t) ≥ 0 j = 1, 2 , 0 < t ≤ tj,Mj
(16)

Θj,i > 0 j = 1, 2 , i = 1, . . . ,Γj (17)

Qj,i > 0 j = 1, 2 , i = 1, . . . ,Mj (18)

Problem 1 is a functional optimization problem with

nonlinear cost function and nonlinear constraints, thus, it is

a quite complex problem. Moreover, it is a highly combi-

natorial problem, as the decision variables δj,i, j = 1, 2,

i = 1, . . . ,Γj , and tj,i, j = 1, 2, i = 1, . . . ,Mj , are not a-

priori ordered over the timeline. For these reasons, Problem

1 is not solved here, and a simplified optimization problem

will be introduced in the following.

IV. THE SIMPLIFIED

“ONE-STEP” OPTIMIZATION PROBLEM

Consider the timeline in Figure 5, and assume that an

event, which introduces a perturbation in one or more system

state variables, has occurred in τh. The possible events are:

A1 (arrival of raw parts of class 1), A2 (arrival of raw

parts of class 2), D1 (departure of products of class 1), and

D2 (departure of products of class 2). In this connection,

let E = {A1, A2,D1,D2} be the event set. The task of

optimizing the performances of the system from τh onward,

by considering all the future events, is still a functional,

nonlinear, and combinatorial optimization problem. Then, in

the proposed simplified problem, the decision to be taken at

τh is only relevant to the next event which will occur. In

particular, at τh, the following decisions have to be taken:

• which is the next event eh+1 ∈ E?

τh τh+1

NOW NEXT EVENT

Past Events Future Events

t

Fig. 5. Events over the timeline

• which is the time instant τh+1 > τh at which eh+1 will

occur?

• which is the amount Ph+1 of raw parts or products

which arrive or depart at τh+1?

• which are the portions of production capacity, k1(t) and

k2(t), to assign to the production of products of class 1

and class 2, respectively, in the time interval (τh, τh+1]?

TABLE I

DECISION VARIABLES

eh+1 A1 A2 D1 D2

τh+1 δ1,nA1
+1 δ2,nA2

+1 t1,nD1
+1 t2,nD2

+1

Ph+1 Θ1,nA1
+1 Θ2,nA2

+1 Q1,nD1
+1 Q2,nD2

+1

k1,h k1,h k1,h k1,h k1,h

k2,h k2,h k2,h k2,h k2,h

Assume that, at time instant τh, h events have already

occurred. In particular, assume that nA1
events of type

A1, nA2
events of type A2, nD1

events of type D1, and

nD2
events of type D2 occurred (obviously, it turns out

nA1
+ nA2

+ nD1
+ nD2

= h). Moreover, it is assumed that

kj(t), j = 1, 2, is constant in the time interval (τh, τh+1];
in this connection, let kj,h denote the value of kj(t) within

(τh, τh+1]. Then, on the basis of the choice of the decision

variable eh+1, the other decision variables are those in

Table I.

Even if the decision to be taken is only relevant to the

next event, the simplified problem should also take into

account all the future events (in order to avoid “blind”

solutions). Then, two kinds of parameters are introduced in

the single node model: ξ⋆
j,h, j = 1, 2, represents the reference

value of inventory level of raw parts of class j in the time

interval (τh, τh+1], whereas k⋆
j,h, j = 1, 2, represents the

reference value of portion of production capacity necessary

to manufacture products of class j within (τh, τh+1]. The

meaning of the reference value of inventory level is that

of maintaining a certain level of parts within the input

inventories in order to be able to satisfy the external demand

in the future; the meaning of the reference value of portion

of production capacity is that of maintaining a certain rate

of production, always with the objective of being able to

satisfy the external demand. Then, a new cost term is stated

as follows:

CR
h =

2
∑

j=1

[

λ
(

ξj(τh+1) − ξ⋆
j,h

)2
+ µ

(

kj,h − k⋆
j,h

)2
]

(19)

being λ and µ suitable weighting coefficients. Note that, the

cost term (19) is function of the considered time interval,

namely (τh, τh+1]. In the same way, let CA
h , CI

h, CP
h , and

CD
h be the cost due the acquisition of raw parts, the inventory

cost, the production cost, and the cost due to the non-

fulfillment of external demand, respectively, computed in

the time interval (τh, τh+1] only (and not over the whole

timeline).

The simplified optimization problem to be solved each

time an event occurs, is stated as follows.

WeE10.1

1581



Problem 2 (“one-step” optimization problem): Given the

system state at τh, namely,

s(τh) =
[

σ(τh) n(τh)
]T

(20)

being σ(τh) =
[

ξ1(τh) ξ2(τh) x1(τh) x2(τh)
]T

and

n(τh) =
[

nA1
nA2

nD1
nD2

]T
, find

min
eh+1 , τh+1 , Ph+1

k1,h , k2,h

C2 = CA
h + CI

h + CP
h + CD

h + CR
h (21)

subject to system state equations and

eh+1 ∈ E (22)

τh+1 ≥ τh (23)

Ph+1 > 0 (24)

kj,h ≥ 0 j = 1, 2 (25)

k1,h + k2,h ≤ K (26)

ξj(τh+1) ≥ 0 j = 1, 2 (27)

xj(τh+1) ≥ 0 j = 1, 2 (28)

The preliminary determination of the reference values is

a very important task, as they are the only link between the

“one-step” optimization problem and all the future activities

of the system. In this paper, the reference value of portion of

production capacity is computed by taking into account the

overall external demand still to be satisfied, and considering

such a demand as uniformly distributed over the time, that

is

k⋆
j,h =

Mj
∑

i=nDj
+1

Q⋆
j,i

t⋆j,Mj
− τh

j = 1, 2 (29)

Once k⋆
j,h, j = 1, 2, has been determined, the reference value

of inventory level is computed by considering the average

level of a virtual inventory obtained by applying the basic

EOQ (Economic Order Quantity) model with an external

demand equal to the reference value k⋆
j,h, that is

ξ⋆
j,h =

√

2cf
jqk

⋆
j,h

H in

2
j = 1, 2 (30)

Finally, observe that the two reference values have to be

updated each time Problem 2 has to be solved.

Problem 2 is solved by considering the following cases:

1) the next event is A1; 2) the next event is A2; 3) the next

event is D1; 4) the next event is D2.

For each case, the “conditioned” cost-to-go Jv
h

(

s(τh) |
eh+1 = v

)

, v = A1, A2,D1,D2 is computed, which is

defined as the cost in the interval (τh, τh+1] when the next

event at τh+1 is v. In the following, the determination of

such a cost is detailed for each of the above cases.

Case 1 – The next event is A1

In this case, the cost terms become

CA
h = cf

1 + cv
1 · Θ1,nA1

+1 (31)

CI
h = H in

[

(

ξ1(τh) + ξ2(τh)
)(

δ1,nA1
+1 − τh

)

+

−
q

2

(

k1,h + k2,h

)(

δ1,nA1
+1 − τh

)2
]

+

+ Hout
[

(

x1(τh) + x2(τh)
)(

δ1,nA1
+1 − τh

)

+

+
q

2

(

k1,h + k2,h

)(

δ1,nA1
+1 − τh

)2
]

(32)

CP
h = γ(k1,h + k2,h)(δ1,nA1

+1 − τh) (33)

CD
h = 0 (34)

and the state equations are

ξ1(δ1,nA1
+1) = ξ1(τh) − qk1,h(δ1,nA1

+1 − τh) + Θ1,nA1
+1

(35)

ξ2(δ1,nA1
+1) = ξ2(τh) − qk2,h(δ1,nA1

+1 − τh) (36)

x1(δ1,nA1
+1) = x1(τh) + qk1,h(δ1,nA1

+1 − τh) (37)

x2(δ1,nA1
+1) = x2(τh) + qk2,h(δ1,nA1

+1 − τh) (38)

The conditioned cost-to-go, when the next event is A1, is

JA1

h

(

s(τh) | eh+1 = A1

)

= CA
h +CI

h+CP
h +CD

h +CR
h (39)

being CA
h , CI

h, CP
h , CD

h , and CR
h respectively provided

by (31), (32), (33), (34), and (19). The optimal value of

such a conditioned cost-to-go, is provided by the following

optimization problem:

JA1 ◦
h

(

s(τh) | eh+1 = A1

)

=

= min
δ1,nA1

+1

Θ1,nA1
+1

k1,h , k2,h

{

JA1

h

(

s(τh) | eh+1 = A1

)

}

(40)

subject to (35), (36), (37), and (38), and

δ1,nA1
+1 ≥ τh (41)

Θ1,nA1
+1 > 0 (42)

kj,h ≥ 0 j = 1, 2 (43)

k1,h + k2,h ≤ K (44)

ξj(δ1,nA1
+1) ≥ 0 j = 1, 2 (45)

xj(δ1,nA1
+1) ≥ 0 j = 1, 2 (46)

The optimal value of decision variables is indicated with

δ◦1,nA1
+1, Θ◦

1,nA1
+1, k◦

1,h, and k◦
2,h, respectively.

Case 2 – The next event is A2

This case is analogous to case 1. Then, in the same way,

it is possible to determine the optimal cost-to-go when the

next event is A2, namely JA2 ◦
h

(

s(τh) | eh+1 = A2

)

, and

the optimal value of decision variables, namely δ◦2,nA2
+1,

Θ◦
2,nA2

+1, k◦
1,h, and k◦

2,h.
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Case 3 – The next event is D1

In this case, the cost terms become

CA
h = 0 (47)

CI
h = H in

[

(

ξ1(τh) + ξ2(τh)
)(

t1,nD1
+1 − τh

)

+

−
q

2

(

k1,h + k2,h

)(

t1,nD1
+1 − τh

)2
]

+

+ Hout
[

(

x1(τh) + x2(τh)
)(

t1,nD1
+1 − τh

)

+

+
q

2

(

k1,h + k2,h

)(

t1,nD1
+1 − τh

)2
]

(48)

CP
h = γ(k1,h + k2,h)(t1,nD1

+1 − τh) (49)

CD
h = α(t1,nD1

+1− t⋆1,nD1
+1)

2 +β(Q1,nD1
+1−Q⋆

1,nD1
+1)

2

(50)

and the state equations are

ξ1(t1,nD1
+1) = ξ1(τh) − qk1,h(t1,nD1

+1 − τh) (51)

ξ2(t1,nD1
+1) = ξ2(τh) − qk2,h(t1,nD1

+1 − τh) (52)

x1(t1,nD1
+1) = x1(τh) + qk1,h(t1,nD1

+1 − τh) − Q1,nD1
+1

(53)

x2(t1,nD1
+1) = x2(τh) + qk2,h(t1,nD1

+1 − τh) (54)

The conditioned cost-to-go, when the next event is D1, is

JD1

h

(

s(τh) | eh+1 = D1

)

= CA
h +CI

h+CP
h +CD

h +CR
h (55)

being CA
h , CI

h, CP
h , CD

h , and CR
h respectively provided

by (47), (48), (49), (50), and (19). The optimal value of

such a conditioned cost-to-go, is provided by the following

optimization problem:

JD1 ◦
h

(

s(τh) | eh+1 = D1

)

=

min
t1,nD1

+1

Q1,nD1
+1

k1,h , k2,h

{

JD1

h

(

s(τh) | eh+1 = D1

)

}

(56)

subject to (51), (52), (53), and (54), and

t1,nD1
+1 ≥ τh (57)

Q1,nD1
+1 > 0 (58)

kj,h ≥ 0 j = 1, 2 (59)

k1,h + k2,h ≤ K (60)

ξj(t1,nD1
+1) ≥ 0 j = 1, 2 (61)

xj(t1,nD1
+1) ≥ 0 j = 1, 2 (62)

The optimal value of decision variables is indicated with

t◦1,nD1
+1, Q◦

1,nD1
+1, k◦

1,h, and k◦
2,h, respectively.

Case 4 – The next event is D2

This case is analogous to case 3. Then, in the same way,

it is possible to determine the optimal cost-to-go when the

next event is D2, namely JD2 ◦
h

(

s(τh) | eh+1 = D2

)

, and

the optimal value of decision variables, namely t◦2,nD2
+1,

Q◦
2,nD2

+1, k◦
1,h, and k◦

2,h.

Coming back to Problem 2, the next event is provided by

eh+1 = argmin
{

Jv ◦
h

(

s(τh) | eh+1 = v
)

, v ∈ E
}

(63)

and the values τh+1, Ph+1, k1,h, and k2,h, are those compu-

ted in the relevant conditioned cost-to-go. In particular

τh+1 =















δ◦1,nA1
+1 if eh+1 = A1

δ◦2,nA2
+1 if eh+1 = A2

t◦1,nD1
+1 if eh+1 = D1

t◦2,nD2
+1 if eh+1 = D2

(64)

Ph+1 =















Θ◦
1,nA1

+1 if eh+1 = A1

Θ◦
2,nA2

+1 if eh+1 = A2

Q◦
1,nD1

+1 if eh+1 = D1

Q◦
2,nD2

+1 if eh+1 = D2

(65)

V. CONCLUSIONS

In this paper, two optimization problems have been defined

in order to optimize, at the operational decision level, the

performance of a single production node within a supply

chain. The former problem is only stated, as its exact solution

can not be determined in a reasonable time; then, a simplified

version of the same problem has been proposed and solved.

The optimization procedure is performed each time an event

occurs, in order to determine which the next event is, when

the next event will occur, how many raw parts/products will

arrive/depart, and which the portions of production capacity

assigned to the two classes are. In the simplified problem, a

further cost term has been added, in order to take into account

all the future events, thus avoiding “blind” solutions.

It is important to note that the proposed approach is

compatible with an “infinite horizon” model, that is a model

where the external demand of products is not defined at

the beginning. The fact is, the reference value of portion

of production capacity and the reference value of inventory

level are computed every time an event occurs, and thus they

can be computed on the basis of the actual set of external

orders.
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