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Abstract— The use of the World Wide Web for robot 
teleoperation is growing in the last years due mainly to the 
pervasiveness of internet and web browsers, although web 
interfaces usually use ethernet networks that exhibit time 
unpredictability. Most recent research in the area has been 
focused on improving time predictability of the network under 
delays, jitter, and no guaranteed bandwidth. However, we 
believe that: i) not only the network, but every component in 
the interfaced system exhibit time unpredictability; and ii) 
improving time predictability is not the only solution:  adapting 
the interfaced system to unpredictable conditions is also a 
possibility. In this paper we consider a web interfaced robot as 
a set of control loops and describe and implement an hysteresis 
controller for regulating the flow of information through the 
loops as a method to satisfy the system time requirements 
under some unpredictable and varying conditions. For 
demonstrating the goodness of our algorithm, we a) compare it 
with a near-optimal one automatically generated through 
reinforcement learning, and b) show an implementation of the 
algorithm for the direct teleoperation of a service mobile robot, 
obtaining a better behavior than the same system without flow 
regulation.   
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I.  INTRODUCTION 
Networked robots that are teleoperated through the World 

Wide Web are increasing their popularity, mainly due to the 
pervasiveness of internet and web browsers. Their 
applications include telecare robotics ([1],[2]), museum 
assistants ([3],[4]), education ([5],[6]), etc. 

Several topics have been addressed recently in the 
research literature on web teleoperation of robots: network 
performance ([7],[8]), virtual reality for replacing real 
information when it is not available at appropriate time rates 
([9],[10]), internet multimedia systems [11], traditional 
teleoperation systems ([12],[13]), communication protocols 
([14], [15]), or soft computing controllers [16].  

In particular, we believe that trying to improve the 
predictability of the network lacks the generality needed for 
solving the problem. The whole interfaced system (the client-
side interface, the robot, and the network) should be taken 
under consideration as a whole, since undesirable time effects 
may appear in several parts of it. For example, the time 
consumption of the web interface may be of a magnitude 
comparable to network delays, or even much greater if the 
network uses high-speed technology. Thus, the design of 

systems that adapt to unpredictable or varying time 
conditions seems a reasonable approach. 

In a previous work [17] we have presented a probabilistic 
model of the control loops of a web interfaced robot that 
allows the user interface to select automatically, among a set 
of control loops with different time requirements, the one that 
is most likely to satisfy the timing constraints. We have 
called this “coarse adaptation” of the web interface, and it has 
demonstrated its suitability when any component in the loops 
changes drastically its performance. In the same work we 
have also considered the possibility of deactivating certain 
graphical components to improve the time consumption of 
the system before changing to a different control loop. That 
has been called “medium adaptation”. The drawback of both 
actions is that they lead to abrupt changes in the modality of 
control of the user over the robot. 

In this paper we focus in a third type of regulation: “fine 
adaptation”, which allows us to deal with changes in time 
performance that are not important enough to deactivate parts 
of the interface or to deactivate the loop. Fine adaptation is 
aimed to affect as little as possible to the user control of the 
system and thus it should be used more frequently than 
coarse or medium adaptation; its goal is to automatically 
regulate the amount of sensory information gathered by the 
robot and flowing through the system to be displayed on the 
web interface1. We do this through a simple hysteresis 
controller [18] that reduces that information if the time 
requirement for the current loop is not likely to be met, and 
increases it when the probability of satisfying that 
requirement rises again. The whole probabilistic approach 
(coarse + medium + fine) is aimed to build web interfaces for 
robot teleoperation more adaptable than conventional ones, 
constituting a framework that is also compatible with any 
network-improving approach. 

The suitability of the hysteresis controller that we present 
in this paper has been stated through two methods. We have 
firstly compared it to an automatically generated algorithm 
that is supposed to yield the best results with respect to a 
mathematically defined goodness measure. We have included 
in that goodness measure both the probability of satisfying 
the time requirements of the control loop and the density of 
sensory information shown to the user. The framewo

                                                           
1 Sensory data is by far the most bandwidth demanding among the ones that 
flow through a control loop; usually, actuation signals are only constituted 
of a few bytes. 
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rk for constructing the near-optimal algorithm has been 
reinforcement learning, and in particular Q-learning [19], 
since this methodology yields policies (=algorithms) that 
tend to the optimal ones. We have found that the Q-based 
algorithm performs similarly to our controller, thus 
providing a satisfactory justification for the use of the latter. 
Secondly, we have implemented our algorithm in a real web-
interfaced robot and have found that the behavior of the 
system is better when the automatic flow regulation is 
activated.  

The paper is organized as follows: section II describes a 
general web interfaced robotic system and the probabilistic 
models used for its time consuming parts. Section III 
explains our algorithm information flow regulation and how 
it has been compared to a near-optimal algorithm generated 
through Q-learning. Section IV shows the results of 
evaluating the proposed controller in a real web-interfaced 
robot. The paper ends with some conclusions and future 
work.  

II. CONTROL LOOP MODELING IN A WEB-INTERFACED 
ROBOTIC SYSTEM 

We have modelled a web interfaced robotic system as 
shown in fig. 1. All the control loops that exist in the system 
are assumed to fit into the following scheme: user’s 
actuation (on a given actuation widget2) generates some 
service requests that are transmitted through the network to 
the suitable modules of the software architecture of the 
robot; once the requests are completed, their return data plus 
the readings from the sensors associated to the sensory 
widgets (obtained from other services of the robot), are sent 
back to the display. For portability reasons, the client-side 
application is assumed to be a Java Applet [20], while the 
robot software architecture is assumed to be implemented 
upon the CORBA middleware [21]. 

In the described model there are several time-consuming 
classes of components (please refer to fig. 1): 

1) Processing Components. These components 
(Translation, CORBA processing, Service Processing, and 
Display Processing) involve the processing of some data to 
yield another. The time consumption of these operations 
depends basically on: the size of the data, the computational 
complexity of the processing algorithms, and the CPU 
scheduling provided by the operating system (multitasking 
assumed). The first two sources of time complexity are well 
approximated by polynomial functions, since these 
algorithms are O(nk), with k typically being 1 or 2. This has 
been modelled by uniform probability distributions in order 
to cope with slight variations due to conditional statements 
in the code or imprecisions in the measurement of time. In 
non-real-time environments, sporadic high time 
consumptions can appear due to the third source. We have 
modelled this by adding exponential probability distributions 
when needed.  

2) User Reaction Components. Human reaction-time 
depends on several factors, as varied as: amount of 
information interpretable by the user, spatial arrangement of 

                                                           
2 A widget is a component in a graphical interface (buttons, panels, etc). 

that information [22], rate of change in sensory data, etc. 
The majority of models for human reaction time in the 
literature are based con ex-Gaussians [23], which are the 
convolution of a Gaussian and an exponential distribution. 
For the sake of simplicity, in our work we model human 
reaction-time as a Gaussian probability distribution. 
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Fig. 1. Proposed general scheme for a control loop in a web interfaced 

robotic system. All the time-consumption steps are indicated, assuming a 
CORBA middleware for the robot software architecture. 

 

3) Network Transmission Components. This class 
includes components of the physical network, queuing 
buffers, and the OSI protocol processes. In the literature it 
has been stated that the arrival time of ethernet 
communications tends to a Poisson process as long as the 
network is fast enough, thus the interarrival time can be 
modelled as an exponential distribution [24]. 
Experimentally, it has been shown that in cases where the 
network is slower it is more appropriate a beta distribution 
[25].  

III. FLOW REGULATION OF SENSORY INFORMATION  
The regulation action considered in this paper is based 

on reducing/increasing the amount of sensory information 
transmitted to the web interface (for example, the number of 
pixels of a camera image or the number of samples of a laser 
range scanner). It is intuitive that degrading the amount of 
sensory information provided to the user should degrade the 
overall performance of the system gracefully (that is, the 
capability of controlling the system by the user should be 
maintained), although the control should be better when 
more data is available. Fig. 2 illustrates this intuition through 
the results of some experiences we have conducted. In such 
experiments, people control remotely the movement of a 
simulated mobile robot for following a circular corridor 
along its middle line. The only sensor available is a laser 
scanner that provides range measurements. The shape of the 
corridor has been chosen to force the user to actuate 
continuously. The figures show how the average deviation 
from the desired path increases when less sensory 
information is available, and then the user reaction time is 
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smaller since the user must react faster to unexpected 
situations (when more sensory data is available, the user 
spends more time planning better actions). In summary, our 
experiments show that an acceptable control is still possible 
when sensory data is reduced.  
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Fig. 2. Up) Simulated environment where the user drives remotely a 
mobile robot receiving only data from a laser scanner. Bottom-Left) 
Average deviation from the desired path under different densities of sensory 
information. Bottom-Right) Time between user commands 
(speed/orientation changes) for the same densities. The web interface used 
is the same as in experiments in section IV. The simulated robot runs in a 
remote computer. Communications are via ethernet twisted-pair. 

Next we describe a hysteresis controller that allows the 
interfaced system to regulate automatically the amount of 
sensory information that is shown to the user (and therefore, 
the information flows through the system) in order to adapt 
to varying and unpredictable time conditions. Also, we 
present a method for constructing near-optimal regulation 
algorithms with respect to a given goodness measure, and 
this is used to justify the suitability of the former.  

In both the hysteresis controller and the near-optimal 
algorithm, we assume that the client-side interface of the 
system displays a finite set of sensory widgets associated to 
the current control loop, let say W={wi}. Each widget wi has 
a finite set of possible density states d(wi)={dij}, with each 
density state dij indicating a given amount of data a(dij) that 
the widget shows to the user when it is in that state.  

A. Hysteresis Controller Algorithm  
A pseudocode for the hysteresis controller appears in fig. 

3 (experimental results of its implementation are given in 
section IV). The algorithm reduces gradually the amount of 
information associated to the sensory widgets until: a) the 
probability of the loop to satisfy its time requirements falls 
under a given “critical threshold” (then medium or coarse 
adaptations must be done), or b) that probability rises over a 
given “safety threshold” (then the loop is satisfying its time 
requirements comfortably). When b) occurs, the sensory 
widgets that did not show all the information that they could, 
recover their densities gradually. When the probability lies 
between both thresholds, the sensory widgets reduce their 

densities in an orderly fashion. The critical and safety 
thresholds and the loop time requirement must be specified 
by the user or the programmer.  
O <- list of sensory widgets ordered by decreasing density 
O’ <- equal to O, but in increasing order of density 
I <- 1  
Do 
  P <- probability of satisfying time requirement of the loop  
  If (P < critical threshold) 
    Do Medium and Coarse adaptations. 
  Else if (P < safety threshold) 
    If (widget O(I) density can be decreased) 
     Set current density state of O(I) to its next lower state. 
    Else 
      If (I < number of widgets)  
          I <- I+1 /* next widget */ 
      Endif 
    Endif 
  Else /* P >= safety threshold */ 
    If (widget O’(I) can increase its density) 
      Set density state of O’(I) to the next higher state. 
    Else 
      If (I < number of widgets) 
          I <- I+1 /* next widget */ 
      Endif 
    Endif 
  Endif 
Enddo 

Fig. 3. Pseudocode of the hysteresis controller that regulates the amount 
of flow information in a control loop of the web interfaced system. 

B. Near-Optimal Algorithm  
We propose now a method for constructing near-optimal 

algorithms for sensory flow regulation automatically. This 
method is too slow to use it at run-time, but our goal is 
rather to calculate, by comparison, the optimality of the 
algorithm presented in the previous section.    

We have chosen reinforcement learning (RL) [19] as the 
framework for the near-optimal algorithm. RL can be used 
for learning the optimal policy (= sequence of actions) to 
perform by an agent in a complex scenario. At any moment 
of the RL process, the agent (the web interfaced system in 
our case) is in a state s (set of widget densities and current 
probability of satisfying the control loop time requirement) 
and decides to execute some action a (changing the density 
of some widget), turning its state into state s’ and getting a 
reinforcement signal or reward r for its decision (which sets 
the optimality measure of its behaviour). These experience 
tuples (s,a,s’,r) are used for finding a policy π that 
maximizes the long-term reward. It is straightforward to 
interpret the policy as an algorithm, as we will do here. 

There are several methods for solving RL problems. We 
have selected Q-learning since it does not need the 
probabilistic model of the agent’s environment. In spite of 
that, Q-learning yields policies that tend to the optimal ones. 
It uses the following value function to resume the learning 
procedure, which can be recursively computed: 

)),(),(max(),(),( asQasQrasQasQ
a

−′′++=
′

γα   (1) 

where α is the learning rate (it must decrease slowly 3), γ is 
the discount factor (which represents the importance of 
future rewards), and Q(s’,a’) refers to the Q-values of the 

                                                           
3 We have chosen α (i)=1/ic , where i is the current iteration index of the 
Q-learning algorithm and c is a constant that we have calculated for α to 
equal 0.05 in the last iteration. This function is demonstrated to produce a 
good convergence rate [27]. 
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next state s’ for any action a’. The final Q is the best policy 
under the agent experience, and therefore, the best known 
algorithm to follow when the agent is confronted with the 
same scenario again. The Q function is a matrix of (number 
of states x number of actions). For a given state, the action 
for which Q is maximal in that state is the best decision 
according to the policy. Therefore the obtained Q can be 
used as an algorithm by running the procedure shown in fig. 
4. 
Q <- near-optimal values produced by Q-learning  
Do 
  If (P < critical threshold) 
    Do Medium or Coarse adaptations. 
  Else 
    S <- current state of the system 
    A <- A’ for which Q(S,A’) is maximum 
        (if several maxima, at random) 
    Do A (change one of the widgets densities)         
  Endif 
Enddo 

Fig. 4. Pseudocode that interprets a learned Q as an algorithm for 
regulation of information flow.  

C. Optimality of the Intuitive Algorithm  
Now we compare the hysteresys controller to the Q-

learning algorithm. The goal is to provide a scientific 
justification for the optimality of the former. 

We have based the experiments on the real interface for 
controlling an assistant robot that is described in section IV. 
The network is a mixture of twisted-pair 100 Mbps segments 
and a wireless 802.11g segment. However, for carrying out a 
sufficiently large number of learning steps and rich 
comparisons (which would not be possible using the real 
application), we have employed the probabilistic models 
described in section II for simulating the whole interfaced 
system. We have gathered time measurements of the 
different components of the real interfaced system and 
entered them into those models (see table 1), thus obtaining 
very realistic simulations.  

TABLE 1 
PROBABILISTIC MODELING OF SOME OF THE COMPONENTS OF A WEB-

INTERFACED ROBOTIC SYSTEM, CONSIDERING PROCESSING OF 1 BYTE OF 
DATA 

Component Model Parameters 
User reaction Gaussian µ=100, σ=50 
Network transmission Exponential λ=268 
ORB processing Uniform+Exp. a=-0.7, b=0.7, λ=0.5 

 

The interfaced system has a control loop which allows 
the teleoperator to drive the robot by sending direct motion 
commands (speed/direction). The loop has one sensory 
widget that displays the readings of the robot laser, which 
has a range of 180º, and a low-resolution image captured by 
a camera mounted on the top of the robot.  

We have set the laser widget densities to four possible 
values: widget off, and displaying 90, 180, and 360 range 
points. We have used three densities for the camera widget: 
camera OFF, camera in black & white, and camera in 
colour. Fig. 5 shows the cumulative probability distribution 
function of time consumption in the control loop with the 
camera widget set permanently to each of its densities. We 

have included a time overload in the system (for simulating 
unpredictable delays) modelled by a Gaussian probability 
distribution function with µ=600 ms and σ=200 ms. Notice 
that the effect of the camera is evident. In fact, changes in 
the laser widget density are not shown in the figure since 
they are very close to the camera widget main curves. 

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Requirement (ms)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

 

 

Color High-Quality
Color Low-Quality
B&W

 
Fig. 5. Cumulative probability distribution functions of the time 
consumption of the control loop for different camera densities. The 
horizontal axis indicates a time requirement for the control loop, while the 
vertical axis gives, for that requirement, the probability of closing the loop 
in an equal or shorter time.  

For this setting, we have discretized the state space of 
the system into 48 states that are the combination of 4 
probability ranges of satisfying the control loop time 
requirement, of 4 laser densities, and of 3 camera densities. 
We have established 7 possible actions (to set one of the 
widgets to one of its densities). If we define p(s) as the 
integer discretization of the probability of closing the loop 
under the time requirement (1-> 0-50%, 2-> 51-75%, 3-> 
76-85%, 4-> 86-100%), d(s) as the density of the laser 
widget (1, 2, 3, or 4), and c(s) as the camera widget density 
(1, 2, or 3), the reward obtained from a given selection of 
widget densities and probability to satisfy loop requirements 
can be calculated as4: 
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For learning the Q matrix we have executed repeatedly 
equation (1) with α(1)=1 and γ=0.9, during 10000 iterations 
with a desired time requirement for the loop of 1450 ms. 
Table 2 shows the portion of the learned Q that contains the 
most visited states (those that have been sufficiently 
explored during learning).  

We have then compared both algorithms (the Q-based 
one vs. the hysteresis controller), measuring their respective 
cumulative rewards over time (= their optimalities). For that, 
we have launched both for 100 iterations, each one being the 
closing of the control loop for 40 times (which supposes 
about 10 to 40 seconds of real time execution; summing a 
total comparison time of about 1000-4000 seconds). Fig. 6-
Left shows the total reward collected. The average 

                                                           
4 Generally, in Q-learning the reward is a function of both the current state 
and the selected action, which is useful in the case that carrying out actions 
has some cost. In this paper, the reward only depends on the current state 
since we do not distinguish among the costs of carrying out different 
actions (we consider them all to be null).   
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optimalities are 301.7 (Q) and 280.6 (hyst.), with standard 
deviations of 17.7 and 21.2 respectively, which makes them 
indistinguishable, showing that our intuitive approach is 
close to the optimal. Fig. 6-Right shows a similar result for 
the same web-interfaced system but with only one widget, 
the laser, and a time requirement of 250 ms. We have 
obtained an average reward for Q of 12.2 with a standard 
deviation of 6.4, and of 5.5 with a standard deviation of 4.3 
for the hysteresis controller. 

TABLE 2 
 LEARNED Q (ONLY SUFFICIENTLY  EXPLORED STATES) 

State Best Action 
according to Q 

6 (prob<51%, laser 90, cam. Color) Camera B&W 
9 (prob<51%, laser 180, cam. Color) Camera B&W 
12 (prob<51%, laser 360, cam. Color) Camera OFF 
15 (prob 51-75%, laser OFF, cam. Color) Laser 90 
18 (prob 51-75%, laser 90, cam. Color) Camera B&W 
21 (prob 51-75%, laser 180, cam. Color) Camera OFF 
35 (prob 76-85%, laser 360,  cam. Color) Laser 360 
37 (prob>85%, laser OFF, cam. OFF) Laser 90 
38 (prob>85%, laser OFF, cam. B&W) Laser 360 
40 (prob>85%, laser 90, cam. OFF) Laser 180 
41 (prob>85%, laser 90, cam. B&W) Laser 360 
43 (prob>85%, laser 180, cam. OFF) Camera B&W 
44 (prob>85%, laser 180, cam. B&W) Laser 90 
46 (prob>85%, laser 360, cam. OFF) Camera B&W 
47 (prob>85%, laser 360, cam. B&W) Laser 360 
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Fig. 6. Total rewards of both the Q-learned algorithm (solid line) and 

the hysteresis controller (dotted line) for left) a web-interfaced system 
composed of two sensory widgets, and right) the same system with only one 
sensory widget.  

IV. REAL IMPLEMENTATION  
Once we have shown the near-optimality of our 

controller for regulating the information flow of the control 
loops, we have implemented it in the real interface of fig. 7 
and evaluated it under the control loop with one sensory 
widget (the laser). The real robot is a service robot called 
SANCHO intended for pick-and-delivery, museum guiding, 
or fair hosting. 

The experiment has consisted in driving the robot 
remotely from a given location to another through simple 
speed/direction commands. The user reaction time has not 
been considered in this experiment (only the time from the 
user action to the displaying of sensory data), since people 
do not always do control (for example, they do not act when 
the robot is already in the right direction and speed). A user 
waiting for the next control action would increase the loop 
time, which would be considered by the system as a problem 
for satisfying the requirement, which is not necessary. 

   

 

Fig. 7. On the left, the SANCHO robot we have used for implementing a 
real web-controlled system. On the right, the client-side web interface. The 
robot is based on a Pioneer 3DX mobile platform enhanced with an on-
board computer, wi-fi connectivity, and several sensors (laser, sonar, 
camera, infrared). 

We have measured the final cumulative probability 
distribution functions under two situations: i) when the 
hysteresis controller is activated, and ii) without using 
regulation flow algorithms (that is, setting the laser density 
to a fixed number of sample points), obtaining the results 
shown in fig. 8-Up. This figure is the result of 75 passes of 
the control loop. Also, we have logged the densities of the 
laser widget that the controller has set during the experiment 
(fig. 8-Bottom). As shown in the figure, the controller has a 
good probability of satisfying the time requirement for the 
control loop (75 ms) similar to that of setting the density of 
the widget to a small number points. However, this good 
time satisfaction has been achieved with laser densities that 
are, most of the time, very high (360 points). Notice that the 
laser widget is disabled during short periods of time when 
the time conditions were hard. If these periods exceed some 
predetermined duration, the other regulation actions (coarse 
and medium) take place as explained in [17]. 
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In [26] you can find a multimedia file that shows the overall 
regulated-flow teleoperation of the robot and a coarse 
adaptation action due to critical threshold underpassing, in 
which a second control loop consisting in navigating 
reactively to a manually-set goal location is activated. 

V. CONCLUSIONS AND FUTURE WORK  
In this paper we propose a new way of approaching the 

typical unpredictability and time variation problems of web 
networked robots that is of greater generality than improving 
predictability and time efficiency of network transmissions 
(the most common line of research in this field in literature). 

In particular, we have focused on designing an algorithm 
that automatically regulates the optimal amount of 
information that flows through the system. The algorithm is 
a simple hysteresis controller, and we have developed a 
framework for generating automatically near-optimal 
algorithms for the same regulation task, through Q-learning, 
in order to evaluate its optimality. We have developed 
several experiments based on a real interfaced robot that 
show that our algorithm is as optimal as the near-optimal 
one generated by Q-learning. Also, a real implementation 
showing the suitability of our approach has been described. 

In the future, we plan to implement more web 
applications for assistant and service robots, in order to test 
our approach under different conditions. Also, the use of the 
Q-learned algorithm in real-time will be explored. 
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