
Automatic Regulation of the Information Flow in
the Control Loops of a Web Teleoperated Robot*

J.-A. Fernández-Madrigal, C. Galindo, E. Cruz-Martín, A. Cruz-Martín, and J. González

System Engineering and Automation Department
University of Málaga, (Spain)

e-mails: {jafma,cipriano,anacm,jgonzalez}@ctima.uma.es; elenacm@isa.uma.es

Abstract— The use of the World Wide Web for robot
teleoperation is growing in the last years due mainly to the
pervasiveness of internet and web browsers, although web
interfaces usually use ethernet networks that exhibit time
unpredictability. Most recent research in the area has been
focused on improving time predictability of the network under
delays, jitter, and no guaranteed bandwidth. However, we
believe that: i) not only the network, but every component in
the interfaced system exhibit time unpredictability; and ii)
improving time predictability is not the only solution: adapting
the interfaced system to unpredictable conditions is also a
possibility. In this paper we consider a web interfaced robot as
a set of control loops and describe and implement an hysteresis
controller for regulating the flow of information through the
loops as a method to satisfy the system time requirements
under some unpredictable and varying conditions. For
demonstrating the goodness of our algorithm, we a) compare it
with a near-optimal one automatically generated through
reinforcement learning, and b) show an implementation of the
algorithm for the direct teleoperation of a service mobile robot,
obtaining a better behavior than the same system without flow
regulation.

Keywords- Web Interfaces, Mobile Robots, Teleoperation.

I. INTRODUCTION
Networked robots that are teleoperated through the World

Wide Web are increasing their popularity, mainly due to the
pervasiveness of internet and web browsers. Their
applications include telecare robotics ([1],[2]), museum
assistants ([3],[4]), education ([5],[6]), etc.

Several topics have been addressed recently in the
research literature on web teleoperation of robots: network
performance ([7],[8]), virtual reality for replacing real
information when it is not available at appropriate time rates
([9],[10]), internet multimedia systems [11], traditional
teleoperation systems ([12],[13]), communication protocols
([14], [15]), or soft computing controllers [16].

In particular, we believe that trying to improve the
predictability of the network lacks the generality needed for
solving the problem. The whole interfaced system (the client-
side interface, the robot, and the network) should be taken
under consideration as a whole, since undesirable time effects
may appear in several parts of it. For example, the time
consumption of the web interface may be of a magnitude
comparable to network delays, or even much greater if the
network uses high-speed technology. Thus, the design of

systems that adapt to unpredictable or varying time
conditions seems a reasonable approach.

In a previous work [17] we have presented a probabilistic
model of the control loops of a web interfaced robot that
allows the user interface to select automatically, among a set
of control loops with different time requirements, the one that
is most likely to satisfy the timing constraints. We have
called this “coarse adaptation” of the web interface, and it has
demonstrated its suitability when any component in the loops
changes drastically its performance. In the same work we
have also considered the possibility of deactivating certain
graphical components to improve the time consumption of
the system before changing to a different control loop. That
has been called “medium adaptation”. The drawback of both
actions is that they lead to abrupt changes in the modality of
control of the user over the robot.

In this paper we focus in a third type of regulation: “fine
adaptation”, which allows us to deal with changes in time
performance that are not important enough to deactivate parts
of the interface or to deactivate the loop. Fine adaptation is
aimed to affect as little as possible to the user control of the
system and thus it should be used more frequently than
coarse or medium adaptation; its goal is to automatically
regulate the amount of sensory information gathered by the
robot and flowing through the system to be displayed on the
web interface1. We do this through a simple hysteresis
controller [18] that reduces that information if the time
requirement for the current loop is not likely to be met, and
increases it when the probability of satisfying that
requirement rises again. The whole probabilistic approach
(coarse + medium + fine) is aimed to build web interfaces for
robot teleoperation more adaptable than conventional ones,
constituting a framework that is also compatible with any
network-improving approach.

The suitability of the hysteresis controller that we present
in this paper has been stated through two methods. We have
firstly compared it to an automatically generated algorithm
that is supposed to yield the best results with respect to a
mathematically defined goodness measure. We have included
in that goodness measure both the probability of satisfying
the time requirements of the control loop and the density of
sensory information shown to the user. The framewo

1 Sensory data is by far the most bandwidth demanding among the ones that
flow through a control loop; usually, actuation signals are only constituted
of a few bytes.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrA12.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3496

rk for constructing the near-optimal algorithm has been
reinforcement learning, and in particular Q-learning [19],
since this methodology yields policies (=algorithms) that
tend to the optimal ones. We have found that the Q-based
algorithm performs similarly to our controller, thus
providing a satisfactory justification for the use of the latter.
Secondly, we have implemented our algorithm in a real web-
interfaced robot and have found that the behavior of the
system is better when the automatic flow regulation is
activated.

The paper is organized as follows: section II describes a
general web interfaced robotic system and the probabilistic
models used for its time consuming parts. Section III
explains our algorithm information flow regulation and how
it has been compared to a near-optimal algorithm generated
through Q-learning. Section IV shows the results of
evaluating the proposed controller in a real web-interfaced
robot. The paper ends with some conclusions and future
work.

II. CONTROL LOOP MODELING IN A WEB-INTERFACED
ROBOTIC SYSTEM

We have modelled a web interfaced robotic system as
shown in fig. 1. All the control loops that exist in the system
are assumed to fit into the following scheme: user’s
actuation (on a given actuation widget2) generates some
service requests that are transmitted through the network to
the suitable modules of the software architecture of the
robot; once the requests are completed, their return data plus
the readings from the sensors associated to the sensory
widgets (obtained from other services of the robot), are sent
back to the display. For portability reasons, the client-side
application is assumed to be a Java Applet [20], while the
robot software architecture is assumed to be implemented
upon the CORBA middleware [21].

In the described model there are several time-consuming
classes of components (please refer to fig. 1):

1) Processing Components. These components
(Translation, CORBA processing, Service Processing, and
Display Processing) involve the processing of some data to
yield another. The time consumption of these operations
depends basically on: the size of the data, the computational
complexity of the processing algorithms, and the CPU
scheduling provided by the operating system (multitasking
assumed). The first two sources of time complexity are well
approximated by polynomial functions, since these
algorithms are O(nk), with k typically being 1 or 2. This has
been modelled by uniform probability distributions in order
to cope with slight variations due to conditional statements
in the code or imprecisions in the measurement of time. In
non-real-time environments, sporadic high time
consumptions can appear due to the third source. We have
modelled this by adding exponential probability distributions
when needed.

2) User Reaction Components. Human reaction-time
depends on several factors, as varied as: amount of
information interpretable by the user, spatial arrangement of

2 A widget is a component in a graphical interface (buttons, panels, etc).

that information [22], rate of change in sensory data, etc.
The majority of models for human reaction time in the
literature are based con ex-Gaussians [23], which are the
convolution of a Gaussian and an exponential distribution.
For the sake of simplicity, in our work we model human
reaction-time as a Gaussian probability distribution.

SERVER SIDE

ORB

CLIENT SIDE

NETWORK

CLIENT SIDE

Service

Display Process

TranslationUser Reaction

Transmission

Transmission

Receive User’s
Action

Translate to TCP
service request

Flow through
OSI’s TCP/IP

Transmission
through Ethernet

Flow through
OSI’s TCP/IP

Translate to
CORBA service

request

ORB Service
Request

Management

Service
Execution

ORB Service
Response

Management

Translate to
TCP service

response
Flow through
OSI’s TCP/IP

Transmission
through Ethernet

Flow through
OSI’s TCP/IPTranslate to

Displayable DataDisplay Data

Fig. 1. Proposed general scheme for a control loop in a web interfaced

robotic system. All the time-consumption steps are indicated, assuming a
CORBA middleware for the robot software architecture.

3) Network Transmission Components. This class
includes components of the physical network, queuing
buffers, and the OSI protocol processes. In the literature it
has been stated that the arrival time of ethernet
communications tends to a Poisson process as long as the
network is fast enough, thus the interarrival time can be
modelled as an exponential distribution [24].
Experimentally, it has been shown that in cases where the
network is slower it is more appropriate a beta distribution
[25].

III. FLOW REGULATION OF SENSORY INFORMATION
The regulation action considered in this paper is based

on reducing/increasing the amount of sensory information
transmitted to the web interface (for example, the number of
pixels of a camera image or the number of samples of a laser
range scanner). It is intuitive that degrading the amount of
sensory information provided to the user should degrade the
overall performance of the system gracefully (that is, the
capability of controlling the system by the user should be
maintained), although the control should be better when
more data is available. Fig. 2 illustrates this intuition through
the results of some experiences we have conducted. In such
experiments, people control remotely the movement of a
simulated mobile robot for following a circular corridor
along its middle line. The only sensor available is a laser
scanner that provides range measurements. The shape of the
corridor has been chosen to force the user to actuate
continuously. The figures show how the average deviation
from the desired path increases when less sensory
information is available, and then the user reaction time is

FrA12.2

3497

smaller since the user must react faster to unexpected
situations (when more sensory data is available, the user
spends more time planning better actions). In summary, our
experiments show that an acceptable control is still possible
when sensory data is reduced.

-5 0 5 10 15 20 25 30
0

5

10

15
Environment for User Reaction Experiments

Distance (m.)

D
is

ta
nc

e
(m

.)

Path to follow
Wall
Wall
Followed path

360 180 45 30 200

0.2

0.4

0.6

0.8

1 Deviation from the path (m)

#Laser Points 360 180 45 30 200

1

2

3

4

5Time interval between user commands

#Laser Points

Ti
m

e
(s

)

Fig. 2. Up) Simulated environment where the user drives remotely a
mobile robot receiving only data from a laser scanner. Bottom-Left)
Average deviation from the desired path under different densities of sensory
information. Bottom-Right) Time between user commands
(speed/orientation changes) for the same densities. The web interface used
is the same as in experiments in section IV. The simulated robot runs in a
remote computer. Communications are via ethernet twisted-pair.

Next we describe a hysteresis controller that allows the
interfaced system to regulate automatically the amount of
sensory information that is shown to the user (and therefore,
the information flows through the system) in order to adapt
to varying and unpredictable time conditions. Also, we
present a method for constructing near-optimal regulation
algorithms with respect to a given goodness measure, and
this is used to justify the suitability of the former.

In both the hysteresis controller and the near-optimal
algorithm, we assume that the client-side interface of the
system displays a finite set of sensory widgets associated to
the current control loop, let say W={wi}. Each widget wi has
a finite set of possible density states d(wi)={dij}, with each
density state dij indicating a given amount of data a(dij) that
the widget shows to the user when it is in that state.

A. Hysteresis Controller Algorithm
A pseudocode for the hysteresis controller appears in fig.

3 (experimental results of its implementation are given in
section IV). The algorithm reduces gradually the amount of
information associated to the sensory widgets until: a) the
probability of the loop to satisfy its time requirements falls
under a given “critical threshold” (then medium or coarse
adaptations must be done), or b) that probability rises over a
given “safety threshold” (then the loop is satisfying its time
requirements comfortably). When b) occurs, the sensory
widgets that did not show all the information that they could,
recover their densities gradually. When the probability lies
between both thresholds, the sensory widgets reduce their

densities in an orderly fashion. The critical and safety
thresholds and the loop time requirement must be specified
by the user or the programmer.
O <- list of sensory widgets ordered by decreasing density
O’ <- equal to O, but in increasing order of density
I <- 1
Do
 P <- probability of satisfying time requirement of the loop
 If (P < critical threshold)
 Do Medium and Coarse adaptations.
 Else if (P < safety threshold)
 If (widget O(I) density can be decreased)
 Set current density state of O(I) to its next lower state.
 Else
 If (I < number of widgets)
 I <- I+1 /* next widget */
 Endif
 Endif
 Else /* P >= safety threshold */
 If (widget O’(I) can increase its density)
 Set density state of O’(I) to the next higher state.
 Else
 If (I < number of widgets)
 I <- I+1 /* next widget */
 Endif
 Endif
 Endif
Enddo

Fig. 3. Pseudocode of the hysteresis controller that regulates the amount
of flow information in a control loop of the web interfaced system.

B. Near-Optimal Algorithm
We propose now a method for constructing near-optimal

algorithms for sensory flow regulation automatically. This
method is too slow to use it at run-time, but our goal is
rather to calculate, by comparison, the optimality of the
algorithm presented in the previous section.

We have chosen reinforcement learning (RL) [19] as the
framework for the near-optimal algorithm. RL can be used
for learning the optimal policy (= sequence of actions) to
perform by an agent in a complex scenario. At any moment
of the RL process, the agent (the web interfaced system in
our case) is in a state s (set of widget densities and current
probability of satisfying the control loop time requirement)
and decides to execute some action a (changing the density
of some widget), turning its state into state s’ and getting a
reinforcement signal or reward r for its decision (which sets
the optimality measure of its behaviour). These experience
tuples (s,a,s’,r) are used for finding a policy π that
maximizes the long-term reward. It is straightforward to
interpret the policy as an algorithm, as we will do here.

There are several methods for solving RL problems. We
have selected Q-learning since it does not need the
probabilistic model of the agent’s environment. In spite of
that, Q-learning yields policies that tend to the optimal ones.
It uses the following value function to resume the learning
procedure, which can be recursively computed:

)),(),(max(),(),(asQasQrasQasQ
a

−′′++=
′

γα (1)

where α is the learning rate (it must decrease slowly 3), γ is
the discount factor (which represents the importance of
future rewards), and Q(s’,a’) refers to the Q-values of the

3 We have chosen α (i)=1/ic , where i is the current iteration index of the
Q-learning algorithm and c is a constant that we have calculated for α to
equal 0.05 in the last iteration. This function is demonstrated to produce a
good convergence rate [27].

FrA12.2

3498

next state s’ for any action a’. The final Q is the best policy
under the agent experience, and therefore, the best known
algorithm to follow when the agent is confronted with the
same scenario again. The Q function is a matrix of (number
of states x number of actions). For a given state, the action
for which Q is maximal in that state is the best decision
according to the policy. Therefore the obtained Q can be
used as an algorithm by running the procedure shown in fig.
4.
Q <- near-optimal values produced by Q-learning
Do
 If (P < critical threshold)
 Do Medium or Coarse adaptations.
 Else
 S <- current state of the system
 A <- A’ for which Q(S,A’) is maximum
 (if several maxima, at random)
 Do A (change one of the widgets densities)
 Endif
Enddo

Fig. 4. Pseudocode that interprets a learned Q as an algorithm for
regulation of information flow.

C. Optimality of the Intuitive Algorithm
Now we compare the hysteresys controller to the Q-

learning algorithm. The goal is to provide a scientific
justification for the optimality of the former.

We have based the experiments on the real interface for
controlling an assistant robot that is described in section IV.
The network is a mixture of twisted-pair 100 Mbps segments
and a wireless 802.11g segment. However, for carrying out a
sufficiently large number of learning steps and rich
comparisons (which would not be possible using the real
application), we have employed the probabilistic models
described in section II for simulating the whole interfaced
system. We have gathered time measurements of the
different components of the real interfaced system and
entered them into those models (see table 1), thus obtaining
very realistic simulations.

TABLE 1
PROBABILISTIC MODELING OF SOME OF THE COMPONENTS OF A WEB-

INTERFACED ROBOTIC SYSTEM, CONSIDERING PROCESSING OF 1 BYTE OF
DATA

Component Model Parameters
User reaction Gaussian µ=100, σ=50
Network transmission Exponential λ=268
ORB processing Uniform+Exp. a=-0.7, b=0.7, λ=0.5

The interfaced system has a control loop which allows
the teleoperator to drive the robot by sending direct motion
commands (speed/direction). The loop has one sensory
widget that displays the readings of the robot laser, which
has a range of 180º, and a low-resolution image captured by
a camera mounted on the top of the robot.

We have set the laser widget densities to four possible
values: widget off, and displaying 90, 180, and 360 range
points. We have used three densities for the camera widget:
camera OFF, camera in black & white, and camera in
colour. Fig. 5 shows the cumulative probability distribution
function of time consumption in the control loop with the
camera widget set permanently to each of its densities. We

have included a time overload in the system (for simulating
unpredictable delays) modelled by a Gaussian probability
distribution function with µ=600 ms and σ=200 ms. Notice
that the effect of the camera is evident. In fact, changes in
the laser widget density are not shown in the figure since
they are very close to the camera widget main curves.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Requirement (ms)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Color High-Quality
Color Low-Quality
B&W

Fig. 5. Cumulative probability distribution functions of the time
consumption of the control loop for different camera densities. The
horizontal axis indicates a time requirement for the control loop, while the
vertical axis gives, for that requirement, the probability of closing the loop
in an equal or shorter time.

For this setting, we have discretized the state space of
the system into 48 states that are the combination of 4
probability ranges of satisfying the control loop time
requirement, of 4 laser densities, and of 3 camera densities.
We have established 7 possible actions (to set one of the
widgets to one of its densities). If we define p(s) as the
integer discretization of the probability of closing the loop
under the time requirement (1-> 0-50%, 2-> 51-75%, 3->
76-85%, 4-> 86-100%), d(s) as the density of the laser
widget (1, 2, 3, or 4), and c(s) as the camera widget density
(1, 2, or 3), the reward obtained from a given selection of
widget densities and probability to satisfy loop requirements
can be calculated as4:

()

 −

+
−

+
−

=∧=∨=
= otherwisescsdsp

sdscsp
sr

2
1)(3.0

3
1)(1.0

3
1)(6.010

1)(1)(1)(if 0
)(

For learning the Q matrix we have executed repeatedly
equation (1) with α(1)=1 and γ=0.9, during 10000 iterations
with a desired time requirement for the loop of 1450 ms.
Table 2 shows the portion of the learned Q that contains the
most visited states (those that have been sufficiently
explored during learning).

We have then compared both algorithms (the Q-based
one vs. the hysteresis controller), measuring their respective
cumulative rewards over time (= their optimalities). For that,
we have launched both for 100 iterations, each one being the
closing of the control loop for 40 times (which supposes
about 10 to 40 seconds of real time execution; summing a
total comparison time of about 1000-4000 seconds). Fig. 6-
Left shows the total reward collected. The average

4 Generally, in Q-learning the reward is a function of both the current state
and the selected action, which is useful in the case that carrying out actions
has some cost. In this paper, the reward only depends on the current state
since we do not distinguish among the costs of carrying out different
actions (we consider them all to be null).

FrA12.2

3499

optimalities are 301.7 (Q) and 280.6 (hyst.), with standard
deviations of 17.7 and 21.2 respectively, which makes them
indistinguishable, showing that our intuitive approach is
close to the optimal. Fig. 6-Right shows a similar result for
the same web-interfaced system but with only one widget,
the laser, and a time requirement of 250 ms. We have
obtained an average reward for Q of 12.2 with a standard
deviation of 6.4, and of 5.5 with a standard deviation of 4.3
for the hysteresis controller.

TABLE 2
 LEARNED Q (ONLY SUFFICIENTLY EXPLORED STATES)

State Best Action
according to Q

6 (prob<51%, laser 90, cam. Color) Camera B&W
9 (prob<51%, laser 180, cam. Color) Camera B&W
12 (prob<51%, laser 360, cam. Color) Camera OFF
15 (prob 51-75%, laser OFF, cam. Color) Laser 90
18 (prob 51-75%, laser 90, cam. Color) Camera B&W
21 (prob 51-75%, laser 180, cam. Color) Camera OFF
35 (prob 76-85%, laser 360, cam. Color) Laser 360
37 (prob>85%, laser OFF, cam. OFF) Laser 90
38 (prob>85%, laser OFF, cam. B&W) Laser 360
40 (prob>85%, laser 90, cam. OFF) Laser 180
41 (prob>85%, laser 90, cam. B&W) Laser 360
43 (prob>85%, laser 180, cam. OFF) Camera B&W
44 (prob>85%, laser 180, cam. B&W) Laser 90
46 (prob>85%, laser 360, cam. OFF) Camera B&W
47 (prob>85%, laser 360, cam. B&W) Laser 360

0 20 40 60 80 100
200

220

240

260

280

300

320

340

Total Reward (Q)
Total Reward (I)

To
ta

l R
ew

ar
d

(g
oo

dn
es

s)

Iteration
20 40 60 80 100

0

5

10

15

20

25

30
Total Reward (Q)
Total Reward (I)

Iteration

To
ta

l R
ew

ar
d

(g
oo

dn
es

s)

Fig. 6. Total rewards of both the Q-learned algorithm (solid line) and

the hysteresis controller (dotted line) for left) a web-interfaced system
composed of two sensory widgets, and right) the same system with only one
sensory widget.

IV. REAL IMPLEMENTATION
Once we have shown the near-optimality of our

controller for regulating the information flow of the control
loops, we have implemented it in the real interface of fig. 7
and evaluated it under the control loop with one sensory
widget (the laser). The real robot is a service robot called
SANCHO intended for pick-and-delivery, museum guiding,
or fair hosting.

The experiment has consisted in driving the robot
remotely from a given location to another through simple
speed/direction commands. The user reaction time has not
been considered in this experiment (only the time from the
user action to the displaying of sensory data), since people
do not always do control (for example, they do not act when
the robot is already in the right direction and speed). A user
waiting for the next control action would increase the loop
time, which would be considered by the system as a problem
for satisfying the requirement, which is not necessary.

Fig. 7. On the left, the SANCHO robot we have used for implementing a
real web-controlled system. On the right, the client-side web interface. The
robot is based on a Pioneer 3DX mobile platform enhanced with an on-
board computer, wi-fi connectivity, and several sensors (laser, sonar,
camera, infrared).

We have measured the final cumulative probability
distribution functions under two situations: i) when the
hysteresis controller is activated, and ii) without using
regulation flow algorithms (that is, setting the laser density
to a fixed number of sample points), obtaining the results
shown in fig. 8-Up. This figure is the result of 75 passes of
the control loop. Also, we have logged the densities of the
laser widget that the controller has set during the experiment
(fig. 8-Bottom). As shown in the figure, the controller has a
good probability of satisfying the time requirement for the
control loop (75 ms) similar to that of setting the density of
the widget to a small number points. However, this good
time satisfaction has been achieved with laser densities that
are, most of the time, very high (360 points). Notice that the
laser widget is disabled during short periods of time when
the time conditions were hard. If these periods exceed some
predetermined duration, the other regulation actions (coarse
and medium) take place as explained in [17].

50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

360 laser density
180 laser density
90 laser density
270 Laser density
Intuitive Variable Density

0 10 20 30 40 50 60 70 80

1

2

3

4

Laser Densities
(4- 360, 3- 180, 2- 90, 1- OFF)

Iteration
Fig. 8. Up) Cumulative probability distributions for the real experiments
under different sensory information flows. Bottom) Densities of the sensory
widget during the use of the hysteresis controller. Each density value is
logged after one pass of the control loop.

FrA12.2

3500

In [26] you can find a multimedia file that shows the overall
regulated-flow teleoperation of the robot and a coarse
adaptation action due to critical threshold underpassing, in
which a second control loop consisting in navigating
reactively to a manually-set goal location is activated.

V. CONCLUSIONS AND FUTURE WORK
In this paper we propose a new way of approaching the

typical unpredictability and time variation problems of web
networked robots that is of greater generality than improving
predictability and time efficiency of network transmissions
(the most common line of research in this field in literature).

In particular, we have focused on designing an algorithm
that automatically regulates the optimal amount of
information that flows through the system. The algorithm is
a simple hysteresis controller, and we have developed a
framework for generating automatically near-optimal
algorithms for the same regulation task, through Q-learning,
in order to evaluate its optimality. We have developed
several experiments based on a real interfaced robot that
show that our algorithm is as optimal as the near-optimal
one generated by Q-learning. Also, a real implementation
showing the suitability of our approach has been described.

In the future, we plan to implement more web
applications for assistant and service robots, in order to test
our approach under different conditions. Also, the use of the
Q-learned algorithm in real-time will be explored.

REFERENCES
[1] Jia S., Hada Y., Ye G., and Takase K. Distributed Telecare Robotic

Systems Using CORBA as a Communication Architecture. IEEE Intl.
Conf. on Robotics & Automation, 2002, pp. 1659 – 1664.

[2] Camarinha-Matos L.M., and Afsarmanesh H. Tele-Care and
Collaborative Virtual Communities in Elderly Care. Int. Workshop
on Tele-Care and Collaborative Virtual Communities in Elderly
Care, TELECARE 2004, pp, 1-12. Porto, Portugal, April 2004.

[3] Thrun S., Beetz M., Bennewitz M., Burgard W., Cremers A., Dellaert
F., Fox D., Hahnel D., Rosenberg C., Roy N., Schulte J., and Schulz
D. Probabilistic algorithms and the interactive museum tour-guide
robot Minerva. Journal of Robotics Research, 19(11), pp. 972-999,
2000.

[4] Goldberg S. and Bekey A. Online Robots and the Remote Museum
Experience. In Beyond Webcams: An Introduction to Online Robots.
MIT Press, 2002, pp. 295 - 305.

[5] Lixiang Y., Pui T., Quan Z., and Huosheng H. A Web-based
Telerobotic System for Research and Education at Essex, 2001
IEEWASME International Conference on Advanced Intelligent
Mechatronics, 8-12 July 2001 Como, Italy, pp.284-289.

[6] Safaric R., Sinjur S., Zalik B., and Parkin R.M. Control of Robot
Arm with Virtual Environment Via the Internet. Proc. of the IEEE,
91(3), March 2003 pp. 422 – 429.

[7] Liu P.X., Meng M.Q-H., Gu J., Yang S.X., and Hu C. Control and
Data Transmission for Internet Robotics, IEEE Intl. Conf. on
Robotics & Automation, Taipei, Taiwan., 2003, pp. 1659-1664.

[8] Oboe R. Web-interfaced, force-reflecting teleoperation systems.
IEEE Trans. On Indusltrial Electronics, 48 (6), 2001, p.p. 1257-1265.

[9] Belousov I.R., Chellali R., and Clapworthy G.J. Virtual reality tools
for Internet Robotics.ICRA 2001, May 21-26, Seoul, Korea, p.p.
1878-1883.

[10] Jiacheng T. and Clapworthy G.J. Virtual environments for Internet-
based robots. I. Modeling a dynamic environment. Proc. of the IEEE.
Vol.91, Issue 3, March 2003 pp. 383 - 388.

[11] Wang X. and Schulzrinne H. Comparison of Adaptive Internet
Multimedia Applications. IEICE Transactions on Communications,
Vol. E82-B, No. 6, June 1999.

[12] Andreu D., Fraisse P., Roqueta V. and Zapata R. Internet enhanced
teleoperation: toward a remote supervised delay regulator. 2003
IEEE International Conference on Industrial Technology, Vol. 2, pp.
663-688.

[13] Imer O. C., Yüksel S., and Basar T. Optimal control of LTI systems
over unrealiable communication links. Automatica 42 (2006), 1429-
1439.

[14] Liu X. P., Meng M. Q.-H., andYang S. X. Data Communications for
Internet Robots. Autonomous Robots 15, 213-223, 2003.

[15] Fiorini P. and Oboe R. Internet-Based Telerobotics: Problems and
Approaches. International Conference on Advanced Robotics
(ICAR’97), pp. 765-770, Monterey, CA, USA, July.

[16] Lin W. K. W., Wong A. K. Y., and Dillon T. S. Application of Soft
Computing Techniques to Adaptive User Buffer Overflow Control on
the Internet. IEEE Transactions on Systems, Man and Cybernetics-
Part C: Applications and Reviews, Vol. 36, No. 3, May 2006.

[17] Fernández-Madrigal J.A., Cruz-Martín E., Cruz-Martín A., González
J., and Galindo C. Adaptable Web Interfaces for Networked Robots.
IROS'2005, Edmonton (Canada), 2-6 August 2005.

[18] C.H. Phillips and R.D. Harbor, Feedback Control Systems, Prentice
Hall, 2000.

[19] Kaelbling L.P., Littman M.L., and Moore A.W. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research 4
(1996) 237–277.

[20] Schildt H. JAVA 2:The Complete Reference, McGraw-Hill, 2002.
[21] Henning M. and Vinovski S. Advanced CORBA Programming with

C++, Addison-Wesley, 1999.
[22] Fitts P. M. The information capacity of the human motor system in

controlling the amplitude of movement, Journal of Experimental
Psychology vol. 47, pp. 381-391, 1954.

[23] Zaitsev A. V. and Skorik Y. A. Mathematical Description of
Sensorimotor Reaction Time Distribution Human Physiology, Vol.
28, No. 4, 2002, pp. 494-496.

[24] Cao J., Cleveland W.S., Lin D., and Sun D.X. Internet Traffic Tends
Toward Poisson and Independent as the Load Increases, in
NonLinear Estimation and Classification, Holmes et al. eds.,
Springer, New York, 2002.

[25] Kobayashi H. Modeling And Analysis. An Introduction to System
Performance Evaluation Methodology, Addison-Wesley, 1978.

[26] http://www.isa.uma.es/personal/jafma/experiments.htm
[27] Even-Dar E. and Mansour Y. Learning Rates for Q-learning, Journal

of Machine Learning Research, vol 5, pp. 1-25, 2003.

FrA12.2

3501

