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Abstract— An image-based visual servo control is presented
for an Unmanned aerial vehicle (UAV) capable of stationary or
quasi-stationary flight. The proposed control design addresses
visual servo of ‘eye-in-hand’ type systems. The control of
the position and orientation dynamics are decoupled using a
visual error based on a spherical centroid data, along with
estimation of the gravitational inertial direction. The error
used compensates for the poor conditioning of the Jacobian
matrix seen in earlier work in this area by introducing a non-
homogeneous gain term adapted to the visual sensitivity of
the error measurements. A nonlinear controller is derived for
the full dynamics of the system. Experimental results on an
experimental UAV known as an X4-flyer made by the French
Atomic Energy Commission (CEA) demonstrate the robustness
and performances of the proposed control strategy.

I. INTRODUCTION

Visual servo algorithms have been extensively developed
in the robotics field over the last ten years [10], [21]. Most
visual servo control has been developed for serial-link robotic
manipulators with the camera typically mounted on the end-
effector [13]. Visual servo systems may be divided into
two main classes [17]; position-based visual servo (PBVS)
control or image-based visual servo (IBVS) control. Position
based visual servo control involves reconstruction of the
target pose with respect to the robot and results in a Cartesian
motion planning problem. This approach requires an accurate
3D model of the target and is sensitive to camera calibration
errors. Image-based visual servo control treats the problem as
one of controlling features in the image plan, such that mov-
ing features to a goal configuration implicitly results in the
task being accomplished [10]. Feature errors are mapped to
actuator inputs via the inverse of an image Jacobian matrix.
There are a wide range of features that have been considered
including; points, lines, circles and image moments. IBVS
avoids many of the robustness and calibration problems
associated with PBVS [6]. Most existing IBVS approaches
were developed for serial-link robotic manipulators. For
this kind of robot (or fully-actuated systems) the system
dynamics are dominated using high gain and the visual servo
control is solved directly for the system kinematics [10].
There are very few integrated IBVS control designs for fully
dynamic system models [24], [3] and even fewer that deal
with under-actuated dynamic models. The key problem in
applying the classical visual servo control approach lies in

the highly coupled form of the image Jacobian. Much of the
existing work in visual servo control of aerial robots (and
particularly autonomous helicopters) have used pose based
visual servo methodology [1], [22]. Prior work by the authors
[12] proposed a theoretical IBVS approach for a class of
under actuated-dynamics without considering the practical
implementation of the control algorithm.

In this paper, the practical aspect of an image-based visual
servo control for a UAV, capable of stationary or quasi-
stationary flight, is considered. The model considered is that
of an ‘eye-in-hand’ type configuration, where the camera is
attached to the airframe of the UAV. The approach taken
is based on recent work by the authors [12] for which
the dynamics of the image features have certain passivity-
like properties. A new visual error term is considered that
improves the conditioning of the image Jacobian. The initial
analysis is undertaken for the kinematic response of the
system, the normal visual servo framework, and shows that
the resulting image Jacobian is well conditioned. Following
this, a non-linear control is developed for stabilisation of the
full dynamics of the UAV. Experimental results are obtained
on an experimental X4-flyer UAV system developed within
CEA capable of stationary and quasi-stationary flight. The
closed-loop visual servo control demonstrates the expected
performances and robustness of the proposed control.

The paper is arranged into six sections. Section II presents
the fundamental equations of motion for an X4-flyer UAV.
Section III presents the proposed choice of image features.
Section IV provides a Kinematic control design for the
translational motion. Section V extends the control to the full
dynamics of the system. Section VI presents experimental
results obtained on the experimental X4-flyer (fig. 1).

II. A GENERAL UAV DYNAMIC MODEL

In this section, we derive equations of motion for a UAV
in quasi-stationary flight conditions. Let I = {e1, e2, e3}
denote a right-hand inertial or world frame such that Ez

denotes the vertical direction downwards into the earth. Let
ξ = (x, y, z) denote the position of the centre of mass of the
object in the inertial frame I. Let A = {Ea

1 , Ea
2 , Ea

3} be a
(right-hand) body fixed frame. The orientation of the airframe
is given by a rotation R : A → I, where R ∈ SO(3) is an
orthogonal rotation matrix.
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Fig. 1: The X4-flyer UAV

Let V ∈ A denote the linear velocity and Ω ∈ A denote
the angular velocity of the camera both expressed in the
camera frame. Let m denote the mass of the rigid object and
let I ∈ �3×3 be the constant inertia matrix around the centre
of mass (expressed in the body fixed frame A). Newton’s
equations of motion yield the following dynamic model for
the motion of a rigid object:

ξ̇ = RV (1)

mV̇ = −mΩ × V + F (2)

Ṙ = Rsk(Ω), (3)

IΩ̇ = −Ω × IΩ + Γ. (4)

where F is the vector forces and Γ is the vector torques.
The notation sk(Ω) denotes the skew-symmetric matrix such
that sk(Ω)v = Ω× v for the vector cross-product × and any
vector v ∈ �3.

For a typical UAV capable of stationary or quasi-stationary
flight, the vector force F is defined as follows:

F = mgRT e3 − Te3 (5)

In the above notation, g is the acceleration due to gravity,
and T a scaler input termed the thrust or heave, applied in
direction e3.

III. CHOICE OF IMAGE FEATURES

A. Kinematics of an image point under spherical projection

Let P be a stationary point target visible to the camera
expressed in the camera frame. The image point observed by
the camera is denoted p and is obtained by rescaling onto
the image surface S of the camera (cf. Figure 2). Following
the approach introduced in [12] we consider a camera with
a spherical image plane. Thus,

p =
P

|P | . (6)

Where |x| represents the norm of any vector x ∈ �n,
|x| =

√
xT x. The dynamics of an image point for a spherical

camera of image surface radius unity are (see [12], [4])

ṗ = −Ω × p − πp

|P |V, (7)

where πp = (I3 − ppT ) is the projection πp : �3 → TpS2,
the tangent space of the sphere S2 at the point p ∈ S2.

Fig. 2: Image dynamics for spherical camera image geome-
try.

B. Centroid of a target surface

Consider a point target consisting of N points {Pi} with
image points {pi}. The centroid of a target is defined to be

q0 :=
∑n

i=1 pi

|∑n
i=1 pi| ∈ S2

In the case that the image is a continuous surface S on the
spherical image plane, one has

q0 :=

∫
p∈S pdp∣∣∣∫p∈S pdp

∣∣∣
.

The centroid measures the centre of mass of the observed
image in the chosen camera geometry. The centroid depends
implicitly on the camera geometry and for a different ge-
ometry (such as a camera with perspective projection) the
direction of the centroid will be different.

Using centroid information is an old technique in visual
servo control [2], [15], [23]. Among the advantages one
has that it is not necessary to match observed image points
with desired features as would be necessary in classical
image based visual servo control [13], and the calculation
of an image centroid is highly robust to pixel noise and can
be easily programmed in real-time. The disadvantage of a
classical image centroid is that it contains effectively two
measurements linked to the direction of centroid with respect
to the body-fixed-frame axes of the camera. However, there
is certain amount of information regarding the depth of an
observed target that may be extracted directly from an un-
normalized centroid in the spherical

q :=
n∑

i=1

pi ∈ �3. (8)

Intuitively, as the camera approaches the geometric centre
of the target points the observed image points spread out
around the camera and (assuming the camera has a wide
range of view such as is obtained by a panoramic camera)
the un-normalized centroid converges to zero. Conversely,
as the camera moves away from the geometric centre of the
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target points, all the observe image points converge towards
each other, and q converges to a vector that has norm N and
points towards the target.

If the target is a discrete target, for a point target com-
prising a finite number of image points the kinematics of the
image centroid are easily verified to be

q̇ = −Ω × q − QV, (9)

where

Q =
i=n∑
i=1

πpi

r(Pi)
. (10)

C. Image based errors

Note that the centroid of an image is insufficient infor-
mation to position the full pose of the camera. Additional
information exists in the second and higher order moments.
Indeed, the zero order moment provides only depth informa-
tion, the first order moments provide information on lateral
displacement, the second order moments provide information
on relative orientation of the camera with respect to the
target. If purely centroid information is used then additional
image or inertial information must be incorporated into the
error to fully specify the camera pose. In this paper we
will augment the image information with inertial information
acquired from a standard inertial measurement unit (IMU)
used in most small scale UAVs.

Formally, let b ∈ I denote the desired inertial direction
for the visual feature. The norm of b encodes the effective
depth information for the desired limit point. Define

q∗ := RT b ∈ A
to be the desired target vector expressed in the camera fixed
frame. The orientation matrix R is estimated from filtered
data acquired on a strap down IMU on the vehicle. Since
q∗ ∈ A, it inherits dynamics from the motion of the camera

q̇∗ = −Ω × q∗.

The natural image based error is the difference between the
measured centroid and the target vector expressed in the
camera frame

δ := q − q∗. (11)

The image error kinematics are

δ̇ = −Ω × δ − QV (12)

To regulate the full pose of the camera using a fully-
actuated kinematic system (such a robotic manipulator) it
is necessary to consider an additional error criterion for the
orientation. Note that any rotation of the camera that alters
the observed image centroid may be controlled using centroid
information [16]. However, the image centroid is invariant
under rotation around the axis of the centroid. Thus, the best
that can be achieved using the centroid feature is to orient
the camera such that the image centroid lies in a desired
direction. To control the remaining degrees of freedom one
must use additional information; either from the image or a
prior inertial direction [16].

For the class of under-actuated dynamic systems consid-
ered it is physically necessary to use the attitude dynamics
to control the orientation of the force input to the linear
dynamics in order to stabilise the position of the system. It is
physically impossible to separately stabilise the attitude and
position of the camera. The error criterion chosen regulates
only the position of the rigid body and the orientation regu-
lation is derived as a consequence of the system dynamics.

IV. KINEMATIC CONTROL DESIGN TRANSLATION

MOTION

In this section a Lyapunov control design is given for the
translational motion based on the visual error Eq. 12.

Define a storage function S

S =
1
2
|δ|2 (13)

Taking the time derivative of S and substituting for Eq. 12,
yields

Ṡ = −δT QV (14)

Note that Eq. 14 is independent of the angular velocity Ω.
The matrix Q > 0 is not exactly known, however, it is

known to be positive definite and its maximal eigenvalue
must satisfy

||Q|| ≤
i=n∑
i=1

1
ri

. (15)

where ri denotes the relative depth of the ith image point.
Thus, a simple choice

V = kδδ, kδ > 0

is sufficient to stabilise S. Indeed, by substituting the control
input V by its expression in Eq. 14, one obtains

Ṡ = −kδδ
T Qδ

Since Q is a positive definite matrix, classical Lypunov
theory guarantees that δ converges exponentially to zero.

Note that the lower bound on ||Q|| becomes singular as
the range between the camera and the target increases to
infinity. The eigenvalues of the matrix ||Q|| are generally ill
conditioned

λmin(Q) << λmax(Q).

Convergence rates of the components of the error δ depend
on the eigenvalues of q. As a consequence the natural control
V = kδδ leads to poor asymptotic conditioning of the closed-
loop system.

A. Kinematic compensation of the control gain for sensitiv-
ity.

A number of different approaches have been proposed to
compensate the poor conditioning of the Jacobian matrix Q
and to improve performance of the closed-loop system [4].
In earlier work, only the kinematic model was studied and
the dynamics of the system was not considered in the control
design. In this paper, we propose a modification of the visual
error term to improve the conditioning of the Jacobian matrix
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Q in the neighborhood of the set point q∗ preserving the
passivity-like properties and allowing control design for the
full dynamics of the system.

At the set point, the Jacobian matrix Q display two
eigenvalues of comparable magnitude and one eigenvalue,
associated with the direction q∗, that is an order of magnitude
smaller. To deal with this ill conditioning two new error terms
are introduced:

δ11 = q∗0 × q, δ12 = q∗T
0 δ, q∗0 =

q∗

|q∗|
Deriving δ1 and δ2, it follows

δ̇11 = − sk(Ω)δ1 − sk(q∗0)QV

δ̇12 = − q∗T
0 QV

where sk denotes the operator sk : R
3 → R

3×3 such that
sk(v) is skew symmetric and sk(v)w = v×w for all vectors
v, w ∈ R

3.
Lemma 4.1: Consider the system defined by Eq. 12 and

let k, λ > 0 be two positive constants. Assume that the image
remains in the camera field of view for all time. Then, the
closed loop system Eq. 12 based on the following control
Eq. 16

V = k(−sk(q∗0) + λq∗0q∗T
0 )(δ11 + λq∗0δ12), (16)

exponentially stabilises the visual error δ.
Proof:

Define

S1 =
1
2
|δ11|2 + λ2|δ12|2

It is straightforward to verify that

S1 =
1
2
|δ11 + λq∗0δ12|2 =

1
2
δ2
1

Deriving S1 and substituting the control input V by its
expression yields

Ṡ1 = −kδT
1 Hδ1

where

H = A(q∗0)QA(q∗0)T , A(q∗0) = sk(q∗0) + λq∗0q∗T
0 (17)

Since Q is positive definite matrix and A(q∗0) a non sigular
matrix, H > 0 and therefore δ1 converges exponentially to
zero.

Due to the decoupling between δ11 and δ12 and the
decrease of the storage function S1 towards zero guarantee
the exponential convergence of the of the error δ to zero.

Note that the best choice of the control gain λ affecting
the direction of the desired feature q∗ could be characterized
by the following constraint:

H ∼= I

where the symbol ∼= means “equality up to a multiplicative
constant”.

V. CONTROL DESIGN FOR THE FULL DYNAMICS OF THE

SYSTEM

As discussed above, the matrix H (Eq. 17) remains un-
known but well conditioned in a large neighborhood around
the desired position and the above choice of the velocity V ,
if it were available as a control input (kinematic control), is
sufficient to stabilise S1. Note, however, that to deal with
the full dynamics of the considered system, the velocity V
cannot be used as control input. In this situation a control
design based on backstepping procedure is proposed.

With this choice, one has

δ̇1 = −sk(Ω)δ1 − k1

m
Hδ1 − k1

m
Hδ2 (18)

where δ2 defines the difference between the desired ‘virtual
control’ choosing as kinematic control (Eq. 16) and the true
velocity

δ2 :=
m

k1
A(q∗0)−T V − δ1 (19)

and will form an error term to stabilise the translational
dynamics. With the above definitions one has

Ṡ1 = −k1

m
δT
1 Hδ1 − k1

m
δT
1 Hδ2 (20)

Noting that

A(q∗0)−T = sk(q∗0) +
1
λ

q∗0q∗T
0 ,

deriving δ2 and recalling Eqn’s 2 and 18, it yields

δ̇2 = −sk(Ω)δ2 +
k1

m
Hδ1 +

k1

m
Hδ2 +

1
k1

A(q∗0)−T F (21)

Let S2 be the second storage function gathering the
translational dynamics used for this control algorithm

S2 =
1
2
|δ1|2 +

1
2
|δ2|2 (22)

Taking the derivative of S2 it follows that

Ṡ2 = −k1

m
δT
1 Hδ1 +

k1

m
δT
2 Hδ2

+
1
k1

δT
2 A(q∗0)−T F (23)

The positive definite matrix H = A(q∗0)QA(q∗0)T is well
conditioned but is not exactly known, however, there are
upper and lower bounds on the eigenvalues of H in the
neighborhood of the desired position. Thus, choosing

F := −k2
1k2

m
A(q∗0)T δ2, (24)

where k2 > λmax(H) = max{λmax(Q), λ2λmin(Q)}, is
sufficient to stabilise the translational dynamics. Since the
rigid body system considered is under-actuated, the force
input F is unable to assign the desired dynamics directly.

It is necessary to use the above definition as virtual force
inputs in a further stage of the backstepping procedure. Set

F v := −k2
1k2

m
δ2. (25)
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A new error term δ3 is defined to measure the scaled
difference between the virtual and the true force inputs. It is
introduced to deal with the attitude dynamics constrained by
the main objective δ1:

δ3 :=
m

k2
1k2

A(q∗0)−T F + δ2. (26)

The derivative of δ2 Eq. 21 becomes:

δ̇2 = − sk(Ω)δ2 +
k1

m
Hδ1 − k1

m
(k2I3 − H)δ2 +

k1

m
k2δ3,

(27)

and the derivative of the second storage function is now

Ṡ2 = −k1

m
δT
1 Hδ1 − k1

m
δT
2 (k2I3 − H)δ2 +

k1

m
k2δ

T
2 δ3 (28)

Deriving δ3 and recalling Eq. 21, yields

δ̇3 = −sk(Ω)δ3 +
k1

m
Hδ1 − k1

m
(k2I3 − H)δ2 +

k1

m
k2δ3

+
m

k2
1k2

A(q∗0)−T
(
Ḟ + sk(Ω)F

)

(29)

Recalling Eq. 5, the full vectorial term
(
Ḟ + sk(Ω)F

)
is

explicitly given by:

(
Ḟ + sk(Ω)F

)
=




0 T 0
−T 0 0
0 0 1







Ω1

Ω2

Ṫ


 (30)

Proposition 5.1: Consider Ṫ as control input of the thrust
T and (Ω1,Ω2) as control input of the attitude direction
associated with a high gain control to recover the control
torques, then choosing

m

k2
1k2

(
Ḟ + sk(Ω)F

)
:= − (k1k2 + k3)

m
A(q∗0)T δ3 (31)

for k3 > 0, exponentially stabilises δ1 to zero and ensures
the exponential convergence of the attitude direction RT e3

towards e3.
Proof: Let L be a Lyapunov candidate function defined

by

L =
1
2
|δ1|2 +

1
2
|δ2|2 +

1
2
|δ3|2 (32)

Taking the derivative of L and recalling Eq. 29 one obtains

L̇ = − k1

m
δT
1 Hδ1 − k1

m
δT
2 (k2I3 − H)δ2

k1

m
δT
3 Hδ1 − k1

m
δT
3 (k2I3 − H)δ2 − k3

m
δT
3 δ3

Completing the square four times to dominate the cross
terms, it may be verified that the choice of control gains given
in the theorem ensures that the right-hand side is negative
definite in all the error signals δi, i = 1, . . . , 3. Classical
Lyapunov theory ensures converges of δi → 0.

If the position and linear velocity are regulated then the
total external force must be zero, F = 0. Recalling Eq. 5
one has

RT e3 = e3, T = mg. (33)

It follows that any rotation of the aerial vehicle that would
affect the orientation of thrust is directly stabilised via the
backstepping error δ3.

Note that the error term δ3 does not determine the full
attitude of the system considered. Pitch and roll components
of its attitude are regulated by the errors δ3. The yaw rotation
around the thrust direction is not stabilised. To stabilise the
yaw attitude by means of visual information one needs to
use additional error criteria [12]. In the experimental Section
VI the yaw rate is controlled by a teleoperation mode via a
joystick.

VI. EXPERIMENTAL RESULTS

In this section, experimental results of the above algo-
rithms designed for the full dynamics of the system are
presented. The UAV used for the experimentation is an X4-
flyer, made by the CEA, (fig. 1) which is a vertical take off
and landing vehicle ideally suited for stationary and quasi
stationary flight.

A. Prototype description

The CEA’s X4-flyer is equipped with a set of four elec-
tronic boards (fig. 3b) designed by the CEA. Each elec-
tronic board includes a micro-controller and has a particular
function. The first board integrates the motor controllers
which regulate the rotation speed of the four propellers.
The second board integrate an Inertial Measurement Unit
(IMU) constituted of 3 low cost MEMS accelerometers,
which give the gravity components in the body frame, 3
angular rate sensors and 2 magnetometers. On the third
board, a Digital Signal Processing (DSP), running at 150
MIPS, is embedded and performs the control algorithm
filtering computations. The final board provides a serial
wireless communication between the operator’s joystick and
the vehicle. An embedded camera (fig. 3a) with a view angle
of 120 degrees pointing directly down, transmits video to a
ground station (PC) via a wireless analogical link of 2.4GHz.
A Lithium-Polymer battery provides nearly 10 minutes of
flight time. The loaded weight of the prototype is about
550g. The images sent by the embedded camera are received

(a) The embedded camera (b) electronic boards

Fig. 3

by the ground station at a frequency of 15Hz. In parallel,
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the X4-flyer sends the inertial data to the station on the
ground at a frequency of 9Hz. The data is processed by
the ground station PC and incorporated into the control
algorithm. Desired orientation velocities and desired thrust
rate are generated on the ground station PC and sent to
the drone. A key difficulty of the algorithm implementation
lies in the relatively large time latency between the inertial
data and visual features. For orientation velocities and thrust
rate control, an embedded controller in the DSP running at
166Hz, independently ensures its stability from the ground
station.

(a) algorithm initialization (b) target view from the camera

Fig. 4

B. Experiments

1) target: The target considered is the four black marks
on the vertices of a planar square (cf figure 4b). An algorithm
extract the center of the four circles and compute the centroid
q (Eq. 8). The characteristics of experimental camera insures
that the observed target remains visible if the X4-flyer
remains in a ray of 1.5m around the center of the target
when this one evolves at an altitude of 1.7m.

The desired image feature b∗ is chosen such that the
camera set point is located 1.7m above the target:

b∗ =




0
0

3.96


 (34)

2) Initialization: The initialization of the control algo-
rithm consists in computing the parameter λ to improve the
conditioning of the Jacobian matrix Q around the desired
position. Initially the X4-flyer is placed at a distance of
z � 1.7m above the target (x � y � 0), insuring that the
Jacobian matrix Q at the desired position is:

Q∗ �



2.35 0 0
0 2.36 0
0 0 0.056


 . (35)

Note the ill-conditioning of the matrix Q (the condition
number ρ(Q) = λmax(Q

λmin(Q) = 42.14). Since the convergence
rates are given by the eigenvalues of H = A(q∗0)QA(q∗0)T

rather than of the eigenvalues of Q, choose λ such that

A(q∗0)QA(q∗0)T is well conditioned (ρ(H) � 1).

A(q∗0) =




0 1 0
−1 0 0
0 0 λ


 . (36)

Consequently, choosing λ = 6.44, the Jacobian matrix H is
well conditioned (ρH � 1):

A(q∗0)QA(q∗0)T � 2.35




1 0 0
0 1 0
0 0 1


 . (37)

3) Results: During the experiments, the yaw velocity is
controlled via the joystick. It has no effect on the proposed
control scheme (Eq. 30) and therefore, it has no effect
on the convergence of the visual feature. The drone is
teleoperated near the target, such that the target marks are
visible (about 60 cm in x and y and 2m in z), then the
proposed algorithm is initialised. We observe, in figure 5.a,
exponential convergence of the three components of the error
term δ1 (respectively the error terms δ11 and δ12 (figure
5.b et 6.a)) with a very satisfactory behaviour. Note that
various inaccuracies from system modeling and the delays
of transmissions generates imprecision smaller than 10cm
around the desired position (cf figure 8). Note that, for
technical raisons, figure 8 represents a different flight that
the others figures.
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(a) error term δ1
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(b) error term δ11

Fig. 5
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(a) error term δ12
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(b) centroid evolution

Fig. 6

VII. CONCLUSION

In this paper we presented a visual servo control for
stabilisation of an X4-flyer UAV. This work is an extension
of the recent theoretical work on visual servo control of
under-actuated systems [12] that overcomes ill-conditioning
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Fig. 8: 3D UAV position

of the Jabcobian matrix. Based on the previous work [4],
a new visual term preserving the so-called passivity-like
property is proposed to improve the conditioning of the
Jacobian matrix in the neighborhood of the desired position.
A nonlinear controller is then derived and implemented on
an experimental flying robot developed by the CEA. The
experimental result show good performance and robustness
of the proposed control strategy.
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