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Abstract— This paper presents a coupled observer that uses
accelerometer, gyrometer and vision sensors to provide esti-
mates of pose and linear velocity for an aerial robotic vehicle.
The observer is based on a non-linear complimentary filter
framework and incorporates adaptive estimates of measure-
ment bias in gyrometers and accelerometers commonly en-
countered in low-cost inertial measurement systems. Asymptotic
stability of the observer estimates is proved as well as bounded
energy of the observer error signals. Experimental data is
provided for the proposed filter run on data obtained from
an experiment involving a remotely controlled helicopter.

I. INTRODUCTION

With a range of applications in both civilian and military

scenarios, the development of automated aerial robots are an

increasingly important field of robotics research. Such vehi-

cles have strong commercial potential in remote surveillance

applications such as monitoring traffic congestion, regular

inspection of infrastructure such as bridges, dam walls and

power cables or investigation of hazardous environments, to

name but a few of the possibilities. The development of

such robotic vehicles pose a number of unique problems

in sensing and control. A key challenge is to develop

cheap and robust sensor systems that are light enough

to be carried by the vehicle and which provide sufficient

information for the vehicle stabilisation. A common sensor

suite includes an inertial measurement unit (IMU) consisting

of accelerometers and rate gyros, along with a camera.

Global positioning systems (GPS) do not function effectively

indoors and in urban canyon environments, provide absolute

position measurement rather than measurement relative to

observed environment and generally do not have sufficient

bandwidth for stabilisation of a hovering vehicle. Angular

velocity and attitude can be estimated effectively from the

output of an IMU system [18], [13], [9] given that the UAV

is in quasi-stationary (hover) flight. In contrast, translational

position and translational velocity cannot be estimated from

a low cost lightweight IMU system for more than a few

seconds due to unbounded growth of errors [3]. Vision

systems provide a secondary sensor system that can be fused

with the IMU data to bound error growth and provide a full

state estimate. In recent, years there has been a considerable
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interest in the development of inertial vision systems [22],

[12], [17], [8], [2], [5]. Indeed, there was a session dedi-

cated to such systems at ICRA 2004 [4]. A number of the

successful implementations of aerial robotic vehicles over

the last few years have relied heavily on vision systems as

well as inertial sensor systems [6], [1], [20]. Despite the

interest in such systems there is still significant progress to

made in the development of detailed results in this area.

In this paper, we present a coupled filter algorithm that

uses accelerometer, gyrometer and vision sensors to provide

estimates of pose and velocity of a rigid body. The algorithm

is based on the non-linear complimentary filter framework

developed directly in the natural Lie-group geometry on

SO(3) [13], [9]. This work in turn draws from earlier work

[19], [22], [21] that used a quaternion formulation pioneered

in the early nineties. Due to the nonlinear framework, the

initialisation of such a filter is less restrictive than a classical

Kalman filter and its attractive bassin is extended. Moreover,

its implementation requires no observer gain update, which

is particulary adapted to low cost embedded smart card. In

this paper, we use the vision system to provide the low

frequency unbiased measurement of pose and position. The

attitude observer is constructed first and is based on the

filter developed in Mahony et al.[13]. This filter provides an

asymptotically stable estimate of the attitude of the vehicle

as well as adaptively identifying the gyrometer bias. The

novel contribution of the present paper is to prove that

the error signals associated with this filter are bounded in

the L2 norm. This is important since these errors form

bounded energy disturbances to the proposed position and

translational velocity filter. The second stage of the observer

uses the vision sensor along with accelerometer readings to

provide a filter for the position and translational velocity

of the vehicle. Once again we show that closed-loop filter

response is asymptotically stable and that the error signals

have bounded energy. The filter includes an adaptive dynamic

state that estimates the accelerometer bias. The filter has been

applied to a data obtained on an experimental platform, a

radio controlled helicopter Vario Benzin-Acrobatic 23cc as

illustrated on Figure 1, equipped with low-cost, lightweight

camera and IMU systems. Results indicate that the proposed

observer is effective in estimating the actual pose of the ve-

hicle as well as identifying the gyrometer and accelerometer

bias.
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II. PROBLEM STATEMENT

A. Rigid body dynamical model

Let I = {e1, e2, e3} denote the inertial frame attached

to the earth such that e3 denotes the downwards vertical

direction and e1 points to the magnetic north. Let B =
{eb

1, e
b
2, e

b
3} is a body-fixed frame whose center coincides

with the center of mass of the mobile. The attitude of

the body-fixed frame is represented by a rotation matrix

R : B → I. The set of all rotation matrices is termed

the Special Orthogonal group and denoted by SO(3). Any

R ∈ SO(3) may be expressed as a rotation of θ radians

around an axis a = (a1, a2, a3)
T ∈ R

3, ||a|| = 1. The pair

(θ, a) is referred to as the angle-axis coordinates of R. Define

an operator (·)× that maps a ∈ R
3 into an anti-symmetric

matrix via

a× =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (1)

One has a×b = a × b for any vectors a, b ∈ R
3 where ×

denotes the vector product. Let vex(·) denote the inverse

operation of extracting the vector a ∈ R
3 from any anti-

symmetric matrix A = a×. One has that R = exp θa×.

Let Pa and Ps denote respectively the anti-symmetric and

symmetric projection operator in matrix space

Pa(H) =
1

2
(H − HT ), Ps(H) =

1

2
(H + HT ) (2)

For any rotation matrix with angle axis coordinates (θ, a)
one has

R = I + sin θa× + (1 + cos θ)a2
× (3a)

cos θ =
1

2
(tr(R) − 1) (3b)

a× =
1

sin(θ)
Pa(R) (3c)

Let ξI = (x, y, z) denote the position of the center of mass

of the aerial vehicle expressed in frame I. Let vI ∈ I denote

the linear velocity and Ω = (p, q, r) denote the angular

velocity of the airframe with respect to B. The kinematic

equation of attitude and Newton’s equation of motion yield

the following dynamic model for the motion of the rigid

body [7]

ξ̇I = vI , (4a)

mv̇I = RF + mge3, (4b)

Ṙ = RΩ×, (4c)

where F represents the sum of non gravitational external

forces acting on the object and m represents its mass. It

is more convenient for the sequel to express the dynamic

model (4) in the body fixed frame. Setting ξB = RT ξI and

vB = RT vI one has

ξ̇B = −Ω×ξB + vB (5a)

v̇B = −Ω×vB +
1

m
F + gRT e3 (5b)

Ṙ = RΩ×. (5c)

B. Sensor model

We assume that the UAV is equipped with a low cost strap

down IMU. Such units are characteristically based on micro

electronic-mechanical systems (MEMS) chips and consists

of 3-axis accelerometers, 3-axis rate gyrometers and 3-axis

magnetometers.

Accelerometers measure all external forces applied to the

vehicle, excluding gravity [16]. In case of strap-down IMU,

readings are expressed in body fixed frame. Recalling Eq. (5)

the pure accelerometer signal is modelled as

AB = −Ω×vB +
F

m
(6)

In practice, the accelerometer measurement, A
y

B , is corrupted

by constant (or slowly time varying) bias term, a, as well as

Gaussian measurement noise µa;

A
y

B = AB + a + µa. (7)

The angular velocity measurement, Ωy , is a corrupted mea-

surement of the true angular velocity Ω

Ωy = Ω + b + µΩ, (8)

where b represents gyrometer bias and µΩ denotes a Gaussian

noise process.

In prior work for VTOL UAVs in hover or quasi-stationary

flight [13], [9] the accelerometer output was used as an

estimate of the negative gravitational vector.

This is valid as long as the vehicle is approximately

stationary in the air and external applied force is a thrust

that cancels the gravitational force on the vehicle. Averaging

the accelerometer readings over a sufficiently long period of

time ensures that such an estimate is reasonably accurate,

however, if the UAV is engaged in significant manoeuvres

this time period may be considerable. Measurement of the

magnetic vector field offers some hope of improving the

acceleration readings and some works have exploited this

structure for [14], [15] to obtain filtered attitude estimates

based on reconstruction of the underlying vehicle attitude.

However, the magnetometer readings on small UAV systems

are often unreliable due to the presence of electric motors

and drive systems.

As an alternative to inertial measurements, data from

a calibrated camera may be used to deduce precisely the

camera’s pose with regard to a target of which geometric

characteristics are known. A camera is an exteroceptive

sensor and provides first order kinematic measurements

(ie. attitude and position but not velocity and angular ve-

locity) relative to the observed environment. In contrast to

the measurements obtained from inertial sensors, camera

measurements are not subject to slowly-time varying biases

due to changing temperature and vibration characteristics

of the system. Camera calibration is a one of process for

which there is a well established and documented toolbox of

algorithms. By equipping a UAV with a reasonable quality

camera on a good quality and reliable mounting point then

it is reasonable to use this data as an aid to pose estimation

for manoeuvres where the camera field of view contains a
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known target. Examples of such situations are in landing

manoeuvres.

Let C = {ec
1, e

c
2, e

c
3} denote the camera frame attached

to the body fixed frame. Let dB denote the known distance

between the center of the camera frame and the center of

mass of the vehicle expressed in the the body fixed frame. Let

T = {et
1, e

t
2, e

t
3} denote the target frame. The target frame

is chosen such that its center coincides with the center of

mass of the target, which is stationary in the inertial frame.

Using the camera to determine a measurement, Ry, of the

attitude matrix on obtains

Ry = PIT RcRµPCB (9)

where Rc : C → T is the ideal unbiased transformation

matrix between the target frame and the camera frame

measured by the camera, Rµ is a non Gaussian noise process

(assumed to be negligible in the following development) and

PCB and PIT are two constant transformation matrices that

relate the frames of camera measure with the frames of

model (4). It is assumed that the matrices PCB and PIT are

determined in an initial calibration process and are known

for the development of the filter theory in the sequel.

A pose estimation algorithm from a calibrated camera also

provides an estimate of position of the target ξC in the camera

frame. Expressing this information in the body fixed frame

one obtains

ξ
y

B = (RcPCB)T ξC + dB + µξ (10)

where µξ is a centered non Gaussian noise process that is

assumed to be negligible in the development that follows.

III. OBSERVER DESIGN

In this section, two nonlinear observers are proposed. The

first observer estimates the orientation matrix and bias terms

on the angular velocity observations, the second observer

estimates the position and the linear velocity as well as

bias terms on the accelerometer observations. A convergence

resulting observer is achieved by means of adaptive control

and backstepping analysis [11].

A. Nonlinear complementary filter on SO(3)

In this subsection, we propose a nonlinear complimentary

filter on SO(3)×R
3 for attitude estimation using visual and

3-axis gyroscope information. The goal is to provide a set

of dynamics for an estimate R̂ ∈ SO(3) and b̂ ∈ R
3 to

drive the error rotation R̃ = R̂T R → I3 and the error bias

b̃ = (b − b̂) → 0 given measurements Ωy and Ry (cf. Eqn’s

7 and 9).

Theorem 1: Consider the system given by Eqn’s 5. As-

sume that Ω(t) ∈ L∞ is a bounded continuous signal and

assume that gyroscope’s bias b is constant or slowly varying.

Define observer dynamics in (R̂, b̂) by

˙̂
R = R̂(Ωy − b̂ + ω)× (11a)

ω = l1vex(Pa(R̃)) (11b)

˙̂
b = −l2vex(Pa(R̃)) (11c)

where l1 and l2 are positive gains. Let (θ, a) denote the

angle-axis coordinates of the attitude error R̃. Consider the

following candidate Lyapunov function

V = Eθ +
1

4l2
|b̃|2, Eθ =

1

2
||I3 − R̃||2F (12)

Where ||M ||F =
√

tr(MMT ) denotes the Frobenius norm

in square matrix space and |a| =
√

aT a the euclidian norm

in R
n. Then for any positive constant δ << 1 and any initial

condition R̂0 such that

|θ0| ≤ π − δ and that l2 >
b̃(0)

4(2 − δ2

2 − E(0))
,

R̃ → I and b̃ → 0 asymptotically. Moreover, the error (R̂, b̂)
is locally exponentially stable to the trajectory (R(t), b)
insuring that ||I3 − R̃||F and |b̃| are in L2.

∫ ∞

0

||I3 − R̃||2Fdt < +∞,

∫ ∞

0

|b̃|2dt < +∞.

Proof: Let us consider the candidate Lyapunov func-

tion, Eq. 12

V =
1

2
||I3 − R̃||2F +

1

4l2
|b̃|2 (13)

Simplifying the Frobenius norm one obtains

V = 3 − tr(R̃) +
1

4l2
b̃T b̃ (14)

Recalling (11), the time derivative of R̃ is computed to be

˙̃
R =

˙̂
RT R + R̂T Ṙ = −(Ωy − b̂ + ω)×R̃ + R̃Ω× (15)

Using the fact that the gyroscope’s bias, b, is assumed to be

constant or slowly varying and (
˙̃
b = − ˙̂

b) and substituting for

the sensor model (8) one obtains

˙̃
R = −Ω×R̃ + R̃Ω× − (ω + b̃)×R̃ (16a)

˙̃
b = l2vex(Pa(R̃)) (16b)

Deriving the Lyapunov function (14) and using (16), one gets

V̇ = −tr([R̃,Ω×]) + tr((ω + b̃)×)R̃) +
1

2l2
b̃T ˙̃

b (17)

Note that the trace of a matrix commutator is zero and hence

tr([R̃,Ω×]) = 0. Note also, at this point in the equation we

have b̃T ˙̂
b = 2tr(b̃T

×
˙̂
b×) and the orthogonality of symmetric

and anti-symmetric matrices under the trace operator ensures

that tr((ω + b̃)×Ps(R̃)) = 0. Hence, the time derivative of

the candidate Lyapunov function (17) becomes

V̇ = −tr
(

ωT
×Pa(R̃)

)

− tr

(

b̃T
×(Pa(R̃) +

1

l2

˙̂
b×)

)

(18)

Substituting for Eqn’s 11b and 11c, then Eq. 18 becomes

V̇ = −l1tr
(

Pa(R̃)T
Pa(R̃)

)

= −l1||Pa(R̃)||2F ≤ 0 (19)

This implies that V (t) ≤ V (0), and therefore, b̃ is bounded

(Pa(R̃) is always bounded). Since the system (Eq. 16) is

not autonomous, Barbalt’s lemma is used to conclude the
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convergence of the system. To use Barbalat’s lemma, let us

verify the uniform continuity of V̇ . The derivative of V̇ is :

V̈ = −kP Pa(R̃)T
(

Pa

(

[R̃,Ω×] − Pa((l1ω − b̃)×R̃)
))

This shows that V̈ is bounded, since Ω(t) ∈ L∞ is a bounded

continuous signal and b̃ was shown above to be bounded.

Hence V̇ is uniformly continuous. Application of Barbalat’s

lemma implies the asymptotic convergence of Pa(R̃) (or ω)

to zero and direct substitution shows that (R̃, b̃) = (I3, 0) is

an equilibrium point of Eq. 16.

For local exponential convergence of the solution we study

the linearisation of the error dynamics (Eq. 16) at (I, 0). Let

R̃ ≈ I3 + x× and b̃ ≈ −y for x, y ∈ R
3. The linearised

dynamics, obtained after tedious but straightforward calcu-

lations, are the time-varying linear system

d

dt

(

x

y

)

=

(

−l1I3 − Ω(t)× I3

−l2I3 0

)(

x

y

)

(20)

Let |Ωmax| denote the magnitude bound on Ω and choose

α2 > 0, α1 >
α2(|Ωmax| + l2)

kP

, α3 >
α1 + α2l1

l2
.

Set PR, QR to be matrices

PR =

(

α1 α2

α2 α3

)

, QR =

(

(α1 − α2l2) −α2|Ω|max

2

−α2|Ω|max

2 α2

)

.

It is straightforward to verify that PR and QR are positive

definite matrices given the constraints on {α1, α2, α3}. Set

ξ = (x, y) then it is a simple matter to verify that

d

dt

(

ξT PRξ
)

< −ξT QRξ

This proves exponential stability of the linearised system.

Finally since the error terms are bounded and uniformly

continuous, and the linearised system is exponentially stable,

it follows that ||I3 − R̃||F and |b̃| are in L2.

B. Position and Velocity filter

In this subsection, we propose a nonlinear observer for

position and linear velocity estimation using visual and 3-

axis accelerometer information. The goal is to provide a set

of dynamics for an estimates ξ̂B ∈ R
3, v̂B ∈ R

3 position

and translational velocity of the vehicle along with adaptive

estimates, â ∈ R
3, of the accelerometer bias.

Given measurements ξ
y

B and A
y

B (cf. Eqn’s 7 and 10), we

define error signals

ǫ1 = ξB − ξ̂B
ǫ2 = vB − v̂B
ǫ3 = â − a

The goal is to derive filter dynamics that drive these errors

to zero.

Theorem 2: Consider the system given by Eqn’s 5. As-

sume that ξB , vB and the accelerometer bias a are bounded.

Let the filter dynamics for (R̂, b̂) be given by Eqn’s 11

and let the assumptions of Theorem 1 hold. Define observer

dynamics in (ξ̂B, v̂B, â)

˙̂
ξB = −(Ωy − b̂)×ξ̂B + vB + (k1I3 − (Ωy − b̂)×)(ξy

B − ξ̂B)

(21a)

˙̂vB = A
y

B − â + gR̂T e3 + k2(ξ
y

B − ξ̂B) (21b)

˙̂a = −k3(ξ
y

B − ξ̂B) (21c)

where k1, k2, k3 ∈ R
3 are constant gains such that k3 6= 0

and k1k2 6= k3. Then, the estimates (ξ̂B, v̂B, â) are

globally asymptotically stable to the true values (ξB, vB, a).
Furthermore, the error signals |ǫ1|, |ǫ2| and |ǫ3| are L2.

Proof: Combining the dynamics of Eq. 5 and Eq. 21,

the error dynamics can be written as

ǫ̇1 = −k1ǫ1 + ǫ2 + b̃×ξB (22a)

ǫ̇2 = −k2ǫ1 + ǫ3 + g(I3 − R̃)RT e3 (22b)

ǫ̇3 = −k3ǫ1 (22c)

Theorem 1 demonstrated finite energy asymptotic stability

of the error signals I3 − R̃ and b̃ to zero. Consequently,

b̃×ξ̂B and g(I3−R̃)RT e3 may be considered as perturbations

acting on the error dynamics. This leads to a condensed

formulation of Eq. 22

ǫ̇ = Lǫ + ∆ (23)

where ǫ = (ǫ1, ǫ2, ǫ3)
T ,

L =





−k1I3 I3 0
−k2I3 0 I3

−k3I3 0 0



 , ∆ =





b̃×ξB
g(I3 − R̃)RT e3

0



 ,

and ∆ is asymptotically decreasing to zero with finite energy.

The constant gains k1, k2, k3 ∈ R
3 are chosen to ensure that

L is Hurwitz. To simplify the analysis of stability, set Pǫ, Qǫ

to be matrices

Pǫ =





Pǫ11 Pǫ12 Pǫ13

PT
ǫ12

Pǫ22 Pǫ23

PT
ǫ13

PT
ǫ23

Pǫ33



 , Qǫ =





Qǫ11 0 0
0 Qǫ22 0
0 0 Qǫ33



 .

Expanding the standard Lyapunov function LT Pǫ + PǫL =
−Qǫ, it yields to

K





Pǫ11

Pǫ22

Pǫ33



 =
1

2





−Qǫ11 − k2Qǫ22

Qǫ22 − k2Qǫ33

−k1Qǫ22 − k3Qǫ33



 (24)

Set K =





−k1I3 k3I3 0
0 k1I3 −k3I3

I3 −k2I3 0



 and note that

detK = (k3(k1k2 − k3))
3
. By assumption detK 6= 0 and

K−1 exists. It is now straightforward to find Qǫ11 , Qǫ22 , Qǫ33

positive definite matrices with k3 6= 0 and k1k2 6= k3 such

that Pǫ is positive definite, verifying LT Pǫ + PǫL = −Qǫ.

Consider the following candidate Lyapunov function

S = ǫT Pǫǫ (25)
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Note that for any X,Y ∈ R
p×q and 0 < κ < ∞ then

XT Y ≤ 1
κ
|X|2 +κ|Y |2. Applying this relation with X = ∆

and Y = Pǫǫ, the time derivative of S can be written

Ṡ ≤ −ǫT Qǫǫ +
1

κ
|∆|2 + κǫT P 2

ǫ ǫ (26)

This leads to

Ṡ ≤ −λ1|ǫ|2 +
1

κ
|∆|2 ≤ −λ2S +

1

κ
|∆|2 (27)

where λmin(A) (resp. λmax(A)) is the smallest (resp. largest)

eigenvalue of A, κ is chosen such that 0 < κ <
λmin(Qǫ)
λ2

max(Pǫ)
,

λ1 = λmin(Qǫ) − κλ2
max(Pǫ) > 0 and 0 < λ2 < λ1√

λmin(Pǫ)
.

Since ∆ converges asymptotically to zero, one can ensure

([10], Lemma 4.9, p.208) that S converges to zero. Using

the fact that ∆ is in L2, one can deduce ([11], Lemma B.5,

p.405) that S is in L1. This guarantees that |ξB− ξ̂B|, |vB−
v̂B| and |a − â| are in L2 and completes the proof.

IV. EXPERIMENTAL AND SIMULATION RESULTS

In this section, we present simulations and experimental

results to show the efficiency of the proposed filters. The

hardware consists of a 3DMG Microstrain IMU and a Philips

webcam mounted on a small scaled helicopter Vario Benzin-

Acrobatic 23cc as illustrated on Figure 1. The data is

acquired at a rate of 50Hz for the inertial sensor and 10Hz

for the visual sensor.

Fig. 1. Experimental platform: a radio controlled helicopter Vario Benzin-
Acrobatic 23cc, equipped with low-cost, lightweight camera and IMU
systems.

The experiment consists of manual quasi-stationary (or

hover) flight over a visual target (ie: a black and white

draughtboard). The experiment is conducted such that the

target always lies in the field of view of the camera.

The camera calibration has be completed in static con-

dition before the flight. Experimental data obtained during

the camera calibration are postprocessed using a recursive

least mean square algorithm. The calibration matrices PIT
and PCB are computed in an initialisation phase. The

role/pitch/yaw angles for PIT are (1.05◦,−1.66◦, 164.67◦)
and for PCB (−2.4◦,−16.83◦, 0.1◦). The gains l1 and l2
are tuned to ensure satisfactory asymptotic stability of the

linearised dynamics of the nonlinear complimentary filter

[14]. The characteristic polynomial of this filter is Π1(s) =
s2 + l1s + l2 and observer gains of l1 = 15 and l2 = 2

225
are chosen to correspond to a crossover frequency of 0.6Hz

and a damping factor of 0.8.

Analogously, we have chosen k1 = α+2β, k2 = 2αβ+β2

and k3 = −αβ2 with α = 0.01 and β = 10 for

the nonlinear position and velocity filter such that the

characteristic polynomial of the transient matrix L is

Π2(s) = (s + α)(s + β)2.

The comparison of roll, pitch and yaw angles angles

between visual measurements (ie: red cross), inertial mea-

surements using industrial filter of the 3DMG IMU (ie:

green curve)and the estimation calculated by the proposed

nonlinear complementary attitude filter (ie: blue curve) are

shown on Figure 2. Figure 3 illustrates the reconstruction of

gyroscopes’ bias.
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Fig. 2. Estimation of helicopter in inertial frame

The comparison of position between visual measurements

(ie: red cross), the estimation calculated by the proposed
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Fig. 3. Estimation of gyroscope bias

nonlinear position filter (ie: blue curve) and the open loop

integrated inertial accelerations of the 3DMG IMU (ie: green

curve) are shown on Figure 4. Figure 5 and Figure 6

illustrates respectively the reconstruction of linear helicopter

velocity and accelerometer’ bias.
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Fig. 4. Estimation of helicopter position expressed in body frame

Excellent behavior of both observers is observed despite

the large errors between initial conditions, inertial sensor

drift and occasional lack of visual measurements due to non-

detection of the target. Figure 2, 4 and 5 prove that ac-
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Fig. 5. Estimation of linear helicopter velocity expressed in body frame
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Fig. 6. Estimation of accelerometer bias

curate exteroceptive visual measurements allows successful

estimates of the inertial drift due to gyro and accelerometer

bias.
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