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Abstract— This paper presents a novel use of spectral cluster-
ing algorithms to support cases where the entries in the affinity
matrix are costly to compute. The method is incremental – the
spectral clustering algorithm is applied to the affinity matrix
after each row/column is added – which makes it possible to
inspect the clusters as new data points are added. The method
is well suited to the problem of appearance-based, on-line
topological mapping for mobile robots. In this problem domain,
we show that we can reduce environment-dependent parameters
of the clustering algorithm to just a single, intuitive parameter.
Experimental results in large outdoor and indoor environments
show that we can close loops correctly by computing only a
fraction of the entries in the affinity matrix. The accompanying
video clip shows how an example map is produced by the
algorithm.

I. INTRODUCTION

Spectral clustering methods have become increasingly

popular. This family of algorithms have been proven suc-

cessful in a number of problem domains, such as computer

vision [1], [2], speech recognition [3], and classification

of biological data [4], [5]. Their primary strength is that

they successfully can cluster data where other well-known

methods (such as k-means) cannot be applied or fail. Spectral

clustering does not require that the data can be represented

as coordinates in Euclidean n-space – it is sufficient that

a similarity measure between the points can be computed.

Common to all spectral clustering algorithms is that they

take as input an affinity matrix, which describes the similarity

between the data points. Similarity is usually expressed by

Euclidean distance, but it can equally well be described by

some other measure.

In appearance-based topological mapping problems, the

environment at different positions is captured by sensors

into “snapshots”. Such a snapshot is usually a very high-

dimensional descriptor (image [6], “fingerprint” [7], etc.) of

the environment, and it is therefore usually futile to directly

apply a clustering algorithm to the collection of snapshots.

However, if it is possible to compute a measure of similarity

between snapshots, we can compute an affinity matrix and

then apply a spectral clustering method to extract the nodes

of the topological map.

There are at least two serious drawbacks with this ap-

proach. First, in most spectral clustering algorithms, the

number of nodes has to be set by hand. It is possible to

handle this by simply iterating with an increasing number of

nodes, and halting the iteration when the resulting clustering

is “good enough”. In contrast, the number of clusters in our

algorithm follows from a parameter that might be selected in

a natural way directly from the data. Secondly, computing the

affinity matrix can be costly, even with efficient algorithms

to compute each entry. This is noticeable in particular when

the data set becomes large. It would be preferable if we did

not have to compute all entries of the affinity matrix, and

yet could apply a spectral clustering algorithm.

In this paper we present a general-purpose, incremental

spectral clustering algorithm that addresses the issues above.

Because the affinity matrix is not completely evaluated,

the method will be approximate. Nevertheless, it produces

very good results in our special area of interest: on-line

topological mapping by a mobile robot. We first describe the

algorithm and show the generality of the method by applying

it to toy examples. Finally, we show how the method can

produce a large, appearance-based topological map.

II. RELATED WORK

Spectral clustering comes in a variety of flavors. In this

paper, we will exclusively use the method proposed by Ng,

Jordan and Weiss [8]. A great overview of the different

methods is available in [9].

There are many approaches to appearance-based topolog-

ical mapping. Gaspar et al. [6] applied principal component

analysis to condense a large data set of panoramic images

into a smaller set of eigenimages that was used for local-

ization. Tapus and Siegwart [7] extract “fingerprints” from

panoramic images and laser scan data, and add nodes to

the topological map whenever an important change in the

environment (or, rather, to the fingerprint) occurs.

Mulligan and Grudic [10] used spectral clustering on

image data to produce topological maps for a mobile robot.

Zivkovic et al. [11] produced an appearance-based hierar-

chical map using spectral clustering in order to obtain an

approximate solution to the normalized cut problem.
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III. INCREMENTAL SPECTRAL CLUSTERING

A. Spectral clustering

To produce the examples in this paper, we use the cluster-

ing algorithm by Ng, Jordan and Weiss [8]. We also apply

the modification suggested by Verma and Meila [9] in order

to achieve greater numerical stability (Algorithm 1).

Algorithm 1 Modified NJW algorithm

function CLUSTER(affinity matrix A ∈ R
n×n, number of

clusters k)

Aii ← 0
Dii ←sum of row i of A; D is a diagonal matrix

X←k largest generalized eigenvectors of Av = λDv

Y ←normalized rows of X

C ← k clusters of rows in Y, using k-means or similar

return C

end function

As input to the spectral clustering algorithm, we assume

an affinity matrix A. This matrix is computed using the

distances between the points in the data set S influenced

by the scaling parameter σ:

Aij = exp

(

−

(

d(si, sj)
2

2σ2

))

(1)

where d(si, sj) denotes the distance between points si and

sj .

The value of the scaling parameter σ is very important,

and alone determines how similarity depends on distance. If

σ is set too high, compared to the true scale of the problem,

most points will appear similar. If σ is set too low, the

similarity between even close points will be low. Both of

these scenarios imply suboptimal clustering. Computing the

value of σ is, however, out of the scope of this paper (but see

for example [12]). For our purposes, we find that σ naturally

follows from another parameter (section V-B).

The NJW algorithm further requires as input the number of

clusters k, since the algorithm utilizes the k-means clustering

algorithm to produce the clusters.

B. Incremental spectral clustering

The incremental spectral clustering method starts with an

empty data set A and thus an empty affinity matrix A. For

each data point si ∈ S that is added to the data set A, the

algorithm iteratively estimates a cluster representative for

each cluster. The cluster representative is the data point that

is most similar to all other points.1

We require that the cluster representative is not too far

away from any point in the cluster. If it is, the number of

clusters must be increased and a new clustering is performed.

We call the smallest allowed distance the similarity threshold.

Whenever the number of clusters is increased (and when

each cluster has a suitable cluster representative), the entries

in the affinity matrix that have been assigned to a cluster are

1If the data points do have a representation in Euclidean space, the cluster
representative would be the point closest to the cluster centroid.

replaced by a single cluster representative. The original con-

tents of the cluster are stored for future use in computation

of a new cluster representative, if it becomes necessary. The

affinity matrix is thus shrunk to a smaller size. The process

then continues with the next data point.

Incremental spectral clustering is summarized in Algo-

rithm 2. It requires two external functions. The function

sim computes the affinity between data points, i.e. it would

typically compute the affinity between one or more data

points according to equation 1. The function CLUSTER

computes k clusters from the current affinity matrix A.

The method presented in this paper is not restricted to the

modified NJW algorithm. Any spectral clustering algorithm

that takes an affinity matrix and a number of clusters as

input (i.e. it implements the CLUSTER function) could be

used without major modifications to the method.

Algorithm 2 Incremental spectral clustering

A is empty ⊲ A is the current affinity matrix

A← ∅ ⊲ A is the current set

k ← 1 ⊲ k is the number of nodes

for all si ∈ S do

A← A ∪ si

a← sim(si, A) ⊲ a is a row vector

A←

[

A aT

a 0

]

new node← false

⊲ Cn is an i× j matrix

⊲ Rn is the point in Cn most similar to all

⊲ other points in Cn

⊲ Nn is the similarity value for cluster Rn

Nn ← 0
while min(Nn) < similarity threshold do

C ← CLUSTER(A, k)
for all Cn ∈ C do

Cn ← sim(Cn, Cn)
Rn = argmaxi∈Cn

(minj∈Cn
(Cn))

Nn = maxi∈Cn
(minj∈Cn

(Cn))
end for

if min(Nn) < similarity threshold then

new node← true

k ← k + 1
end if

end while

if new node then

A← R

A← sim(A,A)
end if

end for

C. Tweaking the algorithm

There are some issues not addressed with Algorithm 2:

• While the algorithm can successfully handle cases

where two clusters are merged, there is no functionality
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for splitting clusters. This can be easily introduced

by observing a newly created cluster Cn that did not

pass the similarity threshold, and performing a separate

spectral clustering on the matrix Cn. The resulting

clusters are then written back to A.

• The number of clusters k always increases. Because the

method is iterative, the resulting number of clusters is

usually higher than necessary - this is especially true

when the data points arrive randomly (instead of in

cluster order). Improved clustering can be achieved by

regularly or randomly decreasing the number of clusters

k by 1.

The implementation of the algorithm in this paper has

these additional features. The decreasing of the number of

clusters was done with a probability of 0.1; this value was

found to be a good trade-off between speed and having too

many clusters.

D. When to use incremental spectral clustering

If the data points cannot readily be represented by a

coordinate in n-dimensional space, but it is possible to

compute a similarity measure, spectral clustering is a good

option. If the entries in the matrix are costly to compute,

and an approximate result can be accepted, the incremental

spectral clustering method is significantly faster. Further, if

the data should be clustered on-line (i.e. clusters should be

formed as new data points are added to the data set), the

incremental spectral clustering method is preferred for speed

reasons.2 Finally, if the number of clusters of the data is

unknown, the incremental clustering algorithm is preferrable

since it automatically determines the number of clusters by

using the similarity threshold.

E. Results on synthetic data

Some examples on synthetic data illustrate the strengths

and weaknesses of the algorithm. The examples in Fig. 1

and Fig. 2 illustrate the importance of the similarity thresh-

old.3 The data points represent 6 coordinates at (−0.5, 0.0),
(0.5, 0.0), (−0.5, 1.0), (0.5, 1.0), (−0.5,−1.0), (0.5,−1.0)
with Gaussian noise added. With knowledge of the noise

distribution, it is possible to set the similarity threshold so

that the points are almost perfectly classified. Fig. 1 also

illustrates that it is possible to achieve satisfactory clustering

without computing the entire affinity matrix; only 69% of the

total number of entries in the affinity matrix were evaluated.

Fig. 3 shows an example which the NJW algorithm, given

a correct value of sigma and the number of clusters, can

cluster into two intuitive clusters - a center cluster and

a ring surrounding it. The incremental spectral clustering

successfully finds the center cluster, but must split the ring

2Consider a naive on-line approach using normal spectral clustering,
where clustering is performed after each data point. The affinity matrix will
grow as n2, which means that the computation time will soon be larger
than for the incremental spectral clustering algorithm (which tries to limit
the size of the affinity matrix). This is true even if the cost of computing
the entries in the affinity matrix is ignored.

3These examples are for illustration only. Simple clustering tasks such as
these would usually be better tackled by a simpler clustering algorithm.
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300 data points, 6 clusters, 30909 comparisons (69 %)

Fig. 1. Incremental spectral clustering. 6 clusters with Gaussian noise
added. Similarity threshold is based on the true cluster distance 1.0.
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300 data points, 17 clusters, 11693 comparisons (26 %)

Fig. 2. Incremental spectral clustering. Same data points as in 1. Here, the
similarity threshold has been halved, increasing the number of clusters but
increasing performance.

up into several smaller parts. This is because we do not

allow the points within a cluster to be too dissimilar. In

this case, if we were to set the similarity threshold to a too

high value, the algorithm would not be able to differentiate

between the center cluster and the surrounding ring. The

number of clusters in this case is thus directly determined

by the similarity threshold.

F. Performance

The incremental spectral clustering algorithm applies the

spectral clustering algorithm multiple times to the data, and

also introduces some additional overhead in searching for

the cluster representatives, splitting and merging clusters,

etc. However, this does not mean that incremental spectral

clustering is slower than normal spectral clustering.
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Fig. 3. Incremental spectral clustering. Concave areas can be handled, but
the clustering differs from what a human would intuitively choose.

Consider the data set shown in Fig. 1. An unoptimized

Matlab implementation of the incremental spectral clustering

algorithm takes about 70 seconds for the entire data set.

The time to perform spectral clustering on the entire affinity

matrix is about 0.5 seconds on the same machine. However,

the incremental spectral clustering algorithm needs only 69%

of the affinity matrix to obtain the clusters. This means that

we (in this particular case) reach the break-even point at

about 5 milliseconds per entry in the affinity matrix. If the

evaluation of an average entry in the affinity matrix takes

more time than this, then incremental spectral clustering is

faster than spectral clustering.

The performance of incremental spectral clustering is very

dependent on the distribution of the points, and thus it is

very difficult to estimate the performance of the algorithm.

Larger matrices obviously take longer to handle in general,

which would imply that data sets with large clusters con-

taining many points should be faster to process. This is not

necessarily true, however, because the search for the cluster

representative means that more entries of the affinity matrix

have to be evaluated.

IV. TOPOLOGICAL MAPPING USING VISION

As mentioned in the introduction, the reason for de-

veloping the incremental spectral clustering algorithm was

originally to produce topological maps using vision. With the

incremental spectral clustering algorithm in place, the key

to produce correct topological maps is to compute correct

affinities within a set of images. In our case, we have a

sequence of panoramic images obtained from a mobile robot.

We use local features extracted from the images to compute

the affinity matrix.

A. Matching images using local features

The images are acquired by an omnidirectional camera,

consisting of a curved mirror lens mounted above a digital

Fig. 4. Example of feature matching on typical images used in this paper.

camera. Local features are extracted from the images. We

use SIFT, the Scale-Invariant Feature Transform, which was

first presented by David Lowe in 1999 [13]. The main

characteristic of SIFT is that it uses a feature description

that is invariant to scaling and rotation. It is also partially

invariant to changes in illumination and camera location.

The local features extracted from one image can be

matched to features from another image. Using local features

for image comparison in this way has several advantages over

methods that use global features for the comparison: it is less

sensitive to occlusion and changing environments [14], and

it is possible to directly use the number of feature matches

as a measure of image similarity. There is, however, always

a risk that some features will be wrongly matched. We set

a threshold Nmin for the minimum number of local feature

matches before two images are said to match each other.

The feature matching algorithm calculates the Euclidean

distance between each feature in image i and all the features

in image j. A potential match is found if the smallest distance

is smaller than 60% of the second smallest distance. Note

that a feature fi in image i may match feature fj in image

j, without fj matching fi. To reduce the chance of false

matches, we require reciprocal matching, which means that

the features must mutually match each other.

An example of feature matching is shown in Fig. 4. Note

that matches for features corresponding to the robot have

been removed.

B. The distance measure

The number of matches M(i, j) between two images i

and j can be used to compute the corresponding entry in

the affinity matrix. We use the following simple formula to

compute the distance measure4 d(i, j) that is used in the

computation of the affinity (1):

d(i, j) =
1

M(i, j) + 1
(2)

4We note that d(i, j) is not a true distance measure in the geometric
sense; it does not fulfil d(i, i) = 0, neither does it fulfil the triangle
inequality. However, it is difficult to construct a true distance metric for
image similarity, and we have chosen the easy route here. The resulting
affinity matrix will still be useful.
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Fig. 5. The affinity computed as a function of σ and the number of matches.

V. EXPERIMENT

A. Experimental setup

The topological maps shown in Fig. 7 and 8 were

produced from two sequences of images, acquired by an

ActivMedia P3-AT robot fitted with a standard consumer-

grade SLR digital camera (Canon EOS350D, 8 megapixels)

with a curved mirror from 0-360.com. This camera-mirror

combination produces omnidirectional images that can be

unwrapped into high-resolution spherical images by a simple

polar-to-Cartesian conversion. In what follows, we ignore the

geometrical distortion in the spherical image.

The robot was teleoperated around a combined indoor and

outdoor environment. The images were acquired by remote

control, at semi-regular intervals. The positions of the images

were determined by hand. However, the positions do not have

any influence on the resulting topological map and are used

only for visualization.

The images were unwrapped and scaled down to about

1300×400 pixels. Features were extracted from each image

(on average, about 2000) and the number of matches between

images was calculated.

B. Similarity threshold and the scaling parameter σ

The choice of the similarity threshold directly affects the

clustering, because it determines the smallest similarity (or

rather, largest dissimilarity) that we are prepared to accept

in each node.

Usually, the similarity threshold comes from experience.

Using SIFT features extracted from images, it is possible to

inspect the images and manually select the correct number

of SIFT matches for a “place”. One might expect the value

to vary largely over a large data set. However, as long

as the environment is not extreme in some way (i.e. it is

completely featureless or contains repeating patterns), one

value is usually sufficient for the entire data set [15].

We know that for our particular equipment, a good choice

for the value of the minimum number of feature matches

Nmin is 15. The value varies with the resolution of the

images and the environment to be mapped; here, however,

the same value has been used for all data sets.

Fig. 6. Example of image from winter data set.

The similarity threshold is based on this value, as well

as the scaling parameter σ. The affinity as a function of the

number of matches M(i, j) and σ is shown in Fig. 5. A

good choice of σ is one where the affinity approaches zero

when the number of matches approaches Nmin. This ensures

that spectral clustering does not unnecessarily create clusters

that will have a too low maximum similarity value Nn (see

Algorithm 2).

In our case, a choice of Nmin = 15 implies σ ≈ 0.03.

C. Results

Fig. 7 and 8 show two topological maps based on data

sets acquired in winter and summer, respectively. The winter

map exhibits some false links. This is probably due to poor

feature matching in the snow covered environment. The

summer map, which covers partly the same area as the winter

set, is reproduced with correct topology. Fig. 9 illustrates

the computation time requirement for each image acquired,

excluding feature computation and matching. Matching two

images from our data set took at least 1 second; the overhead

introduced by incremental spectral clustering is thus negli-

gible compared to the matching time. Because it was only

necessary to evaluate roughly half of the entries in the full

affinity matrix, the total computation time was nearly halved

(compared to spectral clustering) for these maps.

VI. CONCLUSION AND FUTURE WORK

The algorithm outlined in this paper is incremental, which

makes it useful for mobile robots that should update their

map on-line. The algorithm supports cluster merging and

splitting, which means that the algorithm successfully can

close loops. Also, there is no need to compute the similarities

between the current image and all previous images, which

implies less computation time in those cases where the

similarity measure is costly to compute.

We have shown how the incremental spectral clustering

algorithm can use the power of spectral clustering to obtain

clusters without evaluating the entire affinity matrix. The

number of clusters does not need to be set; instead a

similarity threshold, which in many cases may be a more

intuitive parameter, is introduced.

Note that all topological maps shown in this paper have

been computed using appearance only. It is highly likely that

the maps can be greatly improved by introducing additional

sensor information. Odometry or other methods of determin-

ing position would seem to be ideal candidates, as distance

measurements are easily transformed into affinity.
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134 images, 54 nodes, 4643 comparisons (52 %)
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Fig. 7. Resulting topological map from a data set acquired in winter
(with snow). The false links in this data set are to be expected, as the
images contained very few strong features (see Fig. 6 for a typical image).
Total computation time was 160 seconds in Matlab on an AMD64-3500+,
excluding feature computation and matching.

In the pipeline for future work is a more theoretical

treatment, to more precisely highlight the cases where in-

cremental spectral clustering out-performs other clustering

algorithms. In addition, introduction of geometric constraints

in the image matching (by using RANSAC, for example),

will probably improve the resulting topological map.

VII. ACKNOWLEDGMENTS

This work is partially supported by The Swedish Defence

Material Administration.

REFERENCES

[1] J. Park, H. Zha, and R. Kasturi, “Spectral clustering for robust motion
segmentation,” in The 8th European Conference on Computer Vision,
2004, pp. 390–401.

[2] H. Chang and D. Yeung, “Robust path-based spectral clustering with
application to image segmentation,” in Proc. Intl. Conf. On Computer

Vision, 2005, pp. I: 278–285.

[3] F. R. Bach and M. I. Jordan, “Learning spectral clustering,” UC
Berkeley, Tech. Rep., 2003.

[4] W. Pentney and M. Meila, “Spectral clustering of biological sequence
data,” in Proc. 25th Annual Conference of AAAI, 2005.
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