
 

 

 

  

Abstract— Range images can provide an almost 3-dimensional 

description of a scene. Feature driven segmentation of range 

images has been primarily used for 3D object recognition, and 

hence the accuracy of the detected features is a prominent issue.  

Feature extraction on range images has proven to be a more 

complex problem than on intensity images due to both the 

irregular distribution of range image data and the nature of the 

features that are present in range images.  Approaches to range 

image feature extraction are often scan line based 

approximations that carry a significant computational overhead 

and hence are not appropriate for real-time processing. This 

paper presents a design procedure for scalable first order 

derivative operators that can be used directly on irregularly 

distributed data.  Hence the method is appropriate for direct 

use on range image data without the requirement of image pre-

processing and could form the basis of algorithms of real-time 

robotic applications. 

I. INTRODUCTION 

N recent years many computer vision applications have 

been developed that range image data instead of, or in 

conjunction with, intensity image data [9].  This is largely 

because range imagery can be used to obtain reliable 

descriptions of 3-D scenes; a range image contains distance 

measurements from a selected reference point or plane to 

surface points of objects within a scene [4], allowing more 

information about the scene to be recovered [3].  However, a 

range image contains information about only the visible 

surfaces of the objects, and not their hidden surfaces, and 

hence is often referred to as 2
12 -D information [4]. 

One problem with range images is the extensive amount 

of data that is required to be stored for each individual 

image.  This large volume of data makes direct interpretation 

of range images costly.  To reduce the computation involved 

in interpreting range images, range image feature extraction 

and segmentation have been identified as means of scene 

representation and are used in applications such as object 

recognition [11, 16], motion analysis [18], and automated 

visual inspection [17]. Such segmentation techniques for 

range images can be generalised into two categories: region-

 
Manuscript received September 15, 2006.  This work was supported in 

part by the U.K Research Council EPSRC under Grant EP/C006283/1. 

S.A. Coleman is with the School of Computing and Intelligent Systems, 

University of Ulster, Londonderry, Northern Ireland. Phone: 

+442871375030; fax: +442871375470; e-mail: sa.coleman@ulster.ac.uk  

B.W. Scotney is with the School of Computing and Information 

Engineering, University of Ulster, Coleraine, Northern Ireland, 

Phone:+442870324648; e-mail: bw.scotney@ulster.ac.uk  

S.Suganthan is with the School of Computing and Intelligent Systems, 

University of Ulster, Londonderry, Northern Ireland, UK., Phone: 

+442871375596; e-mail: s.suganthan@ulster.ac.uk  

 

based segmentation, where pixels are classified into regions, 

and edge-based segmentation, where the region boundaries 

are detected. Edge-based techniques are more reliable, as 

region-based techniques suffer from a number of problems 

such as distortion of region boundaries, dependency on the 

initial region selection, and over-segmentation, even when 

applied to very simple segmentation tasks [14]. Among the 

research that has focussed on segmentation of range image 

data, there are four well-known algorithms developed in the 

University of South Florida [13], Washington State 

University [10], the University of Bern [15] and the 

University of Edinburgh [21].  The algorithm of [12] 

computes a planar fit for every pixel and then grows regions 

for those that have similar plane equations.  The algorithm 

from Washington State University, which was originally 

developed for quadric surfaces and then modified by [10] to 

accept only first order surface fits, often results in 

oversegmented images.  Jiang et al. [15] use the scan line 

approximation with region growing performed using a set of 

line segments rather than individual pixels.  This algorithm is 

fast but does not preserve the object edges completely.  

Finally, [21] proposed an algorithm similar to that of [12].  

Although it provides a good standard of segmentation, the 

method is quite slow and is sensitive to noise [14].  This 

paper presents feature detection methods that do not require 

uniform data distribution, preserving the edge localisation 

and hence addressing problems such as over- and under-

segmentation found in the segmentation algorithms. 

Whilst much research has been carried out to develop 

edge detection methods for range image data, little work on 

range data has focussed on the area of multiscale, or 

adaptive, edge detection methods.  The requirement for 

scalable operators in image processing has emerged in recent 

years as research in the field of computer vision has shown 

that, typically, a feature in an image may exist significantly 

over a specific range of scales, with the detected strength of 

a feature depending on the scale at which the appropriate 

feature detection operator is applied.  When features in an 

image that occur over a range of scales are extracted at only 

one scale, localisation error or false edges may be 

introduced.  In order to successfully extract the various edge 

types found in range images, multiscale feature extraction 

algorithms are particularly pertinent for obtaining good 

feature localisation and reliability, as smooth crease edges 

are low-frequency events and jump edges are high-frequency 

events. 

Due to the locational irregularity of range image data, 

multiscale feature detection on range images is a 

significantly different problem than that on intensity images.  

In recent work, Coleman et al., have focussed attention on 

Feature Extraction on Range Images – A New Approach 

S.A. Coleman, B.W. Scotney, S. Suganthan 

I 

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeD2.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1098



 

 

 

the design and implementation of scalable and adaptive first 

and second order derivative operators through the use of a 

finite element (FE) framework; such operators have been 

proven to perform successfully when compared with well-

known intensity image feature detection operators [5, 19].  

Taking advantage of the flexibility offered by the finite 

element method, these operators can be altered to remove the 

requirement for regularly located image data [6] and thus can 

prove to be successful for the purpose of feature extraction 

on range images.  The framework has also been used to 

design and implement novel near-circular first and second 

order derivative operators [7, 20] that have been shown to 

improve edge orientation angular error.  Such operators can 

play a key role in feature extraction for recognition, as 

accurate localisation of object edges is imperative.   

This paper presents a brief overview of the range image 

representation and the design procedure for the scalable 

operators that we propose to use directly on the range data.  

Some preliminary results using first order derivative 

operators are presented and an overview of future work that 

will be carried out on the problem of directly processing 

range data, without any pre-processing requirements, is 

described. 

II. RANGE IMAGE REPRESENTATION 

We consider an irregularly sampled image to be 

represented by a spatially irregular sample of values of a 

continuous function u(x,y) of depth value on a domain Ω . 

Our operator design procedure is then based on the use of a 

quadrilateral mesh as illustrated in Fig. 1. 

 

Fig. 1.  Sample of the irregularly distributed range image 

With each node i in the mesh is associated a piecewise 

bilinear basis function ),( yxiφ  which has the properties 





≠

=
=

ji

ji
yx jji

  if0

  if1
),(φ                      (1) 

where ),( jj yx  are the co-ordinates of the nodal point j in the 

mesh. Thus ),( yxiφ is a "tent-shaped" function with support 

restricted to a small neighbourhood centred on node i 

consisting of only those elements that have node i as a 

vertex.  We then approximately represent the range image 

function u by a function ( ) ∑
=

=
N

j

jj yxUyxU
1

),(, φ  in which the 

parameters },...,{ 1 NUU  are mapped from the range image 

pixels values at the N irregularly located nodal points. 

Therefore, approximate image representation is a simple 

function (typically a low order polynomial) on each element 

and has the sampled intensity value Uj at node j. 

III. FINITE ELEMENT FORMULATION 

We formulate image operators that correspond to weak 

forms of operators in the finite element method [2, 19, 20].  

Operators used for smoothing may be based simply on a 

weak form of the image function, for which it is assumed that 

the image function ),( yxu  belongs to the Hilbert space 

)(
0 ΩH ; that is, the integral ∫

Ω

Ωdu
2  is finite. Feature 

detection and enhancement operators are often based on first 

or second derivative approximations, for which it is 

necessary that the image function ),( yxu is constrained to 

belong to the Hilbert space )(
1 ΩH ; i.e. the integral 

∫
Ω

Ω+∇ duu )(
22

 is finite, where u∇  is the vector 

T
yuxu ),( ∂∂∂∂ .  

Corresponding to a first directional derivative 

ubbu ∇⋅≡∂∂  we may use a test function )(1 Ω∈ Hv  to 

define the weak form 

( ) ∫
Ω

Ω∇⋅= dvubuE        (2) 

Here )sin,(cos θθ=b  is the unit direction vector.  

In the finite element method a finite-dimensional 

subspace 1
HS

h ⊂  is used for function approximation; in our 

design procedure the irregular image U is a function in h
S , 

and h
S  is defined by the irregular quadrilateral mesh of 

elements and piecewise bilinear basis functions described in 

Section 2.  

Since we are focusing on the development of operators 

that can explicitly embrace the concept of size and shape, 

our design procedure uses a finite-dimensional test space 
1

HT
h ⊂σ  that explicitly embodies a size parameter σ that is 

determined by the local scatter point density. This 

generalisation allows sets of test functions ),( yxi

σψ , 

i=1,…,N, to be used when defining irregular derivative based 

operators; for first order operators, this provides the 

functional 

( ) ∫
Ω

Ω∇⋅=
σ

σσ ψ

i

iiii dUbUE .       (3) 
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For the test space h
Tσ  a set of Gaussian basis functions is 

used that explicitly embodies the scale parameter σ.  The use 

of these basis functions within the finite element framework 

enables the development of operators appropriate for use on 

irregular image data.  Sets of Gaussian test functions 

),( yxi

σψ , i=1, …, N  of the form  
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are constructed, each restricted to have support over a 

neighbourhood σ
iΩ  centred on the node i at ),( ii yx . The 

size of the neighbourhood σ
iΩ  to which the support of 

),( yxi

σψ  is restricted is also explicitly related to the scale 

parameter σ [8]. Here, the neighbourhood σ
iΩ  is defined to 

have a real-valued "radius" me
Wσ  for each quadrilateral 

element em in σ
iΩ . In each case me

Wσ  is chosen as the 

diagonal of the element from the operator centre (xi , yi). The 

test function σψ i  is therefore comprised of a set of sectors of 

Gaussian functions m

i

σψ , where m

i

σψ  is the test function 

over element em in σ
iΩ . In each case choosing the element 

scale parameter 96.1/me

m Wσσ =  ensures that the diagonal of 

element em through ),( ii yx  encompasses 95% of the cross-

section of the Gaussian. 

IV. ELEMENT-BY-ELEMENT COMPUTATION 

We illustrate the approach applied to first derivative 

approximation using an irregular bilinear quadrilateral 

discretisation formed from a set of quadrilateral elements 

such as that illustrated in Fig. 1. We construct a set of basis 

functions ),( yxiφ , i=1,...,N, so that the N-dimensional image 

subspace S
h
 comprised of functions that are piecewise 

bilinear.  

On a neighbourhood σ
iΩ we consider a locally constant 

unit vector ( )T

iii
bbb 21,=  where 1

2

2

2

1 =+ ii bb . Substituting 

the image representation ( ) ∑
=

=
N

j

jj yxUyxU
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),(, φ  into the 

weak form ( ) ∫
Ω
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σ

σσ ψ
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where σ
ijK and σ

ijL are respectively entries in N×N global 

matrices σ
K  and σ

L given by 

∫
Ω

∂

∂
=

σ

σ
σ ψ

φ

i

dxdy
x

K i

jij
 i,j=1,..,N       (6) 

and ∫
Ω

∂

∂
=

σ

σ
σ ψ

φ

i

dxdy
y

L i

jij
, i,j=1,..,N      (7) 

These integrals need be computed only over the 

neighbourhood σ
iΩ , rather than the entire image domain Ω, 

since σψ i has support restricted to σ
iΩ . 

Each neighbourhood σ
iΩ is composed of a set σ

iS of 

elements. In our example implementation σ
iS is the 

2Wσ×2Wσ irregular block of elements having nodal point 

),( ii yx at its centre. We may thus write σ
ijK  and 

σ
ijL  as the 

respective summations 

∑
∈

=
}|{

,

σ

σσ

im Sem
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Where σ,m

ijk  and 
σ,m

ijl  are the element integrals 

∫ ∂

∂
=

me

i
j

m

ij dxdy
x

k
σ

σ ψ
φ,  and ∫ ∂

∂
=

me

i
j

m

ij dxdy
y

l
σ

σ ψ
φ, .  The 

element integrals σ,m

ijk  and σ,m

ijl  are actually computed by 

mapping to the standard square element in order to facilitate 

the integration of the Gaussian test functions using simple 

quadrature rules. 
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Fig. 2.  (a) Cartesian reference system for Bilinear element em 

(b) Bilinear reference element. 

For each element σ
ime Ω⊂ , there are just four basis 

functions of the trial space hS  that have support on me . 

Following Fig. 2(a), we may denote these as m

1φ , mm
32 ,φφ  

and m
4φ .  A local (x, y) co-ordinate reference system for a 

general rectangular element me  is introduced that may be 

mapped to co-ordinates ( ξ ,η ) with 11 ≤≤− ξ  and 

11 ≤≤− η  in the standard element ê .  The co-ordinate 

transformation is defined as 
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In practice, integration on ê  is done numerically using a 

low-order Gauss quadrature rule, typically requiring just four 

quadrature points (see [2]) 

Construction of the operators on an irregular 

quadrilateral grid differs from that of image processing 

operators on a typically regular grid in that it is no longer 

appropriate to build explicitly an entire operator, as each 

operator throughout an irregular mesh may be different with 

respect to the operator neighbourhood shape.  When using an 

irregular grid, we work on an element-by-element basis, 

taking advantage of the flexibility offered by the finite 

element method as a means of adaptively changing the 

irregular operator shape to encompass the data available in 

any local neighbourhood. Such a local neighbourhood is 

illustrated by the collection of quadrilateral elements in Fig. 

3; the test function σψ i  is comprised of a set of sectors of 

Gaussian functions m

i

σψ truncated at “radius” me
Wσ .  Thus 

the operator is able to automatically alter its shape as 

required, dependent on the irregular node sampling within 

the range image data. 

 

Fig. 3.  Local 33×  operator neighbourhood 

V. THRESHOLDING 

Here we demonstrate how thresholding differs when we 

apply gradient operators to range images, compared to 

applying such operators to intensity images.  Typically with 

intensity images, after applying gradient operators, 

thresholding is applied by simply selecting an appropriate 

threshold value T, either empirically or scientifically, and all 

values that lie above T are considered as feature points.  This 

is illustrated in Fig. 4, where if we considered the depth 

profile to be a sample profile from an intensity image, the 

slopes correspond to ramp edges and clearly, maxima in the 

gradient output correspond to features in an intensity image.  

However, if the depth profile is that of a range image, the 

same thresholding procedure does not provide edges when 

applied to the gradient output from a range image, but 

instead, surfaces.  Therefore in order to obtain range image 

features, or edges, we must identify significant changes in 

the gradient output. 

0 50 100 150 200 250
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Fig.4 Sample image profile with corresponding gradient operator output 

 

(a) 

 

(b) 

Fig. 5.  (a) Original Range Image; (b) Surfaces detected using typical 

intensity image thresholding method 

Fig. 5 illustrates the output obtained when typical intensity 

thresholding is applied resulting in identification of object 

surfaces (in white). Significant changes in gradient output 

can be used to identify object edges as illustrated by the 

results in Fig. 6. 

VI. RESULTS 

To demonstrate the results obtained to date, we compare 

our proposed technique with that of Jiang et al. [15].  The 

algorithm in [15] is a scan line approximation approach that 

scans the image vertically, horizontally and diagonally.   

In Fig. 6 we show results using the Figure of Merit 

evaluation technique [1] for a vertical edge within a range 

image represented using regularly distributed data. Each 

Figure of Merit value is averaged over 25 images, 

comprising five of each range edge type: step, positive roof, 

negative roof, positive crease, negative crease. Various 

densities of salt and pepper noise were added, density ranges 

from 0 to 0.01. The patterns of behaviour of the two methods 

are similar, with the proposed technique becoming superior 

for lower noise densities.  
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Fig 6. Figure of Merit results using a vertical edge 

Feature maps for both the proposed method and that in 

[15] applied to the range image in Fig. 5(a) are illustrated in 

Fig. 7. This image in captured by the Technical Arts scanner 

and has regularly distributed data [22].  Here we can see that 

our technique provides thinner edges than that of [15] and 

also detects the ridges in the curve of the block.  

 

(a) 

 

(b) 

Fig. 7.  (a) Feature map generated using [15];  (b) Feature map generated 

using proposed technique using significant gradient change thresholding  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8.  Original range images from [22] 

Fig. 9 illustrates the feature maps corresponding to the 

real range images in Fig. 8. These range images contain 

irregularly distributed data.  Again we see that the gradient 

operator detected finer, more distinct features and less noise 

compared with the scan line approximation of [15]. It should 

be noted that our proposed technique automatically finds all 

features whereas the technique in [15] does not automatically 

find the object boundary via the scan line approximation but 

instead, in all cases, assumes the boundary at the transition 

between data and no data in the range image. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 9.  (a), (c), (e), (g) Feature maps generated using [15];  

(b), (d), (f) , (h) Feature maps generated using proposed technique 

WeD2.3

1102



 

 

 

VII. SUMMARY AND FUTURE WORK 

The overall aim of this research is to develop and implement 

multiscale feature extraction algorithms for direct use on 

irregular or incomplete range image data, improving feature 

localisation and enabling real-time processing for the 

application of robotic vision.  Current results as presented in 

the paper in the form of first order feature maps are 

promising when compared with the scan line approach of 

Jiang et al., [15] and such techniques need to be refined and 

timed in order to prove their worth.  Future work will involve 

generating irregular quadrilateral operators of varying size, 

not just 33 × . Such operators will then be adapted in order 

to determine the nature of the features detected: crease, jump 

or smooth.  These techniques will be used for the purpose of 

segmentation and evaluated with respect to existing edge 

based segmentation algorithms with the overall goal of 

recognising objects in range images in real-time. 
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