
 
 

 

  

Abstract—In this paper, we provide an answer to the 
long-standing question of designing global asymptotically stable 
proportional-integral-derivative (PID) regulators with only 
position feedback for uncertain robots. Our main contribution is 
to establish the global asymptotic stability of the controlled 
system by using Lyapunov direct method and LaSalle’s 
invariance principle. We provide explicit conditions on the 
regulator gains to ensure global asymptotic stability. The 
proposed controller does not utilize the modeling information in 
the control formulation, and thus permits easy implementation. 
Simulations performed on a planar two degrees-of-freedom 
robot manipulator demonstrate the effectiveness of the proposed 
approach. 

I. INTRODUCTION 
EGULATION of robot manipulators may be recognized 
as the simplest aim in robot control and at the same time 

finds its main application in the robotic field. Despite the 
success of modern control theory, it has been recognized that 
the majority of the controllers used in robotic manipulators are 
still the proportional-derivative (PD) or 
proportional-integral-derivative (PID)-type [1]-[3]. This is 
not only due to the simple structure which is conceptually easy 
to understand and explicit tuning procedures but also to the 
fact that the algorithm provides adequate performance in the 
vast majority of applications. Most of these controllers have 
been designed using linear models, or linearized ones, and 
some interesting new PID structures such as nonlinear and 
adaptive PID controllers have been proposed to overcome the 
limitations of traditional linear PID controllers for regulation 
tasks of the nonlinear dynamic systems [4]-[8]. 

It has been demonstrated by Arimoto that a local and 
independent PID servo-loop that replacing the linear position 
error term by a saturated position error one, which would give 
rise to global asymptotic stability of the setpoint position 
control for nonlinear mechanical systems [1]. Motivated by 
this work, Kelly [7] employed the tangent hyperbolic function 
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to implement the position regulation of robot manipulator 
with velocity measurement. Alvarez-Ramirez et al. [8] proved 
the semiglobal stability of saturated linear PID control for 
robot manipulators with a standard saturated function. 
Zergeroglu et al. [9] formulated adaptive PID-type controller 
to solve the regulation of robot manipulators by using the 
tangent hyperbolic function, under the bounded inputs. Cheah 
et al. [10], [11] used adaptive saturated PD control to address 
the task-space regulation of uncertain robotic manipulators. 
Most recently, Su et al. [12], [13] incorporated a nonlinear 
saturated synchronized error into the available PD control law 
to implement the high-precision motion control of parallel 
manipulators. 

A major drawback remains for these schemes, i.e. the 
requirement of measurements of both position and velocity. 
Velocity measurement increases cost and imposes constraints 
on the achievable bandwidth. To remove the requirement of 
the velocity measurements, several control techniques that 
stabilize arbitrary positions of robotic manipulators can be 
found in the literature. Berghuis and Nijmeijer [14] 
formulated a linear proportional plus the linear filtered 
position with the gravity compensation. Recently, Orlova et al. 
[15] extended this simple well-known controller to the friction 
manipulator cases, where a switched control action is added 
and if high frequency is affordable by the actuators, then the 
global stability is achievable. Kelly et al. [16] showed that a 
simple output PD plus desired gravity compensation preserve 
global asymptotic stability for position control of robot 
manipulators, by replacing the velocity by its dirty derivative. 
Loria et al. [17] showed that a class of Euler-Lagrange 
systems with bounded inputs that can be globally 
asymptotically stabilized, by incorporating some saturated 
function in the output controller. These strategies also require 
the knowledge of the gravity. To overcome the parametric 
uncertainties on the gravitational torque, an adaptive version 
of PD controller has been introduced in [18], [19], 
guaranteeing global asymptotic stability. The main draw of 
these approaches is that the regressor matrix has to be known. 

On the other hand, most industrial robots are controlled by 
linear PID controllers which do not require any component of 
robot dynamics into its control law [8], [20]. In particular, 
Alvarez-Ramirez et al. [8] formulated a saturated linear PID 
controller by resorting to an additional saturated integral term 
to avoid the evaluation of the gravity term and replacing the 
velocity by its dirty derivative. Ortega et al. [20] presents a 
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called PI2D controller for position control of robots, by 
inclusion of two integral terms around the position error and 
the filtered position, respectively, into a commonly used PD 
controller. Unfortunately, the semi-global stability of the 
resulting closed system is proved only. 

In this paper we introduce a new class of output global 
position controllers for robot manipulators which do not 
include their dynamics in the control laws. Motivated by the 
controllers reported in [16] and [20], we develop a new class 
of output regulators leading to a linear PID output feedback 
plus an integral action driven by a class of saturated functions 
of position error. We characterize the class of function and 
give simple explicit conditions on the controller parameters 
which guarantee global positioning. 

Throughout this paper, we use the notation )(Amλ  and 
)(AMλ  to indicate the smallest and largest eigenvalues, 

respectively, of a symmetric positive-definite bounded matrix 
)(xA , for any nx ℜ∈ . The norm of a vector x  is defined as 

xxx T=  and that of a matrix A  is defined as the 

corresponding induced norm )( AAA T
Mλ= , and I  

denotes an identity matrix of the appropriate dimension. 

II. ROBOT MANIPULATOR MODEL AND PROPERTIES 
The dynamics of an n-degrees-of-freedom robot 

manipulator, with all actuated revolute joints described in 
joint coordinates, can be written as 

τ=+++ )(),()( qGqDqqqCqqM &&&&&                      (1) 

where nqqq ℜ∈&&&,,  denotes the link position, velocity, and 

acceleration, respectively, nnqM ×ℜ∈)(  represents the 

symmetric inertia matrix, nnqqC ×ℜ∈),( &  denotes the 

centrifugal-Coriolis matrix, nnD ×ℜ∈  stands for the diagonal 
positive definite matrix composed of damping friction 
coefficients for each joint, nqqUqG ℜ∈∂∂= /)()(  is a 
gravitational force, )(qU  is the potential energy due to 

gravity, and nℜ∈τ  denotes the torque input vector. 
The dynamic equation of (1) has the following properties 

that will be used in the stability analysis. 
Property 1 [1], [11], [18], [21]-[23]: )(qM  and D  are 

symmetric, positive definite matrices. Furthermore, )(qM  is 
bounded by 

)()()(0 MqMM Mm λλ ≤≤<                     (2) 
Property 2 [1], [21], [22]:  The centrifugal-Coriolis matrix 

),( qqC &  is defined using Christoffel symbols, and 

),()(
2
1 qqCqM && −  is skew-symmetric, i.e. 

nT qqCqM ℜ∈∀=⎟
⎠
⎞

⎜
⎝
⎛ − ζζζ ,0),()(

2
1

&&            (3) 

where )(qM&  is the time derivative of the inertia matrix 
)(qM . 

Property 3 [1], [21], [22]: The matrix ),( qqC &  satisfies the 
following relationship: 

nqCqC ℜ∈∀= υξξυυξ ,,),(),(               (4a) 
and is bounded by 

n
Mm qqqCqqqCqC ℜ∈∀≤≤< &&&&& ,,),(0 22      (4b) 

Property 4 [1]: Since qqUqG ∂∂= /)()(  and )(qU  are 
trigonometric functions of q , there exists a positive-definite 
diagonal matrix A  such that the following two inequalities, 
with a specified constant 0>a , are satisfied simultaneously 
for any fixed dq  and any q  

2

2
1)()()( qaqAqqGqqUqU T

d
T

d ∆≥∆∆+∆−−     (5) 

2)]()([ qaqAqqGqGq T
d

T ∆≥∆∆+−∆               (6) 

where dqqq −=∆  denotes the position error of the actuator, 
and q  and dq  denote the actual and desired coordinates of 
actuators, respectively. 

III. MAIN RESULTS 

A. Control Formulation 
First, we define a class of scalar potential function as 

follows: 
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where )0(, ∞∈δα , and δβ >  are design parameters. The 
first derivative of )(xS  with respect to x can be expressed as 

⎪
⎪
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= −
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),sgn(

,

),sgn(

)( 1                    (8) 

where )sgn(⋅  being the standard signum function. 
Lemma 1: The functions )(xS  and )(xs  in (8) and (9) have 

the following properties: 
(1) 0)( >xS  for 0≠x  and 0)( =xS  for 0=x ; 
(2) )(xS  is continuously differentiable, and )(xs  is strictly 

increasing in x for β<x  and saturated for β≥x ; 
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(3) There is a constant 0>b  such that 
0)()( 2 >≥ xbsxS        for  0≠x                      (9) 

(4) There are constant 0>κ  such that 
0)(2 >≥ xSx κ        for  0≠x                    (10) 

Property (1) is obvious. Proofs of properties (2) and (3) can 
be found in [13]. 

Example of the proposed quasi-natural potential function is 
shown in Fig. 1, with 01.0=δ , 0.1=β , and 5.0=α  (solid 
line) and 5.1=α  (dash line), respectively. 
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Fig. 1. (a) Quasi-natural potential )(xS . (b) Its derivative )(xs  
( 5.0=α  for the solid line; 5.1=α  for the dash line). 
 
 
Using the saturated function, the following linear output 

proportional-derivative (PD) plus nonlinear integral (I) 
control law can be formulated as 

υσσλτ d
t

iip KdqsKqKK −∆−∆+−= ∫
0

))](([)(    (11) 

ABqAqq cc −−=&                                    (12) 

Bqqc +=υ                                        (13) 

where ip KK + , iK  and dK  are diagonal positive definite 

proportional, integral and derivative gain matrices, 
respectively, A  and B  are positive definite filter gains, λ  is 
a small positive constant, and nqs ℜ∈∆ )(  is defined as 
follows: 

[ ]Tnqsqsqs )(,),()( 1 ∆∆=∆ K                         (14) 
Introducing the following vector: 

)())](([)( 1

0
di

t
qGKdqsqtz −

∫ +∆+∆= σσλ             (15) 

Substituting (11) and (15) into (1) yields the error equation 
for the closed-loop system as follows: 

0
)()(),()(

=++∆+
−+++

υdip

d

KzKqK
qGqGqDqqqCqqM &&&&&

         (16) 

whose origin [ ] nTTTT qq 30 ℜ∈=∆ υ&  is the unique 
equilibrium. 

B. Stability Analysis 
Given a target position dq , we consider the global output 

regulation control problem that the designed controller does 
not involve any mode information, such that the robot 
manipulator approaches from any initial state ))0(),0(( qq &  to 
the target state )0,( dq  asymptotically. 

Lemma 2: Under the subsequently conditions (21) and (22), 
the Lyapunov-like function V , defined below, is a positive 
definite function with respect to υ,, qq &∆  

υυ

λ

λ

1

1

2
1

2
1

)()()()(

)()(
2
1)(

2
1

−

∑
=

++
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qGqqUqUqSd
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d
T

i
T

d
T

d
n

i
ii

T
p

TT &&&

    (17) 

with id  denotes the thi  diagonal elements of matrix D . 
Proof: First, we consider the following 

∑
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∑
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1
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1

λλκ
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λ

λλ
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&&&

     (18) 

where we used (2) of Property 1, and (9) and (10) in Lemma 1. 
Substituting (18) into (17), we have 

FrD9.2

4486



 
 

 

υυλ

λλκ

1

1

1

22

2
1

2
1)(

)()}()41{(

4
1)()()()(

4
1

−
∑
=

∑
=

++∆+

∆−+

∆∆+∆−−+≥

BKzKzqSd

qsMkb

qKqqGqqUqUqqMqV

d
T

i
Tn

i
ii

n

i
iiMpiii

p
T

d
T

d
T &&

(19) 
Now we can choose the positive definite constant λ  small 

enough to satisfy the following inequality 
IcD 0λ≥                                         (20) 

where 0c  is a positive constant subsequently defined in (29). 
Then, we can choose the matrices A , B , and dK  

appropriately to satisfy the following inequality: 

)()(
2
1)()( 11

dmdMmm KKBA −− ≥ λλλλλ           (21) 

Once λ  and dK  is chosen to satisfy (20) and (21), we can 
choose pK  so large as to satisfy the following inequalities for 

an appropriate specified positive constant a : 
1

0
12 )(4 −−≥ BKMK Mp λλ                         (22) 

2)(
4
1

)()()(

qsaqKq

qGqqUqU

p
T

d
T

d

∆≥∆∆+

∆−−
          (23) 

2)()}(
2
1{

)()]()([)(

qsKa

qKqsqGqGqs

dM

p
T

d
T

∆+≥

∆∆+−∆

λ
    (24) 

where ),,(diag 1 nkkK K= , and ),,(diag 10 nbbB K= . Note 
that the inequalities (23) and (24) correspond to inequalities (6) 
and (7) of Property 4, respectively, and the existence of such a 
matrix pK  is confirmed by the same argument given in 

proposing (6) and (7), since each component )( iqs ∆  satisfies 
(8) is quadratic in the vicinity of 0=∆q . 

From (22), (23) and (19), we have 

0
2
1

2
1

)()()(
4
1

1

1

2

>++

∆+∆+≥

−

∑
=

υυ

λ

BKzKz

qSdqsaqqMqV

d
T

i
T

n

i
ii

T &&

      (25) 

for [ ] 0≠∆
TTTT qq υ& . 

Hence, we can conclude that V  is a positive definite 
Lyapunov function with respect to υ,, qq &∆ .                                ■ 

Based on Lemma 2, we have the following theorem. 
Theorem 1: With the proposed output PID controller 

(11)-(13), the closed-loop system (16) is globally 
asymptotically stable, if  λ  is chosen small enough to satisfy 
(20); A , B , and dK  are chosen appropriate to satisfy (21); 
and pK  is chosen large enough to satisfy (22)-(24) 

simultaneously. 

Proof: From Lemma 2, the function V  defined in (17) can 
be selected as a Lyapunov candidate function. Differentiating 
V  with respect to time, we have 

υυ
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λλ
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(26) 
Substituting qqM &&)(  from (16) and )()( qsqtz ∆+∆= λ&&  

from (15), into (26), and using (3) of Property 2, yields 
{ }

υυυλυ

λ

λ

1)(

})()]()([)({

)()(),()(

−+−∆−−

∆∆+−∆−
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d
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TTT
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&&&&&&&

   (27) 

Upon using qBA && +−= υυ  from (12) and (13), we have 

{ }

υυυλ

λ

λ

ABKKqs

qKqsqGqGqs

qqMqsqqqCqsqDqV

d
T

d
T

p
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d
T

TTT

1)(

})()]()([)({

)()(),()(

−−∆−

∆∆+−∆−

∆+∆+−= &&&&&&&

   (28) 

By using (2) of Property 1 and (4) of Property 3 and the 
definition of )( qs ∆  in (8), the second term of the right-hand 
side of (28) can be upper bounded by 

{ }
2

0
2)))(((

)()(),()(

qcqMqCn

qqMqsqqqCqs

MMM

TTT

&&

&&&&

λλβλ

λ
α =∆Λ+≤

∆+∆
  (29) 

where )( q∆Λ  being a diagonal matrix whose entries 
)()( ii qqs ∆∂∆∂  are nonnegative, and can be determined by 

using the definition of )( qs ∆  in (8). Note that the derivation 

of the first term of (29) utilizes αβnqs ≤∆ )(  according to 
(8). 

Substituting (29) into (28) and upon using (23), we have 
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122
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1
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−−

∆−−−=
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−

−

−

&&

&&

&&&

 

(30) 
From (20) and (21) and λ  and a  are positive constants, 

we conclude that 0≤V& . In fact, 0=V&  means 0)( =∆qs , 
0=q& , and 0=υ . By definition of )( qs ∆ in (8), we have 
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0=∆q . Therefore, by LaSalle’s invariance theorem [24], we 
have 0)( →∆ tq , 0)( →tq& , and 0→υ as ∞→t  for any 
initial state ))0(),0(( qq & . This completes the proof.               ■ 

IV. ILLUSTRATION EXAMPLE 
Simulations on a two-DOF planar robot manipulator were 

conducted to illustrate the effectiveness of the proposed 
simple output PID controller. The entries to model the robot 
manipulator are, respectively [25] 

⎥
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&&           (31) 

Furthermore, a Coulomb friction is also considered in the 
simulations. To keep the notation used for model (1), it is 
defined ),(diag 76 θθ=D , and 

⎥
⎦

⎤
⎢
⎣

⎡
=

)sgn(
)sgn(

)(
29

18

q
q

qfc &

&
&

θ
θ

                           (32) 

where the parameters in the simulation are summarized in 
Table I. 
 

Table I 
PARAMETERS OF THE ROBOT MANIPULATOR 

Notation Value Units 

1θ  2.351 2mkg  

2θ  0.084 2mkg  

3θ  0.102 2mkg  

4θ  38.465 mN ⋅  

5θ  1.825 mN ⋅  

6θ  2.288 smN ⋅⋅  

7θ  0.175 smN ⋅⋅  

8θ  
7.170 if 01 >q&  and 

8.049 if 01 <q&  
mN ⋅  

9θ  1.724 mN ⋅  

 

The final desired positions were )rad(
2

,
4

T

dq ⎥⎦
⎤

⎢⎣
⎡=

ππ . The 

sampling period was determined as ms1=T . All the initial 
parameters are set as zero. The parameters of the used 

saturated function were 7.0=α , 0.1=β  and 01.0=δ . The 
gains for the proposed output PID controller were chosen in 
accordance with stability conditions (20)-(24) as 0.1=λ , 

)155,155(diag=+ ip KK , )15,150(diag=iK , 

)15,20(diag=dK , )80,50(diag=A , and )60,50(diag=B . 
First the regulation of the robot targeted at the desired 
positions without noise was conducted out, and the position 
errors and the required input torques are shown in Figs 1 and 2. 
After that a white noise with an amplitude of rad0.01  is 
added to the position signals to imitate the measurement noise, 
and the obtained results are illustrated in Figs. 3 and 4. It can 
be seen that both of the cases the robot targeted at the final 
desired position correctly, and after a transient due to errors in 
initial condition, the position errors tend asymptotically to 
zero. 
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Fig.1. Position errors without noise. 
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Fig. 2. Input torques without noise. 
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Fig.3. Position errors with noise. 
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Fig. 4. Input torques with noise. 

V. CONCLUSION 
We have proven the global asymptotically output 

regulation of robot manipulators with a simple PID control 
with Lyapunov direct method and LaSalle’s invariance 
principle. The proposed controller does not use the modeling 
parameters in the controller formulation and the gains of the 
controller can be explicitly determined in terms of a few 
bounds extracted from the robot dynamics and the developed 
saturated function, and thus permits easy implementation. 
Simulations preformed on a two-DOF robot demonstrate the 
effectiveness of the proposed approach. 
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