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Abstract— Scene registration of 3D laser rangefinder scans
is increasingly being required in applications, such as mobile
robotics, that demand a timely response. For speeding up point
matching methods, the large amount of range data should
be reduced. This sampling, in turn, can have a significant
impact on accuracy. In particular, Genetic Algorithms provide
a robust optimization method that avoids local minima for
scan matching, but their computational cost grows with the
number of points. This paper proposes a new point sampling
strategy that considers the spherical scanning process of most
sensors to equalize the measure-direction density. This fast
sampling method reduces the number of points without loss
of relevant scene information. It is experimentally compared
with other systematic approaches for the case of actual scene
genetic registration.

I. INTRODUCTION

Scan registration can be defined as finding the translation
and rotation of a projected scan contour that produces maxi-
mum overlap with a reference scan or a previous model. Scan
matching is a highly non-linear problem with no analytical
solution that requires an initial estimation to be solved
iteratively. In addition, some applications of registration with
3D laser range-finders, like mobile robotics [1], impose time
constraints to this problem, in spite of the large amount of
raw data to be processed.

Registration of 3D scenes from laser range data is more
complex than matching 2D views:

• The amount of raw data is substantially bigger.
• The number of degrees of freedom increases twofold.
Moreover, registration of scenes is different from modeling

single objects in several aspects:
• The scene can have more occlusions and more invalid

ranges.
• The scene may contain points from unconnected re-

gions.
• All scan directions in the scene may contain relevant

information.
There are two general approaches for 3D scan registration:

feature matching and point matching. The goal of feature
matching is to find correspondences between singular points,
edges or surfaces from range images [2]. The segmentation
process used to extract and select image primitives deter-
mines computation time and maximum accuracy.

On the other hand, point matching techniques try to
directly establish correspondences between spatial points
from two views. Exact point correspondence from different
scans is impossible due to a number of facts: spurious ranges,
random noise, mixed pixels, occluded areas and discrete
angular resolution. This is why point matching is usually
regarded as an optimization problem, where the maximum
expected precision is intrinsically limited by the working
environment and by the rangefinder performance.

Different optimization techniques have been proposed for
point matching methods. They have an important computa-
tional cost, which depends mainly on the number of points.
Local search methods, such as Iterative Closest Point (ICP)
[3] [4] and its many variants [5] or the gradient-based
Levenberg-Marquardt method [6] provide faster convergence,
but they can get stuck in local minima. This problem is
avoided with the use of Simulated Annealing [7] or Genetic
Algorithms (GA) [8], which introduce a stochastic com-
ponent in the search, at the cost of even more expensive
computation. Furthermore, hybrid approaches combine GA
estimation with faster local refinements based on ICP [9] or
hill-climbing [10].

The most straightforward approach to improve computa-
tion time for point matching is to reduce the number of points
to be matched. However, this can have a great impact on
matching accuracy. This sampling process usually has to be
applied only once for each scan registration.

Several point sampling methods have been proposed:
• No sampling at all [3]. This is the case for 2D scan

matching due to the low number of points [8] [9].
• Random sampling from raw data [11] [12].
• Uniform sampling uses equally distributed data from the

scan stream [4].
• Reduction filter, where multiple close points of the same

2D scan slice are averaged into one [1].
• Mesh sampling selects vertices based on a spatial sub-

division of the point cloud [13].
• Normal-space sampling selects surface points whose

normal vectors are distributed uniformly in all directions
[5].

• Selection of points with higher image gradients in laser
reflectance measurements [14].

Randomized and uniform sampling are systematic meth-
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ods independent of actual range values. Reduction filter,
mesh, normal-space, and image gradient methods require
processing of laser readings.

This work proposes a new systematic point sampling
method that equalizes measure-direction density based on the
spherical nature of data of most 3D scanners. This method
can be applied to reduce computational cost of optimization-
based registration techniques, and has been employed to
improve efficiency of time-expensive GA matching.

The paper is organized as follows. Next section surveys
the use of GA for scan registration. Section III proposes
the new spherical sampling method. Then, the experimental
setup is described and the experimental comparison between
systematic point sampling methods is reported. Finally, some
conclusions and future work are presented in section V.

II. SCAN MATCHING WITH GENETIC ALGORITHMS

GAs, sometimes referred to as evolutionary programming,
run a tournament between a population of possible solutions
that mimics natural selection. They provide a derivative-free
stochastic optimization tool, where each point in a solution
space is encoded into a bit string (chromosome) and is
associated with a fitness value according to a cost function.
Starting from an initial random population, points with better
fitness values are used to construct a new population of
solutions by means of genetic operators. Basically, these are:

• selection, that determines which individuals survive to
the next generation,

• crossover, that generates new chromosomes by ran-
domly combining parts from good solutions, and

• mutation, that sporadically changes some bits of the new
individuals.

Thus, after several iterations (generations), the overall
fitness value is improved by exploiting the best solutions
and exploring new possibilities.

The application of GAs to scan registration can be classi-
fied into two groups, depending on the meaning of the genes:

• Correspondence-based encoding: for each projected
point, a gene contains an index that identifies the
corresponding point in the reference scan [8] [11] [12].
This chromosome (set of matched points) leads to the
calculation of a unique least-squares-error transforma-
tion between both views.

• Pose-based encoding: each gene represents a degree of
freedom. Thus, the chromosome is composed of 3 genes
(2 translational and 1 rotational displacements) for 2D
problems [9], and of 6 genes (3 translational and 3
rotational displacements) for 3D views [15] [10]. Points
can be projected from one scan to another acording to
the transformation.

The problem with the first strategy is that, even with a low
number of points to be projected, the size of chromosomes
can be excessively large, and, consequently, the search space
too vast. Thus, it has been applied to 2D registration [8] or
simple 3D object surface matching [11] [12]. Point reduction
can be applied both to the projected (limiting the number of

genes of a chromosome) and reference scans (reducing the
number of bits of a gene).

For the second strategy, point correspondence for ev-
ery chromosome is computationally expensive. Besides, not
only accuracy grows with the number of bits employed
to represent each gene, but also the search space. Data
reduction is applied to the projected scan only, since the
complete reference scan is needed to search for precise
correspondences.

As for the fitness function to be optimized by the GA, two
different types have been employed:

• Object surface properties such as normal vectors [11]
or interpenetration measure [10].

• Distances between matched points, either Euclidean [8]
[15] [12] or in polar ranges [9]. Unmatchable points are
usually discarded from the fitness function by applying
a certain threshold.

In any case, the major drawback of GAs for scan matching
is their computational load. Exploiting parallelism of the GA
is one possibility to solve this problem from a hardware
standpoint [15]. However, the most straightforward approach
is algorithmic reduction of the number of points to be
projected (i.e., point sampling) [10].

III. SPHERICAL POINT SAMPLING

Three types of 3D laser devices are commonly employed
to obtain range data:

• Commercial short range 3D devices with reduced field
of view, usually applied for reversed engineering or
generating computer graphics of small objects [11] [10]
[12].

• High-end long range 3D devices with high resolution
employed for realistic visualization and documentation
of sites of interest [2] [16].

• Standard 2D devices with an extra degree freedom
used for scene registration. This solution is commonly
adopted in mobile robotics [1] [17] and also in the
experiments that illustrate this paper.

Most of them perform a 2D scan in combination with a
rotation of the opto-mechanical head, i.e. a spherical scan
[16]. This is illustrated in Fig. 1 by a standard 180o 2D
scanner with an additional degree of freedom at the sensor
X axis. The paper focuses only on this case, but the proposed
method can be adapted easily to rotation about the Y axis.

Dots in Fig. 1 do not represent ranges but measurement
directions with respect to the origin of the scanner coordinate
system. Thus, the resulting lune corresponds to the field
of view of the sensor, which is defined by the maximum
scanning angles of spherical coordinates: Φ for the 2D device
and Ψ for the additional rotation. Besides, dot density in the
lune illustrates angular resolution, which is given by ∆φ and
∆ψ, respectively. Thus, a 3D scan consists of Nψ 2D slices
composed of Nφ laser readings each:

Nψ = 1 +
Ψ

∆ψ
; Nφ = 1 +

Φ
∆φ

(1)
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Fig. 1. Field of view and measure-direction density.

The resulting number of raw data is given by N =
Nψ ·Nφ. These can be represented as a range matrix R,
where the element ri,j is the j-th data from the i-th 2D
scan.

Because of this type of mechanism, maximum measure-
direction density is located near the rotation axis [17]. The
proposed sampling method takes into account this fact to
equalize measure-direction densities, i.e. to discard readings
that correspond to similar directions.

Note that for Ψ = 180◦, the first and the last scan
directions coincide for all 2D slices (i.e., lune vertices in Fig.
1). This means that the ranges of the first and the last columns
of matrix R would be similar in a static environment, so only
one value for each column is necessary.

Scan densities get sparser when the direction approaches
the YZ plane (i.e., in the forward direction of the sensor),
so the central value of all Nψ slices should be kept in the
central column. Thus, the central column can be used as a
reference to equalize the rest of the columns j proportionally
to their normalized vertical arc lengths aj :

aj = sin(
π − Φ

2
+ ∆φ(j − 1)) (2)

where Φ ≤ π.
Thus, the number of row points selected for every column

j in R is computed as:

sj = round(1 + (Nψ − 1) · aj) (3)

Then, uniformly distributed row indexes to be kept for
every jth column in R are obtained as vector Ij :

Ij =
[
1 + round

((
Nψ − 1
sj − 1

)
(k − 1)

)]
k=1..sj

(4)

The result of applying this spherical sampling method
can be observed in Fig. 2, where selected range directions
appear as ’o’s. The selected points in R make up a binary
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Fig. 2. Spherical point sampling.

mask matrix M that only has to be computed once for a
particular scanner configuration. Then, element-by-element
multiplication of M with R will systematically produce
sampling for each scan.

The total proportion of sampled points from the original
3D scan can be computed as:

rs =
Nφ∑
j=1

sj
N

(5)

which only depends on Φ and is independent of the angular
resolution of the sensor. For instance, rs = 63.7% for
the case of Φ = 180◦, which is the usual case for scene
registration. This rate enlarges if the horizontal scope Φ is
narrower (e.g., rs = 72.8% for Φ = 150◦).

IV. APPLICATION TO 3D SCENE GENETIC REGISTRATION

A. 3D Scanner Device

The 3D scanner device (see Fig. 3) has been constructed
by adding an extra degree of freedom to a commercial 2D
SICK-LMS 291 time-of-flight rangefinder.

The maximum values for the rangefinder specifications
are: field of view Φ = 180◦, horizontal angular resolution
∆φ = 1

2
◦, up to 80 m range, ±4 cm range error, 26 ms of

scan time and a serial interface at 500 Kbaud.
This 2D sensor has been incorporated into a mechanical

articulation driven by a stepper motor. Its rotation axis has
been made to coincide with the rangefinder’s X axis through
an eccentric gear. This way, readings are provided directly
in spherical coordinates. Moreover, a special counterweight
has been added to reduce the required driving torque.

The vertical angular resolution is ∆ψ = 1
3
◦, with Ψ = 60◦

of field of view. A complete 3D scan with N = 65341
(361 · 181) points is obtained in a 12 s interval. The 2D
rangefinder is continually sending range data with a refresh
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Fig. 3. The 3D laser scanner is based on a 2D rangefinder.

rate that is faster than drive control. Synchronization is
achieved by waiting for the step acknowledgement from the
drive controller. At that time, the next complete 2D scan is
recorded through the serial interface and, then, a new motion
pulse is issued.

B. Spherical Point Sampling

Figures 4 to 6 show the mask matrix M obtained for
different systematic approaches, where discarded points are
shown in black. Figs. 4 and 5 illustrate uniform and random
sampling, respectively, with a total sampling rate rs =
63.7%. The same number of points is selected in Fig. 6 by the
spherical sampling algorithm. However, these are equalized
according to measure direction density with respect to the
maximum vertical resolution provided by the sensor.

C. Indoor Scene

Tests have been performed in a non-structured scene, pro-
vided by a cluttered robotics laboratory. Fig. 7 is a panoramic
view of this scene composed by several stitched photographs.
The same scene is depicted in Fig. 8 as the range matrix R
recorded by the laser scanner. In this representation of 3D
data, closer objects have a darker level of grey. White points
correspond either to very far ranges or to invalid laser data.

This depth image resembles the panoramic view. Note that
straight lines are distorted in a spherical way around the laser
center, However, this image is more compact and intuitive
for scenes than rendering virtual views only with this laser
data.

Fig. 9 shows another view of the robotics laboratory.
In particular, x = −1cm, y = 39cm, z = 4cm and

Fig. 4. Binary mask for uniform sampling.

Fig. 5. Binary mask for random sampling.

Fig. 6. Binary mask for spherical sampling.

α = −44.5◦, β = −0.8◦, γ = 9.1◦ with respect to
the reference coordinate system of the previous scan. The
result of projecting this scan acording to this transformation
is shown in Fig. 10. White areas corresponds with no
overlapping zones between both views.

D. Genetic Algorithm Registration

Regarding the GA registration method, pose-based en-
coding has been adopted (displacements x, y, z and angles
α, β, γ with roll-pitch-yaw convection). Sampling is applied
only to the projected scan.

Range differences of the same measure direction between
the projected and reference scans have been considered for
the fitness function. A threshold of 10 cm for the difference
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Fig. 7. Panoramic view of the laboratory with the mobile robot Auriga-α
centered on the foreground.

Fig. 8. Depth image of the robotics laboratory (reference scan).

Fig. 9. Second view of the robotics laboratory (scan to be projected).

Fig. 10. Optimal projection of the second scan into the reference coordinate
system.

between the actual and projected ranges is used to reject
non-matched ranges for the fitness function [9].

Each gene has been coded into a 6-bit string, thus forming
individuals of 36 bits. The boundaries of the problem space
around the initial estimation are defined by maximum errors
of ±8 cm for displacements and of ±4◦ for rotations.

The GA has been set to iterate 120 generations with a
population size of 80 solutions. The individuals above the
fitness arithmetic mean are replaced every generation. One-
point crossover is applied to the parents, which are chosen
randomly from the entire population. The mutation rate has
been set to 1 bit per 2 new chromosomes.

E. Experimental results

Fig. 11 shows the relationship between the number of
points projected into the reference scan (logarithmic scale)
and the processing time of GA implemented as described in
previous subsection. Computations have been carried out by
a PC with Pentium IV at 3.2GHz. The processing time is
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Fig. 11. Relationship between number of points and processing time.

TABLE I
EXPERIMENTAL SCAN MATCHING ERRORS.

Sampling Points Es(cm) Ea(◦) Matches
All points 65341 0.64 0.25 34291
Ramdom 41619 0.58 0.29 21738
Uniform 41619 0.54 0.33 21632
Spherical 41619 0.86 0.22 23179

linear with the number of points and is almost independent
of the number of matched points due to the pose-based
encoding.

Table I summarizes a set of GA registrations of the scans
presented in subsection IV-C. For each systematic sampling
method, ten matchings have been averaged with different
initial pose estimations.

Two accuracy measures are shown in table I. Let
∆x,∆y,∆z,∆α,∆β,∆γ be the errors between the esti-
mated pose and the ground truth. Then, Es represents the eu-
clidean distance:

√
∆x2 + ∆y2 + ∆z2, and Ea represent the

angular error of the three rotations:
√

∆α2 + ∆β2 + ∆γ2.
As can be observed, GA registration method is quite

robust because the errors are close to the resolution of the
search space. Moreover, the effect of the sampling methods
is almost negligible, being spherical, the technique with the
bigger proportion of matched points.

V. CONCLUSIONS

Present-day 3D scanners offer high point density, but cer-
tain applications of scene registration, like mobile robotics,
impose time constraints. Thus, point sampling plays an
important role both on the accuracy of the resulting pose
estimation and on computational requirements.

We propose a new point samplig method that considers the
spherical scanning process of most laser sensors in order to
equalize the measure-direction density. The major advantages
of this approach are:
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• It does not depend on actual range readings, so its com-
putational load is similar to that of random or uniform
sampling. A binary mask, that is computed once for
a given sensor configuration, is used to systematically
select data from each scan.

• It can achieve up to 36.3% of data reduction while
preserving the angular resolution of the original sensor,
so it is less likely that relevant scene information is lost.

• Equalization not only produces sampling, but also
avoids that denser peripheral regions of the scene have
more weight in the matching process.

Spherical sampling has been successfully applied to 3D
scene registration, a problem with special difficulties as
compared to 2D or single-object matching. We find that
GA’s provide a robust search which a computational load
proportional to the number of sampled data.

In the case that maintaining the original resolution of
sensor data is not a major aim, the concept of equalization
measure-direction density could be extended to increase data
reduction.

Further comparisons are required with faster but less reli-
able registration algorithms as well as with range dependent
sampling methods. Another extension of this work includes
its application to mobile robot mapping in outdoor areas.
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