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Abstract— This paper addresses a vision-based endpoint
trajectory and vibration control approach for flexible manip-
ulators. In this approach, both the trajectory and vibration
control are implemented by using an endpoint camera. In
order to estimate link vibrations from the visual information,
Kalman filter is used. To make the endpoint to follow a specified
trajectory, image interpolation approach is introduced. The
experimental results prove the effectiveness of the proposed
control strategy.

I. INTRODUCTION

Present space manipulators such as SRMS (Space Shuttle
Remote Manipulator System) and SSRMS (Space Station
RMS) have structural flexibility in their arms and joints.
Due to the lack of rigidity, flexible manipulators severely
suffer from the structural vibration and inaccuracy in end-
effector positioning. Therefore, astronauts operate the space
manipulators very slowly in order to avoid exciting structural
vibrations. If some operations in space applications are
automated, the load of astronauts can be drastically reduced.
In the automated task operation, it is necessary to consider
the structural flexibility of the manipulator.

One possible solution to improve the positioning accuracy
is the usage of camera. It is a feasible solution because
most of space manipulators are equipped with an endpoint
camera. There are two approaches for the endpoint control
of rigid manipulators using vision: Position Based Visual
Servoing (PBVS) and Image Based Visual Servoing (IBVS).
In Position Based Visual Servoing, the visual information is
used to estimate the relative pose between the end-effector
and the target. The control is aimed to reduce the pose error.
This approach necessitates precise robot model and camera
model. To the contrary, in Image Based Visual Servoing,
the visual information is directly fed back for control. The
control objective is to reduce the error defined in image
plane. In general, it is difficult to apply the position-based
approach to a flexible manipulator, because the structural
deflection cannot be directly measured but can be estimated
from the sensor information such as strain at each link.
Inaccuracy in the estimation of the structural deflection may
bring a significant error in kinematics solution. It may be
rather easy to apply image-based approach to a flexible ma-
nipulator, because this kind of approach is robust to the error
in robot kinematics and camera model. Even if a rough end-
effector Jacobian matrix and imprecisely calibrated camera
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are used in control, the convergence of control can still be
guaranteed in the neighbourhood of the target. This property
provides flexible manipulators a simple way to compensate
the kinematics error due to link’s bending. Therefore, an
image-based visual feedback is discussed in this paper.

The image-based approach was originally developed for
rigid manipulators, and hence if it is directly applied to
flexible manipulators, the approach may bring instability
in the control, since the visual image vibrates due to the
structural flexibility of the manipulator. Therefore, an image-
based visual feedback control for flexible manipulator was
proposed [1], in which only the low frequency changes in
image were used for endpoint control. The link vibration was
suppressed using links’ strain in [1].

Except the approach of input shaping, most of vibration
control strategies proposed so far assume that the structural
vibration is directly measured by sensors such as strain
gauges or accelerometers. However, present space manipula-
tors such as SRMS and SSRMS are not equipped with such
kinds of sensors. Therefore a vibration suppression control
using an endpoint camera is also discussed in this paper.

Some researchers have tried to use a camera to estimate
the structural vibration. Bascetta fused the visual information
into the strain information using a Kalman filter. The less
noisy measurement from camera helps improve the quality
of deflection measurement. However no experimental results
only using camera to damp out the vibration were provided
in [2].

As for the endpoint control, the image-based approach
controls the end-effector following the trajectory minimizing
the error defined in image plane and hence sometimes the
generated trajectory is not appropriate for a given task. For
this problem an image interpolation based solution has been
proposed in [3], which specifies the end-effector’s trajectory
by using images of intermediate points. This approach is
applied to the endpoint trajectory control of a flexible ma-
nipulator in this paper. The proposed approach is verified by
a peg insertion task.

The paper is organized as follows. Sections I and II present
an introduction and the dynamic model of a 3D flexible
manipulators, respectively. A vibration suppression control
using vision is proposed in section III. Image interpolation
is integrated in order to specify the endpoint trajectory. The
detailed implementation is described in IV, which is followed
by experimental verification in section V. The paper ends
with concluding remarks in section VI.
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Fig. 1. Overview of a flexible manipulator and deflection definition.

II. DYNAMIC MODEL OF A FLEXIBLE ROBOT

The 3D flexible-link manipulator shown in Fig. 1 is used
in this study. The flexible manipulator is modelled by lumped
masses and massless springs. The masses are assumed to be
concentrated on the shoulder, elbow, wrist, and end-effector.
They are considered to be connected with massless flexible
links. The dynamics equation can be expressed as:[

τ
0

]
=

[
M11(θ ,e) M12(θ ,e)
M21(θ ,e) M22(θ ,e)

][
θ̈
ë

]
+

[
h1(θ , θ̇ ,e, ė)
h2(θ , θ̇ ,e, ė)

]

+
[

0 0
0 K22

][
θ
e

]
+

[
g1(θ ,e)
g2(θ ,e)

]
, (1)

where θ = [θ1 · · · θn]T is the joint angle vector and e =
[e1, · · ·em]T is the deflection variable vector, τ stands for
the input joint torque vector, M11,M12,M21 and M22 are
inertia matrices, h1 , h2 are the centrifugal and Coriolis force
vectors, K22 represents the stiffness matrix and g1 , g2 are
gravity vectors. A set of velocity controlled actuators is used
in the system, and thus the actual inputs to the system is
formed as a set of angle velocity reference for each joint.

This paper deals with relatively slow motions, and assumes
that the centrifugal and Coriolis terms can be neglected. The
elastic vibration is excited around the equilibrium state of
each joint configuration, where the bending of links takes
balance with gravity effect. Referring to (1), the following
equilibrium conditions can be derived:[

0 0
0 K22

][
θ 0
e0

]
+

[
g1(θ 0)
g2(θ 0)

]
=

[
τ0
0

]
, (2)

where θ 0 is a given joint configuration, e0 is the static
deflection, and τ0 is the torque to maintain balance. The
influence of deflection on gravity terms is ignored. ∆e and
∆τ are defined to represent the deviation of corresponding
variables from their static values as follows:

∆e = e− e0 = e+K−1
22 g2(θ), (3)

∆τ = τ −g1(θ). (4)

With these variables, a linearized model is derived as:[
M11 M12
M21 M22

][
θ̈
∆ë

]
+

[
0 0
0 K22

][
θ
∆e

]
=

[
∆τ
0

]
, (5)

(b) Hole.

(c) End-effector.(a) Overview of the peg insertion operation.

Fig. 2. Experimental setup.

where ∆e is computed from (3). It should be noticed that the
lower part of (5) can be thought to dominate the behaviour
of vibration. For motions in free space, it can be proved that
the deflection variables are not independent. The independent
variables are chosen to be the bending deflection of e =[
δy3 δz3 δy5 δz5

]
as shown in Fig. 1.

For the control of a task level operation, a composite
strategy is used, in which the whole dynamics is divided
into two subsystems: the rigid motion of task level as a slow
subsystem, and the elastic vibration as a fast subsystem. The
overall controller is simply defined as the sum of the sub-
controllers independently designed for each subsystem:

θ̇ c = θ̇ r + θ̇ e, (6)

where θ̇ r and θ̇ e refer to the control signals contributing to
rigid motion and elastic one respectively.

III. A VISION-BASED VIBRATION SUPPRESSION CONTROL

In the case of three dimensional flexible manipulators, a
simple strain feedback with fixed gain may bring instability,
since the relation between actuated joints and vibration
changes depending upon the posture of the arm [4]. There-
fore, a configuration dependent strain feedback is proposed
to damp out the vibration of the links [4].

Based on the configuration dependent strain feedback
control, a vision-based vibration control is derived in this
section. The lower component of (5) is rewritten here:

M22∆ë+K22∆e = −M21θ̈ . (7)

(7) describes elastic motion of the flexible manipulator.
In (7), joint acceleration θ̈ affects the vibration system
as if it were the input to the system. Therefore, if the
damping effect for vibration is realized by joint acceleration
θ̈ , the vibration is well suppressed. Assuming ideal velocity
controlled motors in which the motors strictly follow the
given velocity command, the following vibration damping
command is considered:

θ̇ e = M+
21M22Ke∆e, (8)

where “+” refers to the pseudo inverse, and Ke is a diagonal
gain matrix. Time derivative of (8) is given by:

θ̈ e = M+
21M22Ke∆ė. (9)
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Note that since the posture of the manipulator does not
drastically change, the time derivative of the inertia matrices
is approximated to be zero in (9). Substituting (9) into
(7), the following second order damping vibration system
is obtained:

∆ë+Ke∆ė+M−1
22 K22∆e = 0. (10)

Modal transformation ∆e = Φ∆e∗ is applied to (10) as
follows:

∆ë∗ +Φ−1KeΦ∆ė∗ +Φ−1M−1
22 K22Φ∆e∗ = 0, (11)

where Φ and ∆e∗ are the modal matrix and modal coordinate,
respectively. If the gain matrix Ke is given as Ke = KeI (I is
the unit matrix), (11) becomes as follows:

∆ë∗ +KeI∆ė∗ +Ω∆e∗ = 0, (12)

where Ω is a diagonal matrix whose diagonal elements
indicate the frequency of the corresponding mode. (12)
denotes the mode transformed damping vibration system.

In [4], the link deflection e is calculated from the strain.
In this section, a vision-based vibration control is discussed
assuming that no other sensors except for an endpoint camera
are available to detect the structural vibration. If no sensors
are available to directly measure the deflection, an observer
will be needed to provide an estimation of deflection for
vibration control. A Discrete Kalman filer is used for esti-
mation. According to (7), the state space model of vibration
can be described as:[

∆ė
∆ë

]
=

[
0 I

M−1
22 K22 0

][
∆e
∆ė

]
+

[
0

−M−1
22 M21

]
θ̈

ẋ =Ax+Bu, (13)

where x = [∆e,∆ė]T .
The measurement for the observer comes from the reading

of the endpoint camera. For simplicity, it is assumed that the
feature points are stationary. In the experimentation presented
in Section V, four marks are attached to an object as feature
points, as shown in Fig. 2.

Both the movement of the joints and vibration affect the
velocity of the feature points in the image plane. Therefore,
the velocity of the feature points expressed in difference
formula, ∆ξ , is divided into two components: low frequency
component ∆ξ low and high frequency component ∆ξ high. It
is assumed that the movement of the joints mainly affects
∆ξ low, while the vibration affects ∆ξ high. Hence ∆ξ low is
used for the endpoint control, and ∆ξ high is used for the
vibration suppression control. The high frequency component
is expressed as follows:

∆ξ high =
[
JimageJe 0

][
∆e
∆ė

]

z =Cx, (14)

where Je refers to end-effector Jacobian with respect to
link deflection, while Jimage refers to the Image Jacobian
matrix, which relates the velocity of the end-effector with
the velocity of the feature points in the image plane [5].

(1) Project the state ahead

(2) Project the error covariance 

Time  update ( “Predict” )

Initial estimate 
for 

Has the measurement
 been updated ?

N

Y

x̂0P̂ 0

(2) Compute the Kalman gain

(3) Update estimate with measurement 

(4) Update the error covariance

Measurement update ( “Correct” )
(1) Compute the extrapolated measurement

x̂ k-1 x̂ sx̂ k
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Fig. 3. A two-time-scale discrete Kalman filter with a delay compensator.

Before applying a discrete Kalman filter to the system
expressed by (13) and (14), it is necessary to consider some
technical problems. One problem is the difference between
the output measurement rate and the servo rate. Since a
NTSC standard camera is employed in this experiment, z
in (14) is updated at the NTSC camera frame rate (30 Hz).
On the other hand, in order to guarantee the stability and
control performance, the servo rate in the experiments is set
at 128 Hz, which is approximately four times faster than the
camera frame rate. This difference brings a difficulty in the
implementation of the discrete Kalman filter.

The other problem is a delay in the output measurement
expressed by (14). It takes approximately one video frame
to capture a camera image in a frame memory, and takes
approximately 10 ∼ 20 ms for image processing. These
delays cause a phase-lag between the real state and estimated
state. The phase-lag may bring instability into the vibration
control system.

In order to overcome the above two problems in the
implementation of the standard discrete Kalman filter, the
Kalman filter is modified and a delay compensation is
supplementarily used as shown in Fig. 3.

The standard discrete Kalman filter executes (1), (2) in
the Time update block and (2), (3), (4) in the Measurement
update block in Fig. 3 at the same time in this order.
However, zk is updated at the camera frame rate (30 Hz),
while estimation is expected to be done at the servo rate
(128 Hz). Therefore, the processes in the discrete Kalman
filter are split into two time-scales: the Time update time-
scale and the Measurement update time-scale.

In the proposed two-time-scale discrete Kalman filter
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Fig. 4. Comparison between the vibration measured by strain gauges (blue) and vibration estimated from the the endpoint camera view (red).

illustrated in Fig. 3, a flag is introduced to show whether
the measured output (z in (14)) is updated or not. The Time
update block in Fig. 3 is executed at the servo rate (128 Hz).
When the measured output is updated, the Measurement up-
date block is executed to refine the estimation. The proposed
two-time-scale discrete Kalman filter is expected to be robust
against the visual problems such as occlusion, because even
if the vision system fails to compute zk, the Time update
block does not stop estimating the state variables.

In order to compensate the delay involved in the output
measurement, the approach proposed in [6] is applied to
the estimation. As shown in Fig. 3, the delay compensator
extrapolates the measured output to the present time using
past and present estimates of the Kalman filter. The delay is
estimated from the preliminary experiments to be five servo
sampling times. Therefore, five past data are memorized in
each FIFO queue. Larsen et al. assumed the standard discrete
Kalman filter [6]. In this paper, the delay compensator
proposed in [6] is applied to the two-time-scale Kalman filter
as illustrated in Fig. 3.

In the two-time-scale Kalman filter illustrated in Fig. 3,
x̂−k represents the prior estimate. x̂+

k represents the posteriori
estimate incorporating the delayed measurement zk. zk is
obtained through a high-pass filter to eliminate the low
frequency robot motion. The cut-off frequency of the high-
pass filter is 0.5 Hz. Due to the delay, the measurement
obtained at kth iteration is actually taken at sth iteration (k >
s). As proposed in [6], in order to incorporate the delayed
measurement, an interpolated output zint = zk +Ckx̂−k −Csx̂−s
is defined. x̂−k , x̂−s represent the prior estimates made at kth it-
eration and sth iteration respectively. This interpolated output
enables the Kalman filter to treat the delayed measurement.
Q and R are the diagonal covariance matrices of process
noise and measurement noise, whose diagonal components
are 11 µm2 and 0.4 pixel2, respectively.

An experiment is carried out to evaluate the performance
of the Kalman filter. In this experiment, the end-effector is

commanded to move horizontally. The vibration is controlled
with a very small gain to clearly compare the estimated
value using Kalman filter with the measured value avoiding
danger. The link deflections δy3, δy5, δz3, and δz5 (see Fig. 1)
estimated using the Kalman filter is compared with the
deflections calculated from the strain gauge signal as shown
in Fig. 4. The strain data is high-pass filtered to eliminate the
gravitational deflection with a cut-off frequency of 1.0 Hz.
It is possible to say from Fig. 4 that the estimation using
the Kalman filter shows satisfactory accuracy. Note that the
natural frequency at the experimented configuration of the
arm is about 3 Hz for the fist mode and 11 Hz for the
second mode. That is to say the sampling speed of camera
as 30 Hz is fast enough according to sampling theory. The
vibration suppression control (8) is experimented using the
endpoint camera image and Kalman filer instead of using a
strain gauge. The results are presented in Section V.

IV. SPECIFYING THE END-EFFECTOR TRAJECTORY USING
IMAGE INTERPOLATION

In (6), the component θ̇ r contributes for the endpoint con-
trol. In this paper, an image-based visual servo is designed
as:

θ̇ r = KIJ+
θ J+

image∆ξ low, (15)

∆ξ low = Slow(ξ d −ξ ), (16)

where KI denotes the gain for visual servo. As described in
Section III, only the low frequency component of the feature
points ∆ξ low is used for the visual servo.

The image-based visual servo described in (15) controls
the robot manipulator to decrease ∆ξ low linearly. Therefore,
there is no guarantee that the resultant endpoint trajectory
is adequate for a given task. Fig. 5(a) shows an example in
which the resultant endpoint trajectory (the solid-red curve)
is not adequate. As a resolution to this problem, Mezouar
et al. proposed an extension of the image-based approach
[3], in which a series of images is given as the reference.
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Fig. 5. Parts mating guided by interpolated images.

Each image in the series represents a successive frame seen
by the camera when the end-effector follows the specified
trajectory.

The method proposed in [3] is simplified and applied to
the particular peg-in-hole problem here to show its potential
as a solution for the motion planning problem of visually
guided flexible robots. The method proposed in [3] uses
a sequence of real images along the endpoint trajectory,
while the method proposed in this section uses only the final
image. The feature points in the final image are extracted,
and intermediate feature points along the endpoint trajectory
are calculated from the final feature points.

For the peg-in-hole task, the natural strategy is to align
the approaching axis of the peg with the axis of the hole.
Therefore an intuitive solution is to insert intermediate ref-
erence feature points between the initial and final reference
feature points so that the peg squarely faces the hole before
peg-insertion (dashed-green curve in Fig. 5(a)). In Fig. 5(a),
image A refers to the start of operation, and image C refers
to the end. An image B is inserted as an additional reference
before the peg reaches the target. The reference feature point
ξ d in (15) at every sampling period is given by interpolating
between images A and B or between images B and C. The
feature points in the image B are produced from the feature
points in the image C so that the axis of the peg is aligned
with the axis of the hole. Image A is the initial camera view
image before the operation starts. Note that only the image C
is needed before the experiment because the reference feature
points at any moment in the operation can be produced from

the feature points in the image C and the feature points
taken in the initial position. As shown in Fig. 5(b), the
camera coordinate frames corresponding to image A, B, C
are denoted as ΣA, ΣB, ΣC and the plane containing marks is
denoted as ΣO.

When a feature on a plane is observed by a moving
camera, its coordinate with respect to camera frame at a
different instant can be related by a simple representation [7].
Let the coordinate of feature j with respect to frame A and C
be A p j =

[
AXj

AYj
AZ j

]
T ,C p j =

[
CXj

CYj
CZ j

]
T , then

the relationship is expressed by:
A p j = ARC

C p j +
AtC, (17)

where ARC and Atc are the rotation matrix and the translation
vector from frame A to C, respectively. Considering that the
feature is located in the plane, the following relationship is
obtained:

Cn ·C p j = Cnx
CXj +Cny

CYj +Cnz
CZ j = Cd, (18)

where Cn =
[

Cnx
Cny

Cnz
]T is a unit vector defined with

respect to frame C, which is perpendicular to the plane ΣO.
Cd is the distance between ΣC and ΣO. Using (17) and (18),
A p j is calculated as:

A p j =
(

ARC +
AtC

CnT

Cd

)
C p j = G0

C p j. (19)

Let the frames A, B, and C to be re-indexed as 0, 1, and
2. The transform matrix from frame A to C and from frame
B to C are defined as G0 and G1, respectively. In order to
interpolate between the images A and B or between images
B and C, interpolation of the transform matrices between G0
and G1, and between G1 and I is considered. Consider that
the camera is modelled by a simple pin-hole, and in addition
a set of known coplanar image features are employed. In this
condition, the rough relative position between the frames can
be calculated as in [5]. It makes the calculation of Gi matrices
possible. With the calculated Gi matrices, the interpolation
between two transform matrices is given as follows [3]:

G(τ) = (1− τ)φ i−1 + τφ i +(Gi−1 −φ i−1)Γ (20)

Γ(θ i,τ) = e([θ i]×τ) (21)

φ i =
itC
Cd

Cn
T

(22)

where ti is the time when camera reaches the corresponding
frame i. τ and [θ i]× are defined as τ = t−ti−1

ti−ti−1
and [θ i]× =

log(i−1RT
C

iRC), respectively. itC and iRC are the translation
vector and rotation matrix from frame i to frame C. In the
above equations, operations e[ ], log() are defined in Lie
algebra. Their calculations can be referenced from [3]. The
position of the feature j at the instant k can be calculated
from C p j as follows:

k p j(τ) = G(τ)C p j. (23)
k p j is the relative three dimensional position vector with
respect to the camera coordinate frame. Using pin-hole
camera model, a reference feature points in the image plane
ξ d used in (15) can be produced from k p j.
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Fig. 6. Estimated and actual deflection during the vision guided peg-in-hole experiment

V. VERIFICATION EXPERIMENT

Combining the vision-based vibration suppression control
discussed in III and endpoint trajectory control using image
interpolation in IV, a verification experiment is carried out.
Due to the limitation in the narrow view range of camera, it is
still difficult to perform the whole of positioning task only
with a camera. Therefore before the experiment starts, the
end-effector is positioned to a stable state with strain gauge
feedback. In this state the vibration has been damped very
well and the features are already detected by the camera.
From this position, a peg-in-hole operation is performed
which is characterized in the fact that both the trajectory
following and vibration damping are implemented using
camera. As shown in Fig. 6, the vision-based vibration sup-
pression works very well. With image interpolation scheme
applied, the peg squarely faces the hole before contact,
which makes the insertion easier as shown in Fig. 7. In this
experiment the length of the trajectory is defined as 20 s with
the interval between image A, B, and C is defined as 10 s.

VI. CONCLUSION

In this paper, a vision-based endpoint trajectory and vibra-
tion control scheme is proposed for flexible manipulators.
The vibration suppression control is designed using visual
information. Four marks are used as the visual target for the
visual servoing. In order to specify the endpoint trajectory, a
reference visual targets interpolation approach is introduced.

A discrete Kalman filter is used to estimate the deflection
and vibration of the links using the endpoint camera. In order
to overcome the difference between the NTSC video frame
rate (30 Hz) and the servo rate (128 Hz), a two-time-scale
discrete Kalman filter is proposed.

In the control of flexible manipulators including real space
manipulators, robot motion is designed slower than the
vibration of natural frequency of links, in order to avoid
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Fig. 7. Feature trajectory with image interpolation

the resonance. The proposed scheme utilizes the difference
in time-scale between the robot motion and the natural
frequency of the links.
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