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Abstract— In this paper we study the problem of controlling
a micro robot which moves either on a line or on circle of
predetermined radius. Locomotion constraints of this type are
usual in micro robots, and therefore, it is important to have
efficient and easy to implement ways of coping with these
constraints. To solve the problem we present a multilevel motion
controller that can be easily implemented on a robot with scarce
computational resources as it does not rely on complex logical
operations. It reduces the kinematics of the micro robot to the
kinematics of a unicycle, screening in effect the micro behavior
from the high level planner. Simulated results are provided to
verify the proposed methodology.

I. INTRODUCTION

For the past few years, a number of researches have been

studying aspects of micro robotics behavior, i.e. robotics on

micro-scales. Robotics in these scales is often not a simple

use of well studied principles and ideas from traditional

’macro’ robotics, but instead , new ideas and paradigms have

to be used, in order to cope with the behavior of robots in

these scales.

In this work we will focus on the control of a micro robot

on which motion constraints are imposed, due to the nature of

the locomotion system. In general, micro locomotion systems

are not as versatile as locomotion systems found on larger

robots, but instead are constrained by a number of reasons

including

• Power Constraints: Simultaneous rotational and linear

movement could be prohibited by the power available

• Computational Constraints: Calculations needed for a

micro-hexapod to rotate and translate simultaneous

could exceed the on board resources

• Locomotion Structure: The locomotion system may not

allow complex motion patterns

In our case,the structure of the locomotion systems does

not allow the micro-robot to move arbitrarily.More specif-

ically, we are interested in controlling a micro-robot with

piezo-actuated legs Fig. I that can move forwards and

backwards but cannot turn arbitrarily, only with a specified

turning radius Fig. 2. Motivation for studying such a micro-

robot comes from the behavior of state of the art micro
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Fig. 1. Micro Robot
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Fig. 2. Self Motion capabilities of the micro-robot

robots, having similar motion constraints [4]. Constraints

similar to the constraints of the robot we are studying,are

associated with a large class of micro-robots, and as a result

of great practical significance.

The system we are examining moves roughly as a tricycle

in which the steering wheel is locked in two positions, corre-

sponding to the state in which the system moves forwards or

backwards and to the state where the system rotates around

a constant center of rotation located at a distance ρ from the

robot.

Unicycles are extremely well studied in the literature and

a vast number of publications has appeared in the literature

concerning planning, closed loop control, task execution, ob-

stacle avoidance etc. To name a few,in [10] the authors study

motion planning techniques for a non-holonomic unicycle in

the presence of obstacles, while in [5] the authors present and

compare a number of stabilizing controllers for unicycles.

On the other hand, the problem of bounded curvature

vehicles has received, comparatively, less attention. In [2] the

authors study the problem of stabilizing a kinematic unicycle

on the plane, assuming that the robot moves with bounded

curvature and that few sensory information are available

to the robot. They propose a hybrid control technique that

stabilizes the robot to a large class of trajectories. This model

assumes a robotic vehicle that can only move forwards,

and therefore does not utilize the full potential of a robot

that can move both forwards and backwards. Moreover,

this technique, involving a hybrid automaton, although very

appealing in a large scale robot, could be problematic in a

computationally scarce micro-robot.

In [8], the problem of calculating optimal paths for robots

moving on bounded curvature trajectories,with the robot

being able to move both forwards and backwards is studied.
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The authors give a procedure that, for any given endpoints

on a plane free of obstacles, will generate a small number of

trajectories, in which the optimal trajectory belongs. Thus, by

comparing these trajectories the optimal one can be found.

This result, solves completely the path planning problem, but

is difficult to extend it in closed loop control and/or to multi

agent systems.

On the other hand, a number of works regarding control

of switching systems using averaging have been reported in

the literature.In [9], the authors propose a framework for

controlling hybrid systems, by establishing that when the

hybrid system is periodic, the dynamics of the averaged

system lie on the convex hull of the individual continuous

system, and the control of the system is accomplished by

controlling via classical control techniques the averaged

continuous system. Our method, on the other hand, lies

on controlling the form of the averaged kinematics, by

constructing a special switching controller that gives to the

averaged system a specific behavior, so that its control is

easy.

The wealth of publications in unconstrained non-

holonomic vehicles, motivates us to try to utilize these

techniques by masking the bound constraints, instead of

trying to extend the necessary results to curvature bounded

vehicles. We propose to solve this problem,using a multilevel

control scheme, that utilizes a pulse width modulated control

in the lower level, accepts in the upper level unconstrained

non-holonomic velocity inputs. Our goal is to capitalize

on the vast number of motion planning and closed loop

controllers for unicycles, both for the single and the multi

agent case,and to use our control strategy as a low level

control scheme, under more capable controllers handling

obstacle avoidance and task execution. The multilevel control

scheme, allows the robots to follow -in any desired accuracy-

the motion of a unicycle.

II. PROBLEM DEFINITION

The state of the vehicle is given by

q =





x
y
θ



 (1)

where (x, y) are the Cartesian coordinates of the center

of the robot w.r.t a global coordinate frame and θ is the

orientation of the robot w.r.t. to the sam coordinate frame.

The kinematics of the vehicle are given by (2)

q̇ = V ·





cos θ
sin θ

ρ



 (2)

V ∈ [−Vmax,−Vmin] ∪ 0 ∪ [Vmin, Vmax], ρ ∈ {−ρ0, 0, ρ0}

with ρ being the curvature (i.e. the inverse of the turning

radius) So the vehicle can either move forwards or backwards

(w.r.t. its local position) or can rotate with a fixed turning

radius ( 1
ρ0

). The problem is to control this robot, i.e. to find

a control input so that the robot executes a given task. The

tasks include stabilization to a point, tracking a trajectory,

swarming, etc.

III. CONTROLLABILITY

It is known from the literature [8] that this system is

globally controllable and in their work, the authors present

an optimal global controllability scheme. A more challenging

and interesting problem is how to control the system locally.

Our solution to this question -although it is a well known

fact that this car is small time locally controllable - is to

show that this system 2 can follow any trajectory followed

by a unicycle, and hence is locally controllable.

A. Discretization of the Control Inputs

In the subsequent analysis, we will assume that the linear

velocity of the robot belongs in V ∈ {V max,−V max, 0} .

By doing so we get results that are obviously compatible

with system 2, since we merely commit the control input to

a discrete subset of original control input.

Moreover, in this case the control problem becomes a a

purely discrete one. We have a number of vector fields on

which the micro-robot can move on. In particular, in this

case we can decompose the kinematics of the system into

4 vector fields, that cannot be simultaneously activated, and

that characterize all the possible forward motion directions

the robot, can achieve from a point in the state space. These

vector fields, labeled g1, ..., g4 are the following

g1 =





0
0
0



 g2 = V ·





cos θ
sin θ

0





g3 = V ·





cos θ
sin θ
ρ0



 g4 = V ·





cos θ
sin θ
−ρ0





Furthermore, the robot can move along v.f. −g2,−g3,−g4,

with the set of all these vector fields completely character-

izing the system’s available motion directions.

Using a scaling transformation of the form x̂ = s · x ,ŷ =
s · y we can, by an appropriate choice of s, to re-write the

kinematic equations into the equations of a robot moving

with unitary velocity (s = V −1), or into the equations of

a robot that when rotates, rotates on the unitary circle s =
(V · ρ)−1) . It is thus obvious, that we may utilize all these

representations of the motion of the robot interchangeably.

IV. PULSE WIDTH MODULATED CONTROL

We propose to control this micro robot using the concept

of pulse width modulated control. It is intuitively obvious

that if the robot swiftly alternates between two of these vector

fields, its overall motion will lie somewhere between these

two vector fields. So, by exploiting this fact, we can make

the robot -by alternating continuously between 2 (or more)

vector field, moves as a uncicycle. In Fig. 3 the concept of

controlling the micro robot with alternating between vector

fields (v.f.) is depicted. The robot starts moving from Point 1

, along the red curves (with curvature 1) up to point 2. From

Point 2 to Point 3 the robot simply move backwards, and
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Fig. 3. Vector Field Alternation

then from point 3 to point 4 again with curvature 1. Finally

from Point 4 to Point 5 the robot moves backwards.

To move between points 1 and 5 without alternating, the

robot would have to turn much tighter, or equivalently, the

robot follows a curve of different -larger- curvature than its

self motion curves. By rapidly interchanging between vector

fields, the micro-robot could move as closely to a unicycle

as desired.

To make this a precise concept, we need a little notation.

We define a switching function

σ(t, a, T ) =







1, 0 ≤ t < T
0, T ≤ t < (a + 1)T

σ(t − (a + 1) · T, a, T ), T > (a + 1)T

We define as Ca
gi,gj

(q0) the solution of the differential

equation

q̇ = σ(t, a, T )gi + (1 − σ(t, a, T ))gj , T → 0 (3)

The right hand of this differential equation, for any T >
0, is piecewise analytic, and therefore, for any T > 0, the

solution of the differential equation is well defined.

The motion of the robot, when the control is pulsating

between v.f. i, j with time constant a is therefore Ca
gi,gj

Our control strategy lies in controlling the motion of the

microrobot by constructing a suitable Ca
gi,gj

, i.e. by choosing

appropriately i, j and a . Since we are interested in moving

the micro-robot as a unicycle, we want to construct motion

modes that move the system with arbitrary curvature.

We can prove the following : when we alternate between

vector fields g2 and g3 , on the limit of T → 0, the robot

will move along vector field

g23a = V





cos(θ)
sin(θ)

a
a+1



 (4)

in the sense that the solution of 3 and the solution of 4 for

the same initial condition q0 will be the same ∀t
Formally, we can show that

Ca
g2,g4

∼ V · [cos θ sin θ −
a

a + 1
]T (5)

Ca
−g2,g4

∼ V ⊥ · [cos θ sin θ −
a

a − 1
]T (6)

with ∼ meaning that the produce the same trajectory, starting

from the same initial conditions, V ⊥ states the fact that the

V.F. Comb. Robots Behavior

g1 Robot is Still

g2 Robot Moves Straight

g3 Robot Turns Left ρ = 1

g4 Robot Turns Right ρ = 1

Ca
g2,g4

Robot Turns Forward Right ρ =
a

a+1

Ca

−g2,g4
Robot Turns Forward Right ρ = −

a−1

a

TABLE I

SUMMARY OF VECTOR FIELD AND ASSOCIATED MOTION

linear velocity of the overall motion will not be equal with

the original linear velocity, but will be less. In the previous

equation it is obvious that when a = 1, the v.f. pair {−2, 4},

will result in the agent rotating in place, i.e. will have infinite

curvature.

We can summarize some of the motion results when

alternating between different v.f.1 in table I.

V. PROOF

In this section we will show that when the switching

frequency tends to infinity, the behavior of the system is

as described in the previous section. We will only show this

for the combinations of v.f. g2,−g2 with g3 as the other

cases are symmetrical to this one. This proofs show a well

known fact in PWM control, and it is included here only for

completeness.

We begin by examining the switching between v.f. g2 and

g3 . We examine the motion of the agent when the applied

control input is Ca
g2,g3

, with T → 0 . We define as a step the

time interval T + aT in which the robot undergoes motion

on g2 for time T being followed by motion on v.f g3 for time

aT . We begin by examining the motion of the robot during

a single step. Assuming the robot stars from (xi, yi, θi) we

can calculate the motion of the robot during the (i+1)− th
time step as

∆xi+1 = cos(θi)T+

∫ aT

0

cos(θi + ωτ)dτ

= cos(θi)T+1/ω[sin(θi + aTω) − sin(θi)]

∆yi+1 = sin(θi)T+

∫ aT

0

sin(θi + ωτ)dτ

= sin(θi)T−1/ω[cos(θi + aTω) − cos(θi)]

∆θi+1 = aTω

By keeping in mind that

xi = x0 +

i
∑

j=1

δxj

yi = y0 +

i
∑

j=1

δyj

θi = θ0 +

i
∑

j=1

δθj

1We do not present all the combinations, as all others are symmetrical
with the ones on the table.
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we get that

xn = x0 + T

n−1
∑

j=0

cos(θ0 + jaωT )+

+1/ω[sin(θ0 + naT ) − sin θ0]

yn = y0 + T

n−1
∑

j=0

sin(θ0 + jaωT )−

−1/ω[cos(θ0 + naT ) − cos θ0]

θn =θ0 + anωT

Let T be the time interval at the end of which we

want to compare the evolution of the micro robot, un-

der the actual interchanged vector fields, and vector field

[cos θ sin θ a/(1 + a)]T

If the robot was moving along [cos θ sin θ a/(1 − a)]T ,

after the same time T = n(a + 1)T its position would be

x̂n = x0 +

∫ n(a+1)T

0

cos(θ0 + a/(1 + a)ωτ)dτ =

= x0 +
(a + 1)

aω
[sin(θ0 + anωT ) − sin(θ0)]

ŷn = y0 +

∫ n(a+1)T

0

sin(θ0 + a/(1 + a)ωτ)dτ =

= y0 −
(a + 1)

aω
[cos(θ0 + anωT ) − cos(θ0)]

θ̂n = θ0 + n(a + 1)T
a

a + 1
ω = θ0 + naωT

Therefore we have that

xn−x̂n =

= T

n−1
∑

j=0

cos(θ0 + jaωT )−
1

aω
[sin(θ0 + anωT ) − sin(θ0)] =

= T

n−1
∑

j=0

cos(θ0 + jaωT ) −

∫ nT

0

cos(θ0 + aωτ)dτ

which clearly tends to zero as T → 0 and n → ∞ so that

T = n(a+1)T remains constant, since the first term is -when

T → 0, n → inf just the definition of the definite integral.On

the same line of thought, we can show that ŷn− ŷ → 0 when

T → 0,and therefore when the switching frequency tends to

infinity, the motion of the agent is described by the smooth

vector field [cos θ sin θ aω
1+a

]T

In the case of switching among vector fields −g2 and g4

we have that -using the same notation-

xn = x0 − TU

n
∑

j=0

cos(θ0 + ajωT )

+
U

ω
(sin(θ0 + naωT ) − sin θ0)

,while

x̂n = Û
ω̂

(sin(θ0 + n(a + 1)T ω̂) − sin(θ0))

We will show that when Û = a−1
1+a

U and ω̂ = a
1+a

ω then

xn − x̂n → 0, T → 0

High Level  Control

Low Level

Controller

Switching

Based

cos

sin

V

q V

θ
θ

ω

  =    
ɺ

cos

sin

{ 1} {0} {1}

V

q V

θ
θ

ρ
ρ

  =    
∈ − × ×

ɺ

Fig. 4. Multilevel Control Scheme

Indeed we have that

xn − x̂n =U [
1

aω
(sin(θ0 + naωT ) − sin θ0]

− T

n
∑

j=0

cos(θ0 + ajωT )]

But

T

n
∑

j=0

cos(θ0 + ajωT ) ≈

∫ nT

0

cos(θ0 + aωT ) =

1

aω
(sin(θ0 + naωT ) − sin θ0)

Therefore,

T → 0, xn − x̂n → .0

VI. CONTROLLER SYNTHESIS

The control scheme for a single micro robot is a depicted

on Fig. 4. We implemented a multilevel controller design,

with the high level controller considering the robot as

unicycle, without turning radius constraints. This controller,

produces a control pair (linear and angular velocity (V, ω))
which is then fed to lower level, and is implemented by

the actual robot. Of course, it is obvious that the lower

level controller cannot execute an arbitrary velocity pair.

Nevertheless, the lower level controller can execute an ar-

bitrary turning radius trajectory, which -in geometric terms-

means that any trajectories followed by a non holonomic

unicycle can be executed by the micro-robot, with a different

-perhaps- timing.

Mathematically, the interactions between the high level, and

low level controller is twofold. First, the upper level con-

troller, chooses among the possible combinations of vector

fields that the low-level controller will execute.Table I is

used, or to be more exact, the complete version of it,

including all possible motion directions.

Then, the width of the pulses is appropriately chosen, so

that the robotic agent moves along the same path that would

move, had it actually been able to move non-holonomically

without further constrains. The width of the pulse is cal-

culated based on Table I, so that the micro-robot trajectory

matches the desired.
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For every pair {ω, V } issued as commands from the high

level controller, there is a pair of vector fields, and a time

step width, that renders the micro-robot trajectory equivalent

(moving on the same trajectory) as if it was moving with

{ω, V } .

More formally, a mapping function is defined, that essen-

tially is the low level of the multi-level controller. Function

Φ : (V, ω) → V × V × R+,

where V = {0, 1, 2, 3, 4,−1,−2,−3,−4} represents the set

of all possible vector fields, and R represents the set in which

the parameter a takes values. The selection of the pair of

vector fields is done using Table I, and the computation of

the parameter a by solving the w.r.t to a the appropriate

relation of the same table (i.e. the relation connecting the

vector fields choose, the parameter a with the characteristics

of the trajectory). This function selects which pair of vector

fields will be activated and computes the parameter.Thus, for

example, when the high-level controller issues a command

corresponding to a right turn (V > 0, ω > 0), with curvature

more than one ω > V , function Φ outputs as vector fields

v.f. −2, 3, and the pulse widths is calculated as following:

k−1 ω

V
=

a − 1

a
→ a = (1 − k−1 V

ω
)−1,

where k = [L]−1 is a unity constant, necessary since

the curvature is a physical quantity, and k represents the

dimensions of curvature.

The higher level controller used can be any controller

designed for a non-holonomic robot,as for example the sta-

bilization controllers found in [5] or the obstacle avoidance

controller found on [10].

Given a closed loop control law for the non-holonomic

system of the form [ω, V ] = F (q), the switching control law

the actual micro-robot will follow, will be given by Φ(F (q)).
Obviously, the stability of the overall system depends greatly

-a well known fact in multilevel control- on the relative

bandwidths of the high level control, and the low level drive.

Finally, we are interested on utilizing this control para-

digm, for controlling a swarm of micro-agents, by reducing

their kinematics to unicycle kinematics and using techniques

developed for swarms of unicycles, like for example the

controller found in [3]. A interesting problem pops-up in

utilizing this driving scheme for a multi-agent system. Even

for infinite frequency, the low-level drive is guaranteed to

follow the trajectory of the high-level drive, but not in the

same time window,as the mean robot velocity is curvature

specific.

This does not play any role in a single robot setup, where

convergence is time-independent, but is crucial in a multi-

agent setup.

VII. SIMULATIONS

To verify the usefulness of this control scheme, we present

a number of simulated trajectories.

For our simulations, and since we are mainly interested

in checking the feasibility of our low level pwm control ,

we will use -as high level controller- the controller found on

[1]: The velocity and angular velocity are given by

υ = kρ

√

x2 + y2

ω = kα(arctan(y/x) − θ) − kφ(π/2 − θ)

ω|(0,0,θ) = (kα + kφ)(π/2 − θ)

It can be shown that as long as

kρ > 0, kφ < 0, kα + kφ − kρ > 0

kα + 2kφ −
2

π
kρ > 0

the controller stabilizes the system to the origin. As a

result, using infinite switching frequency, the micro-robot

will converge to the origin.

The micro-robot is assumed to be moving with constant

velocity (which can be either positive or negative) and with

a turning radius set to 1. V = ±1, ω± = 1, ρ± = 1 . These

values represent the actual linear and angular velocity of the

robot, and are chosen arbitrarily.

Fig.5 depicts a simulated trajectory tracking experiment.

A non-holonomic trajectory with steep turns serves as input

trajectory,and the robot has to track it. A simple non-

nolonomic controller is used as high level controller, and the

low level drive is to execute this path.The switching mode

drive works well, even though the switching frequency is

relatively low. The drive’s characteristic chattering-like mo-

tion is evident, when comparing the nominal trajectory with

the actual trajectory. In Fig.6, the control effort associated

with this simulated experiment is depicted, using the actual

angular velocity of the micro-robot, switching from ω = −1,

to ω = 0 and finally to ω = 1.

In Fig. 7 we present a stabilization experiment, using

the afore mentioned controller. The robot is controlled to-

wards (0, 0, 0) , and the controls are implemented using the

switching mode drive. The switching frequency was set to 2

times the integration frequency. When the curvature of the

trajectory becomes very large low level drive noise corrupts

the stabilizing controller, making the system not robust.

This phenomenon is more vividly depicted in Fig. 8, where

the effects of the switching frequency are depicted. Each

curve represents the evolution of the robot position, under

the same high level control, and starting from the same initial

conditions, but with the switching frequency increasing from

being equal to the integration frequency (f = 1) to 16nth

times the integration frequency f = 16 . It should be noted

that the high and low level controller are synchronized, in the

sense that the implemented velocity pair given by the high

level controller remains the same until the low level drive

finishes a cycle. This figure clearly depicts the effects of a

low frequency, especially near the origin, were the system

undergoes very tight turns. When the switching frequency

increases, the net result of the motion tends to the nominal,

smooth unicycle.

VIII. CONCLUSIONS

We have presented a kinematic switching motion drive,

for a micro-robot moving on curves with bounded curvature.
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Fig. 5. X-Y Micro Robot Trajectory.
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Fig. 7. Stabilization to (0,0)
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Fig. 8. Stabilization to (0,0)

We designed appropriate switching schemes, so that the robot

tracks any desired non-holonomic trajectory, with arbitrary

curvature, independent from the curvature of the vehicle self

motion curve. A number of simulations was presented to

verify the use of this driving scheme.

The main advantage of our driving scheme -besides its

simplicity- is the fact that it is a low level controller,

effectively screening the idiosyncracies of the micro-robot

from the high level controller, and making the micro-robot

appear as a non holonomic integrator. With this way, any of

the vast number of non-holonomic control schemes can be

implemented on a micro-robot.

As a future research plan, we plan to focus on how to

use this control scheme in the case of a swarm of micro

robots,taking into account the necessary synchronization.

Moreover, an analysis of the high level control scheme is

necessary, in order to formally assess the time scales of the

problem, and how the interactions of the high level controller

with the low level drive, focusing on the question of how

high must be the frequency of the low-level drive in order to

retain the convergence properties of the high-level controller.
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