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Abstract— This paper presents an efficient and robust
tracking algorithm based on multiple cues fusion in the
Bayesian framework. This method characterizes the object
to be tracked using a MOG (mixture of Gaussians) based
appearance model and a chamfer-matching based shape
model. A selective updating technique for the models is
employed to accommodate for appearance and illumination
changes. Meantime, the mean shift algorithm is embedded as
the prior information into the Bayesian framework to give
a heuristic prediction in the hypotheses generation process,
which also alleviates the great computational load suffered
by the conventional Bayesian tracker. Experimental results
demonstrate that, compared with some existing works, the
proposed algorithm has a better adaptability to changes of the
object as well as the environments.

Index Terms— appearance model, chamfer distance, Bayesian
tracker, template update

I. INTRODUCTION

Object tracking [1], [2], [3], [4], as a basic task in the
mobile robot system, is to locate the specified region in the
video sequences. It received significant attention due to its
crucial values in robotics applications.

In literature, there exist a variety of tracking algorithms
from different perspectives, such as the snakes model [1],
Condensation [2], mean shift [3], appearance model [4] and
so on, and these algorithms have achieved great successes
in this field. However, it is still a challenge to build a
mobile robot tracking system that is robust to a wide variety
of conditions. In the early applications, most approaches
employed in tracking algorithm are based on a single cue [2],
[3], [4], which is fragile to large changes of environment.
For example, as applied on the head tracking, the color
based approach works only on the front face or profile, but
fails as the person turns around [3]. On the other hand,
the edge or shape based trackers work well on the head
tracking, but they are quite sensitive to the background
clutter [1]. Thus, the combination of multiple cues based
tracking approaches appear to achieve more reliable results
[5], [6], [7], [8], [9]. Birchfield [5] uses a color histogram
and intensity gradient of the target for robust head tracking.
The primary limitation of such an integration strategy is
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that each cue has associated with the same fixed level of
confidence, meaning that each cue is assumed to possess the
same reliability in each frame of video. Isard [6] employed a
two-level tracking in a stochastic framework, which consists
of a fixed color distribution and a contour model. However,
it is often invalid to assume a fixed color distribution in
the dynamic environments. In [7], Wu et al. proposed a
novel learning method as an approximation to a factorial
graphical model where different shape and color distributions
are interacted on-line in a co-inference way. However there
lacks a proper scheme for decreasing the number of particles,
because the particle filters suffer the problem of curse of
dimensionality in high-dimension space.

In this paper, we propose an efficient and robust visual
tracking algorithm in the Bayesian framework by integrating
both the appearance and shape information of the target.
While maintaining a low computational complexity, the
proposed algorithm performs quite robustly in dynamically
changing environments. The main features of our tracking
approach are summarized as follows:
1) The appearance of the target is modeled by a mixture
of Gaussians, and the parameters are calculated with an on-
line EM algorithm, which is similar to [4], [10]. A selective
adaptation scheme for updating the appearance model is
adopted to accommodate for appearance and illumination
changes.
2) The shape information is modeled by a chamfer transform,
and we defines a similarity measure in the same metric as
appearance model. It gets a significant improvement over the
match measure used in Birchfield [5], and greatly improves
the efficiency, as compared with [2], [7].
3) The mean shift algorithm is embedded into the particle fil-
ter framework to give a heuristic prediction to the hypotheses
generation process. This strategy avoids the large number of
particles when multiple cues are integrated in this framework.

The arrangement of this paper is as follows. A brief
review of Bayesian based tracking algorithms is given in
Section II. The detail of our algorithm is given in Section
III. Experimental results are presented in Section VI, and
Section VII is devoted to conclusion and the future works.
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II. REVIEW OF BAYESIAN BASED TRACKER

Among those tracking algorithm mentioned above, one
popular way is to take the tracking as a on-line Bayesian
inference process for estimating the unknown state st from
a sequential observations o1:t contaminated by noise. A
dynamic state-space form is often employed in Bayesian
inference framework, which contains two important compo-
nents: system model(state transition model) and observation
model [11], as follows,

system model : st = ft(st−1, εt) ↔ p(st|st−1) (1)

observation model : ot = ht(st, νt) ↔ p(ot|st) (2)

where st, ot represent system state and real observation,
εt, νt is the system noise and observation noise, ft(., .)
characterizes the kinematics of object, and ht(., .) models
the observer. Bayesian inference process evolves the se-
quence of probability distributions by extracting underlying
information from sequence of noisy observations. When
(1)(2) reduce to linear Gaussian case, the analytic filtering
solution is given by the celebrated Kalman filter, in which
the sufficient statistics of mean and state-error correlation
matrix are calculated and propagated. Due to the non-linear
and non-Gaussian essence in the real world, the sequential
Monte Carlo approach which combines the powerful Monte
Carlo sampling method with Bayesian inference is used in
state estimation, that is usually called particle filter [12].
The key idea of particle filtering is to approximate the
posterior probability distribution by a weighted sample set
{(s(n), π(n))|n = 1 · · · N}. Each sample consists of an
element s(n) which represents the hypothetical state of an
object and a corresponding discrete sampling probability
π(n), where

∑N
n=1 π(n) = 1. First, the sample set is

resampled to avoid the degeneracy problem, and the new
sample is propagated according to the state transition model.
Then each element of the set is weighted with probability
π(n) = p(ot|St = s

(n)
t ), which is calculated from the

observation model. Finally, the state estimate ŝt can be either
be the minimum mean square error (MMSE) estimate or the
maximum a posterior (MAP) estimate.

Feature cues and prior information are two basic issues
to be considered as the Bayesian inference is adopted
for tracking. In literature, many Bayesian based tracking
algorithms were proposed using different cues, including
contour [2], color [13], and their fusion [6], [7]. As for the
prior information, most of the existing approaches take the
previous system states as the prior information [2], usually
containing little information about the tracking direction, and
thus involving a quite large computational load since many
hypotheses need to be randomly generated to cover the target.
Here we propose a new cues-fusion based Bayesian tracker
characterized by: 1) the two feature cues, i.e., the appearance
and shape models, are adapted during the tracking process,
compared with the fixed models used in [6], and 2) the prior
information is given by a mean shift iteration, which provides
a very instructional tracking direction, while maintaining a
low computational complexity.
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Fig. 1. The flow chart of our multiple cues integration tracking algorithm

III. TRACKING ALGORITHM BASED ON
MULTIPLE CUES

The flow chart of the proposed algorithm is outlined in Fig.
1. As shown in Fig. 1, we first apply mean shift iterations to
obtain a heuristic prediction for the hypotheses generation
process. Each hypotheses is first evaluated by the shape
model, only a small number of hypotheses are propagated
and evaluated by the appearance model with highest prob-
abilities in shape measure. A maximum a posterior (MAP)
estimate of state is obtained based on combined probability
of hypotheses. Meanwhile, a selective updating scheme is
employed to update parameters of the appearance model
and the histogram employed in the mean shift procedure to
accommodate the changes of object and environment. Below
we give a detailed description about each component of the
algorithm, and the algorithm is summarized finally.

A. MOG Based Appearance Model

The appearance of the target is modeled efficiently by a
mixture of Gaussians, with the parameters estimated by an
on-line EM algorithm [4].

1) Appearance Model: Similar to [4], [10], the appear-
ance model consists of three components S,W,F , where S
component captures temporally stable images, W component
characterizes the two-frame variations, F component is a
fixed template of the target to prevent the model from drifting
over time. Thus the likelihood function of appearance model
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can be formulated as follows,

p(oa
t |st) =

d∏

j=1

{
∑

i=w,s,f

wi,t(j)N(oa
t (j);µi,t(j), σ2

i,t(j))}
(3)

where N(x;µ, σ2) is a Gaussian density

N(x;µ, σ2) = (2πσ2)−1/2exp{− (x − µ)2

2σ2
} (4)

and {wi,t, µi,t, σi,t, i = s, w, f} represent mixture probabili-
ties, mixture centers and mixture variances respectively, and
d is the number of pixels inside the target. The observation
of appearance is denoted as oa

t for short, and the same rule
is applied to the observation of shape os

t and the observation
of multi-cue combined oc

t later.
2) Parameter Estimation: In order to make the model

parameters depend more heavily on the most recent obser-
vation, we assume that the past appearance is exponentially
forgotten and new information is gradually added to the
appearance model. To avoid having to store all the data from
previous frames, a on-line EM algorithm is used to estimate
the parameters.

The on-line EM process of the parameter estimation can
be described as follows:
Step1: During the E-step, the posterior probabilities of each
components are computed as

mi,t(j) ∝ wi,t(j)N(oi,t(j);µi,t(j), σ2
i,t(j)) (5)

which fulfills
∑

i=s,w,f mi,t = 1.
Step2: The mixing probabilities of each components are
estimated as

wi,t+1(j) = αmi,t(j) + (1 − α)wi,t(j); i = s, w, f (6)

and a recursive form for moments {Mi,t+1; i = 1, 2} are
evaluated as

Mi,t+1(j) = αoi
t(j)mi,t(j) + (1− α)Mi,t(j); i = 1, 2 (7)

where α acts as an adaption factor.
Step3: Finally, the mixture centers and the variances are
estimated in the M-step

µs,t+1(j) =
M1,t+1(j)
ws,t+1(j)

σ2
s,t+1 =

M2,t+1(j)
ws,t+1(j)

− µ2
s,t+1(j)

µw,t+1(j) = ot(j)

σ2
w,t+1(j) = σ2

w,1(j)

µf,t+1(j) = µf,1(j)

σ2
f,t+1(j) = σ2

f,1(j)

In practice, however, updating of the appearance model
may be dangerous in case that, for instance, some back-
grounds are misplaced into the object or the object is
occluded. Thus, we developed a selective adaptation scheme
to tackle such cases, which is described in subsection D.

B. Distance Transform Based Shape Matching

Object edges are also commonly used as the cue for
the visual tracking [2], [5]. In our system, we employ the
chamfer matching [14] based shape model as the edge cue.

1) Chamfer Matching: The core of chamfer matching is
chamfer distance transform, which was first proposed by
Barrow et al. [14] for object recognition and shape alignment,
and was improved by Borgefors [15] who introduced a
coarse-to-fine scheme to accelerate the process of chamfer
matching. In literature chamfer matching has been used
frequently for shape matching, by making the model template
correlated with a distance transformed edge image [14].

To formalize the idea of chamfer matching in our case,
the shape template—-projected model contour of ellipse is
represented by a set of points A = {ai}Na

i=1. The image edge
map is represented as a set of feature points B = {bi}Nb

i=1,
the chamfer transform assigns each location u the distance
to the nearest feature in its neighborhood(see Fig. 2).

u = min
b∈B

||u − b||2 (8)

A number of similarity functions between two point sets
can be defined based on the chamfer transform. In this paper,
we choose the average of the distances between each point
of A and its closest point in B, which describes the degree
of mismatch between point set A and B:

MisMatch(A,B) =
1

Na

∑

a∈A

min
b∈B

||a − b|| (9)

This similarity function can vary smoothly when the point
locations have small changes, thus it can be tolerant to image
noise and small shape variations.

2) Multi-Channel Chamfer Matching: When the chamfer
matching is applied to a large amount of image clutter, the
value of mismatch function is small with arbitrary shapes,
therefore it is insufficient to discriminate between different
templates. One way to handle this problem is to use the
direction information of gradient as a complement. The
idea is to use a chamfer distance measure, which not only
considers distance in translation space, but also in gradient
orientation space.

One possible way of doing this is as follows. The template
shape A and the edge map image B are split into multiple
channels according to the orientations of the image edges.
Each channel contains a subset of edges from template
shape and the original image respectively to a range of
edge orientations. As a result, the similarity function should
be evaluated on each channel of template shape and the
corresponding original image respectively. Thus the ultimate
MisMatch between feature A and B is as follows:

MisMatch(A,B) =
1

Na

n∑

i=1

∑

a∈Ai

min(min
b∈Bi

||a − b||2, τ)

(10)
where Ai and Bi are the feature points in orientation channel
i, and τ is threshold to suppress noise. In our experiments, we
take 4-channel split to get a balance between efficiency and
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(a) (b) (c)

Fig. 2. Computing the chamfer distance. This figure shows (a) an input
image, its (b) edge map and (c) the distance transformed edge map, which
contains the distance to the nearest edge point at each pixel, representing
by grayscale values.

Fig. 3. Computing the multi-channel chamfer distances. The first row of
figures shows the multi-channel edge map with four orientations(vertical,
horizontal and two diagonal directions), the second row shows the corre-
sponding transformed edge maps.

effectiveness, including vertical, horizontal and two diagonal
directions. The 4-channel chamfer distance transform is
illustrated in Fig. 3.

3) Chamfer Matching Based Similarity Measure: In or-
der to model the shape matching process in the Bayesian
framework, we define a similarity likelihood based on the
MisMatch degree in the same metric with appearance
model.

p(os
t |st) ∝ exp(− (MisMatch(A,B(s)) − MisMatchmin)2

2σ2
s

)

(11)
where σs = 1

3 (MisMatchmax − MisMatchmin), that
can model the MisMatch in the 3σs interval of Gaussian
distribution.

4) Multiple Cues Combined Similarity Measure: The
same metric shared by the appearance similarity measure
and the shape similarity measure makes it easy to define
the multi-cue combine similarity measure.

p(oc
t |st) ∝ p(oa

t |st) × p(os
t |st) (12)

C. Mean Shift Based Prior

The motivation of embedding the mean shift algorithm
into the particle filter framework of our tracking system is to
provide a heuristic prediction to the hypotheses generation
process, thus to ease the computational burden of huge
number of particles.

Suppose the target is well localized at xt−1 in frame
t − 1(see first collum of Fig. 4), first we apply mean shift
algorithm to the frame t, and the target position is predicted
at x̂t. We integrate this information into a fist-order state

Fig. 4. Hypotheses predictions from Zero-order transition model(top row)
and our transition model(bottom row)

TABLE I

SELECTIVE ADAPTATION FOR APPEARANCE MODEL

Updating Strategy
Suppose {πa, πs, πc} represent posterior probabilities of appearance
measure, shape measure, and the combined feature measure respectively
of the estimated state, and {Ta, Ts, Tc} represent three thresholds
correspondingly;

1: if (πa > Ta)&&(πs > Ts)&&(πc > Tc)
2: Update the appearance model and histogram of the target;
3: else
4: Keep the appearance model and histogram of the target
5: end if

transition model to form an adaptive state transition model.

st = ŝt−1 + Affine(x̂t − xt−1) + εt (13)

As compared with the zero-order transition model (shown in
the second collum of Fig. 4), our transition model generates
hypotheses more efficiently, since they are tightly centered
around the object of interest so that we can easily track the
object with less particles.

D. Selective Adaptation for Appearance Model

The underlying assumption behind tracking algorithm is
that the feature of object remains the same between two
consecutive frames, which is generally reasonable for a short
period of time. However, the model of object will be gradu-
ally contaminated due to dynamic changes of appearance and
environment, which makes the model inaccurate for tracking
in a long run. Thus it has been a important issue to design
a proper adaptation scheme for the object model [16]. On
the other hand, however, over updating of the models may
includes the noise of background into the object model. Thus,
a proper updating scheme is of significant importance for the
system.

We propose a selective updating scheme based on the
confidences of both appearance and shape estimation. This
strategy together with the F component in the mixture
models can effectively prevent the model from drifting away,
and accurately accommodate to the stochastic factors. In our
algorithm, the appearance model and the histogram employed
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in the mean shift procedure are updated if all of three
measures i.e., appearance measure, shape measure and the
combined measure of the estimated state, are greater than
the predefined thresholds, as shown in Table I. Evaluating the
updating process on each three similar measure can exclude
the wrong cases, when there is only a high similar measure
in just one visual cue. For example, a object possessing a
high similarity with the shape template but a low similarity
with the appearance model will be considered as noise, thus
it will not be updated to our model.

E. Summary of Tracking Algorithm

A brief summary of the multiple cues integration tracking
algorithm is described as follows.

Algorithm 1 Tracking Algorithm Based On Multiple Cues
Note: πa, πs, πc represent the posterior probability of ap-

pearance, shape, and the combined feature respectively
at frame t, the histogram and the centroid of the target
are denoted by Hist, xt;

Input: Given the available state information
{ŝt, xt, πa, πs, πc,Hist} of frame t, and the
observation information {oa

t+1, o
s
t+1, o

c
t+1} of frame

t + 1;
1. Apply mean shift tracking algorithm with fixed kernel

bandwidth to the observations of frame t+1 to obtain
the perdition position of the target’s center x̂t+1;

2. Generate the hypotheses based on the adaptive transition
model:
s
(n)
t+1 = ŝt + Affine(x̂t+1 − xt) + εt+1, n = 1 · · · N ;

3. Evaluate the hypotheses by the shape measure
π

(n)
s = p(os

t+1|St+1 = s
(n)
t+1), n = 1 · · · N ;

Sort {π(n)
s } in a descending way;

4. The first M sorted hypotheses are evaluated by the
appearance model.
π

(n)
a = p(oa

t+1|St+1 = s
(n)
t+1), n = 1 · · · M ;

The combined measure can be obtained
π

(n)
c = π

(n)
s × π

(n)
s ;

5. Maximum a posterior (MAP) estimate of the state
ŝt+1 = arg max

st+1
p(st+1|o1:t+1) ≈ arg max

st+1
π

(n)
c ;

6. Check the three similar measure to make a decision:
update the model or not ;

Output: MAP estimation: ŝt+1;

IV. EXPERIMENTAL RESULTS

In our experiment, we choose the affine transformations to
model the target region, and the proposed algorithm is tested
on several different scenes and tracking tasks including out of
plane rotation, large illumination changes, agile motions and
partial occlusion, as shown in Fig. 5. All of the experiments
are carried out on a one-processor Pentium IV 3.0GHz PC
with 256M memory, and reach the realtime requirements.

From experimental results shown in Fig. 5(a), we can
see that the selective updating scheme can adapt to the
the illumination changes. Fig. 5(b) shows the result of our
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Fig. 6. The number of hypothesis needed to track the object with our
transition model in each video frame

algorithm to track a girl’s head with out-plane rotation, from
which we can notice that both features are complementary
in different condition. A tracking result of object with agile
motions is shown in Fig. 5(c), it demonstrates that the
algorithm has the ability to track the video sequences where
large movements exist between two successive frames. The
last sequence gives a good example to handle the partial oc-
clusion, the mechanism of selective updating the appearance
gives a efficient way to handle the partial occlusion. When
occlusion happens, the updating procedure stops because the
visual features of the man is different from our target(the
girl), it keeps the right model and the target can be tracked
well by the multiple cues. In order to obtain a tracking
performance above with the girl’s sequences, the number of
hypothesis possessed by our transition model is present in
Fig. 6, of which the average number is only 62.99, while the
traditional Bayestian based tracker with zero-order transition
model achieves comparable results with 400 hypotheses.

Although human head is a major tracking task in the
experiments, our algorithm, compare with some exist works
[5], [7], can flexibly track objects with arbitrary shapes given
the template model. Furthermore, it is easy to extend this
framework to multiple object tracking.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper presented a robust multiple cues based tracking
algorithm in the Bayesian framework. In our implementation,
a MOG(mixture of Gaussian) based appearance model and
distance transform based shape model is employed to form
a robust multi-cue fusion tracker. Our approach combine
the merits of both stochastic and deterministic tracking
approaches in a unified Bayesian framework: the mean-shift
algorithm is embedded into the particle filter framework
seamlessly to give a prior to the hypotheses generation
process, which significantly decrease the particle numbers.
Moreover, a selective updating scheme is employed to ac-
commodate the changes of appearance and illumination.
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(a) Scene with large illumination changes

(b) Object with out-plane rotation

(c) Object with agile motions

(d) Partial occlusion

Fig. 5. Experimental results in different scenes (illumination change, out plane rotation, agile motion and partial occlusion).

B. Future Works

Future work will address to the more elegant framework
for multi-cue integration, and to integrate the multi-cue into
just one model, in which the visual cues will be self-modified
to the change of conditions. Furthermore, the tracking system
will be enhanced by the new visual cues, such as motion, or
some 3D information.
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